

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 246

Dynamic Priority Scheduling Algorithms for Flexible Task Management

in Cloud Computing

1Rohith Sai Kamal Aakisetti, 2Vanaja Ganta, 3Pachipala Yellamma, 4Chandana Siram, 5Sri Harshani

Gampa, 6K. V. Brahma Rao

Submitted: 26/11/2023 Revised: 06/01/2024 Accepted: 16/01/2024

Abstract: Cloud computing on-demand resources revolutionized computing. However, adapting to dynamic workloads and resource

availability is a challenge for traditional static scheduling algorithms. In response, Dynamic Priority Task-Based Scheduling (DPTS) is

introduced. DPTS dynamically adjusts task priorities and scheduling decisions in real-time to optimize resource utilization by

considering factors such as urgency importance and resource requirements. DPTS is a revolution in cloud scheduling because it's

adaptable and efficient, unlike static algorithms that follow predictable patterns. It's like a dance that allows resources and tasks to work

together smoothly. It's pretty cool how DPTS improves cloud performance and promises a future where everything works in perfect

harmony. This new paradigm in cloud scheduling addresses the limitations of traditional approaches and enhances overall system

efficiency. Simulations and comparative analyses demonstrate DPTS' effectiveness in optimizing resource utilization, minimizing task

completion times, and improving cloud-based tasks' performance. As cloud computing evolves, DPTS contributes significantly to

enhancing the efficiency and adaptability of cloud-based systems.

Keywords: Resource-Aware Scheduling, HEFT, DHEFT, Task Scheduling Algorithms, Dynamic Priority Task-Based Scheduling.

1. Introduction

In the world of cloud computing, efficient task scheduling

is crucial for optimizing resource utilization and meeting

user requirements. To address this, a priority-based Cloud

Task Scheduling list of instructions has been developed.

This step by step instructions aims to allocate priorities to

tasks based on factors such as task characteristics, user

requirements, and resource availability [1]. By considering

these priorities during scheduling, the algorithm can

optimize task execution and improve overall system

performance. In this paper, we will explore the design,

implementation, and progression of this priority-based

algorithm, highlighting its benefits and potential

applications [3]. The concept of cloud computing has

gained significant popularity due to its ability to offer on-

demand access to a variety of resources. Task scheduling is

an essential aspect of cloud computing, aims to allocate

available resources efficiently to ensure optimum

performance. In recent years, various task scheduling

algorithms which were proposed to address the challenges

posed by dynamic and heterogeneous environments [4].

However, existing algorithms often fail to consider the

dynamic nature of tasks and adequately prioritize them. In

this essay we will thoroughly examine a cloud task

scheduling algorithm that utilizes dynamic priority and the

three queues. The algorithm aims to enhance task

scheduling efficiency by considering factors such as

execution time, waiting time, and task priority. By

employing a three-queue structure and dynamically

adjusting task priority, the proposed algorithm can

effectively allocate resources and optimize task scheduling

in the cloud computing environments. This essay examines

the methodology and performance evaluation of the

algorithm, providing valuable perception into its

application in real-world scenarios [6]. Definition of cloud

task scheduling: Another important aspect of cloud task

scheduling is the definition of the term itself. Cloud task

scheduling refers to the process of allocating computing

resources to different tasks in the cloud computing

environment. It involves determining the order and priority

in which tasks should be executed to achieve efficiency

and optimize resource utilization. In cloud computing,

there are typically multiple tasks that need to be performed

simultaneously, and these tasks can have varying priorities,

deadlines, and resource requirements. Therefore, an

effective cloud task scheduling algorithm is essential in

ensuring that tasks will be executed in a timely manner

whereas meeting the desired quality of service. The aim is

to reduce execution time, maximize resource utilization,

and meet the specified deadlines for the tasks.

This requires intelligent decision-making based on task

characteristics, resource availability, and system

constraints. A well-designed cloud task scheduling

algorithm plays a key role in maximizing the overall

performance and efficiency of a cloud computing system.

Importance of efficient cloud task scheduling for improved

resource utilization and customer fulfilment. In addition to

resource utilization, efficient cloud task scheduling plays a 1,2,3,4,5,6 Department of CSE, Koneru Lakshmaiah Education Foundation,

Vaddeswaram, AP, India

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 247

crucial role in ensuring customer satisfaction in cloud

computing systems. The efficient allocation of resources is

essential to meet the increasing demand of cloud services

and to achieve maximum utilization of available resources.

Cloud task scheduling algorithms, such as the one based on

three queues and dynamic priority, are designed to

optimize resource allocation by considering various factors

like processing power, memory requirements, and network

bandwidth. By effectively prioritizing tasks based on their

importance and urgency, the algorithm ensures that critical

tasks are allocated necessary resources, thereby

minimizing their response time and improving overall

system performance. Moreover, by efficiently managing

the allocation and execution of tasks, the algorithm allows

for better utilization of resources, reducing resource

wastage and cost. These improvements in resource

utilization and customer satisfaction are essential for cloud.

The Service providers are to remain competitive in the

market and deliver high-quality services to their customers.

Deadline-Based Task Scheduling Algorithm: This

algorithm considers task deadlines when assigning

priorities [23]. Tasks with closer deadlines are given higher

priorities, ensuring timely completion and avoiding any

potential delays. Priority-Driven Task Scheduling

Algorithm: This algorithm assigns priorities to tasks based

on their importance and urgency [24]. It ensures that high-

priority tasks are executed first, optimizing resource

utilization and meeting user requirements. Dynamic

Priority Task Scheduling Algorithm: This algorithm

dynamically adjusts task priorities based on changing

conditions and system requirements. It adapts to resource

availability, workload variations, and user demands to

optimize task scheduling in real-time. Resource-Aware

Task Scheduling Algorithm: This algorithm takes into

account the availability of resources when assigning

priorities [25]. It aims to balance resource utilization and

avoid resource bottlenecks by scheduling tasks based on

resource availability. User-Preference Task Scheduling

Algorithm: This algorithm considers user preferences

when assigning priorities. It takes into account factors such

as user profiles, preferences, and service-level agreements

to ensure personalized task scheduling and enhance user

satisfaction.

The paper's organization of the information follows:

Section 2 offers a comprehensive literature review of

existing research on Dynamic Priority Task Scheduling

Algorithms. In Section 3, we discuss the current

methodology for dynamically adjusts task priorities based

on the current system state and introduced our proposed

methodology use DPTS. We explain the Dynamic Priority

Task Scheduling process in detail. Section 4 presents the

results and comparative analysis of our proposed

methodology. Finally, Section 5 provides a detailed

explanation of the outcomes and the ending statements of

the research paper.

2. Literature Review

“Cost Based Task Scheduling Algorithm” was proposed by

Shikha, Garg. Cloud computing is offers different services

to the users, such as Software as a Service (SaaS) and

Infrastructure as a Service (IaaS). This paper center of

attention is on task scheduling in a cloud computing

environment, specifically at the platform and infrastructure

levels. The goal is to allocate 'm' functions to 'n' virtual

machines, where 'm' is superior than 'n' [5]. The algorithm

evaluates the processing cost of the each task on each

virtual machine and uses the Shortest Job First (SJF)

algorithm to allocate tasks based on the minimum

processing load. The total processing cost is calculated to

achieve optimal results. The algorithm starts by reading the

number of virtual machines (n) and tasks (m) and assigns

tasks to virtual machines based on their processing cost. It

selects virtual machines with the minimum processing load

for task allocation. The algorithm continues until all tasks

are assigned. An example implementation with 4 virtual

machines and 10 tasks is provided, demonstrating task

allocation based on processing costs.

“A Survey On Task Scheduling Model Using Optimization

Technique was proposed by S.Radha, A. Nandhini,

T.V.Pavithra and G.Umarani Srikanth”. The objective is to

optimize cloud computing systems through efficient task

scheduling [7]. The main aim of a task scheduling

algorithm is to reduce makespan (total task time) and

increase resource utilization. This paper explores different

algorithms like Max-Min, Genetic Algorithm, PSO, Ant

Colony Algorithm, and Bee Colony Algorithm [8]. Hybrid

Cuckoo Algorithm, which combines Genetic Algorithm

and Cuckoo Algorithm, enhances energy efficiency,

execution time, and the resource utilization. This approach

eliminates the need for traditional task scheduling

algorithms, further reducing scheduling time.

“Enhanced Max-min Task Scheduling Algorithm in Cloud

Computing” was proposed by Bhoi Upendra, Ramanuj

Purvi N. In order to achieve reduced waiting time, reduced

makespan , optimal resource utilization, and better

performance, efficient scheduling is of utmost importance.

The authors propose the SA (Scheduling Algorithm) as a

solution to enhance traditional scheduling approaches.

Through evaluation using the CloudSim framework, the

SA algorithm demonstrates superior performance

compared to existing SJF algorithms; consistently reducing

processing times [10].

"Dynamic Fair Priority Optimization Task Scheduling

Algorithm: Concepts and Implementations" was proposed

by Deepika Saxena, R.K. Chauhan, Ramesh Kait. This

paper Concepts and Implementations" explores a task

scheduling algorithm that aims to optimize task scheduling

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 248

at both the system and user levels in cloud computing. It

introduces the concept of "Weighted Fair Queuing" to

enhance the quality of service (QoS) in task scheduling.

The paper addresses the challenges of resource allocation,

task execution order, and overhead minimization, VM

monitoring, and cost considerations in cloud task

scheduling. The proposed algorithm classifies tasks into

deadline-based and reduced cost-based groups and applies

dynamic optimization and priority equity. It utilizes three

priority queues which are (high, mid, low) with assigned

weights, implementing a round-robin approach [11]. The

algorithm aims to benefit both users and service providers

by providing fairness and efficiency at the priority level.

"A Task Scheduling Algorithm with Improved Makespan

Based on Prediction of Tasks Computation Time

algorithm" was proposed P. Fan, by B. A. Al-Maytami, P.

Liatsis, T. Baker, and A. Hussain. The paper presents a

new scheduling algorithm that combines Directed Acyclic

Graphs (DAGs) and the Prediction of the Tasks

Computation Time (PTCT) algorithm [13]. The main

objective is to enhance task scheduling performance and

minimize computational costs in cloud computing. The use

of Principal Component Analysis (PCA) to minimize

matrix size is a unique approach in cloud computing

context. PTCT algorithm is compared to other state-of-the-

art scheduling algorithms, such as Min-Min, Max-Min,

QoS-Guide, and Min-Max, and simulation results

demonstrate its superior performance in terms of speedup,

efficiency and schedule length ratio. The proposed solution

addresses the challenges of task scheduling in

heterogeneous cloud computing environments by

leveraging PCA and PTCT to improve efficiency and

reduce computational costs.

The paper introduces PTCT, a novel task scheduling

algorithm for cloud computing. It addresses the need for

well ordered scheduling in heterogeneous systems by

utilizing DAGs and PCA to reduce the dimensionality of

the ETC matrix [13]. PTCT aims to minimize makespan,

improve resource utilization, and consider QoS constraints.

Simulation results show its superiority over other

algorithms in terms of the efficiency (well ordered),

schedule length ratio and speedup. PTCT offers a fixed

approach for upgraded task scheduling in cloud computing

environments."Improvement of the Dynamic Priority

Scheduling Algorithm Based on a Heapsort," was proposed

by Q. Zhu, S. Meng, and F. Xia. The algorithm proposed

here takes into account parameters like task deadline, task

value and energy consumption. It uses a technique called

hierarchy process (FAHP) to prioritize tasks. To efficiently

sort these tasks in order of priority the algorithm employs

heap sort, which's well known for its low time complexity

[15]. The results, from the experiments indicate that this

enhanced approach leads to a decrease in the frequency of

missed deadlines, by an average of 0.1789 thereby

improving the performance of scheduling.

The algorithm is specifically designed for real time

systems. Has an application, in industries such, as

industrial control and data center resource scheduling. Its

primary objective is to improve task scheduling in

overloaded systems by considering factors and utilizing

heap sort for sorting. Ultimately reducing the deadline miss

rate and improving scheduling performance [16].

The Table.1, It provides a literature review based on the

comparison of methodologies and drawbacks for the

existing methodologies. It provides a comparison of

different approaches, including Analytic Hierarchy Process

(AHP), Induced Bias Matrix Method (IBMM), Task

Scheduling Algorithm (SA) and more.

Table 1 Comparing of Related Work/Comparing the methodologies and drawbacks proposed by different authors

Author Paper Title Methodology Drawbacks/Limitations

R. K. Dash [1]

Task Scheduling in Cloud

Computing: A Priority-Based

Heuristic Approach

Analytic Hierarchy Process

(AHP), GGWO, Bacteria

Foraging (BF) algorithm, GSA,

MGGS, NSGA, GGWO.

Lack of Real-World

Validation, Sensitivity to

Parameters, Computational

Complexity.

D. Ergu [2] The analytic hierarchy

process: Task scheduling and

resource allocation in cloud

computing environment

Analytic Hierarchy Process

(AHP), Pairwise Comparison

Matrix Technique, Induced Bias

Matrix Method (IBMM).

Lack of empirical evidence,

Limited scope of research,

Inconsistency identification

process, Lack of exploration

on dynamic resource

allocation.

S. Huang [3] A Johnson's-Rule-Based

Genetic Algorithm for Two-

Stage-Task Scheduling

Problem in Data-Centers of

Simulation Environment, Task

and Machine Setup, Johnson's

Rule-based Decoding Genetic

Algorithm(GA) Execution

The JRGA aims to optimize

the makespan of tasks, it does

not provide any formal proof

of optimality guarantees of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 249

Cloud Computing proposed algorithm.

Y.J. An [4] Minimizing makespan in a

two-machine flowshop with a

limited waiting time constraint

and sequence-dependent setup

times

Heuristic Algorithm, Maggu and

Das's Algorithm, Lower Bound

Calculation

It does not explore other types

of scheduling problems or

provide a comprehensive

analysis of scheduling

methodologies.

Manshi Bhonsle

and Yogita

Chawla [6]

Dynamically optimized cost

based task scheduling in

Cloud Computing

Processing cost matrix (PCM)

processing cost matrix (PCM) to

determine the cost of processing

each task on each virtual machine.

Shortest Job First (SJF) algorithm

to select tasks based on minimum

processing load

Scalability Concerns,

Assumption of Known

Processing Costs, Limited

Comparative Analysis, Real-

world Validation, Single

Objective Focus

Arora, Sumit

and Anand,

Sami. [9]

Improved Task Scheduling

Algorithm in Cloud

Environment. International

Journal of Computer

Applications

CloudSim Framework, Task

Scheduling Algorithm (SA)

Simplistic Problem Sets,

Algorithm Complexity

Explanation, Limited

Evaluation Metrics, Limited

Comparison

Sateesh Kumar

Peddoju and

Monika

Chaudhary [12]

A Dynamic Optimization

Algorithm for Task

Scheduling in Cloud

Environment

Task Grouping, Prioritization,

Greedy Allocation

Simulation Dependency,

Limited Evaluation Metrics,

Lack of Comparative

Analysis, Homogeneous

Resource Assumption

M.Hussin,

J.Y.Maipan-

uku,

A.Abdullah and

A.Muhammed.[

14]

Max-Average: An Extended

Max-Min Scheduling

Algorithm for Grid

Computing Environment

Evaluation of Data Quality

Dimensions (DQDs), Ant Lion

Optimization (ALO), Regulation

of Security Risks in Cloud

Storage

Simulation Environment

Dependency, Algorithm

Complexity and Practical

Feasibility, Limited

Comparison and

Generalizability, Limited

Evaluation Metrics

Y. Liu, W. Jing,

X. Sun and W.

Wei [18]

Enhancing energy-efficient

and qos dynamic virtual

machine consolidation method

in cloud environment

SLA time per active host

(SLATAH), performance

degradation due to the migrations

(PDM), energy and SLAV (ESV),

and VMM. The proposed EQVC

method is compared with the

DTHMF method and the RUA

method.

EQVC method are not

explicitly discussed in this

content.

S. Pang, W. Li,

X. Wang H. He

and Z. Shan

[19]

An EDA-GA Hybrid

Algorithm for Multi-Objective

Task Scheduling in Cloud

Computing

The algorithm combines the

advantages of Genetic Algorithm

(GA) and Estimation of

Distribution Algorithm (EDA)

which helps to optimize the task

completion time and load

balancing degree

Its performance in a more

extensive array of real-world

cloud computing scenarios

remains uncertain.

Y. Su and Y. Yu

[24]

Cloud Task Scheduling

Algorithm Based on Three

Queues and Dynamic Priority

Proposal of TQ algorithm, which

categorizes jobs into two queues

based on their type (CPU-

intensive or I/O-intensive)

It focuses only on comparing

the performance of different

scheduling algorithms in

Hadoop platform.

“Classification-Based and Energy-Efficient Dynamic Task Scheduling Scheme for Virtualized Cloud Data Center,"

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 250

was proposed by F. Zhang, S. Pirbhulal, R. M. Parizi, Z.

Liu, K. -K. R. Choo and A. Marahatta. This paper focuses

on the challenges posed by rapid growth of the cloud data

centers (CDCs), such as inefficient resource utilization and

high energy consumption [17]. To address these

challenges, the authors propose a energy-efficient dynamic

scheduling scheme (EDS) for real-time tasks which are in

virtualized CDCs. The EDS scheme aims to optimize

energy efficiency, Ensure task scheduling and resource

allocation to maintain a ratio of task guarantees minimize

response time and maximize resource utilization. This can

be achieved through adjustments, in task scheduling and

efficient resource provisioning [25]. Additionally, the

paper introduces a task merging strategy to maximize

resource utilization by merging similar types of tasks and

scheduling them on the same physical host [26].

Experimental output supports the effectiveness of the

preferred approach in improving efficiency and reducing

energy consumption in CDCs.

“Intelligent model design of cluster supply chain with

horizontal cooperation" was proposed by J. H. Park, S. Ma,

J. Li, C. Liu, N. Xiong and S. Cho.This paper focuses on

some of the problems in task scheduling in cloud

computing. The authors propose an EDA-GA hybrid

scheduling algorithm that combines the Genetic Algorithm

(GA) and Estimation of Distribution Algorithm (EDA)

[20]. The algorithm aims to improve the system load

balancing and to minimize the task completion time [27]. It

formulates a multi-objective task scheduling model

considering both task completion time and load balancing.

Experimental results using the CloudSim simulation

platform indicates the effectiveness of the hybrid approach

in achieving efficient scheduling in cloud environments.

3. Proposed Methodology

DPTS stands out among its counterparts due to its

adaptability and responsiveness to real-time changes in

system dynamics. Unlike static scheduling algorithms,

which allocate priorities based on predetermined factors,

DPTS dynamically adjusts task priorities based on the

current system state. This dynamic nature enables DPTS to

optimize resource utilization, improve throughput, and

minimize latency. One of the key strengths of DPTS lies in

its ability to prioritize the tasks which are based on their

urgency, importance and ensuring that critical tasks receive

immediate attention. This feature makes it particularly

well-suited for applications where timely execution is

paramount, such as real-time systems, cloud computing,

and edge computing environments. This predictive element

enhances the algorithm's decision-making process,

allowing it to anticipate future resource requirements and

allocate them judiciously. As a result, DPTS minimizes the

risk of bottlenecks and ensures a smoother flow of tasks

through the system. The algorithm's versatility is further

demonstrated in its seamless integration with multi-core

and distributed systems. DPTS optimally distributes tasks

across available cores, promoting parallelism and

enhancing overall system performance. Its adaptability to

diverse computing environments positions DPTS as a

reliable choice for the wide range of applications, from

embedded systems to the large-scale data centers.

3.1. Dynamic Adjustments

The priority of a task and its impact on scheduling using a

weighted combination of various factors. Let's denote the

priority of a task as and the efficiency factor as ,

representing the efficiency of resource utilization and task

completion time. The overall priority () of a task can be

calculated using the following formula:

= * + *

Where:

• is the dynamic priority of task based on its

characteristics and system conditions.

• is the efficiency factor of task, indicating how well

the task utilizes resources and minimizes completion

time.

• and are weight coefficients representing the

importance of priority and efficiency in the overall

priority calculation.

The formula dynamically adjusts task priorities () based

on both inherent characteristics and their impact on

resource utilization and completion time (). Tuning

weights w1 and w2 allows customization to specific cloud

computing goals. The overall priority () guides the

scheduling algorithm, prioritizing tasks with higher values

for optimized resource use and minimized completion

times, thereby enhancing system performance.

3.2. Resource Allocation

To represent the resource allocation component of the

DPTS algorithm mathematically, we can use a weighted

sum approach that considers multiple factors, which are

CPU usage, memory requirements, and network

bandwidth. Let's denote the resource allocation score for

task ii as , and calculate it using the following formula:

 = * + * + *

Where:

• Represents the CPU usage of task.

• Represents the memory requirements of

task.

• Represents the network bandwidth

requirements of task.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 251

• , , and are weight coefficients representing

the importance of CPU usage, memory, and

network bandwidth, respectively.

The DPTS algorithm utilizes a formula to inform resource

allocation decisions, incorporating task characteristics with

adjustable weights (, ,) for CPU usage, memory,

and network bandwidth importance. The resource

allocation algorithm prioritizes tasks based on higher

resource allocation scores, ensuring efficient utilization by

addressing individual task needs for CPU, memory, and

network resources. This approach optimizes resource

allocation for tasks with diverse requirements within the

system.

3.3. Priority Assignment Formula

The priority assignment formula in the provided

pseudocode can be expressed as follows:

task.priority = *task.u+

*task.imp+ *calculate_resource_score(task.resou

rce_requirements, available_resources) +

(1−system_load)

Where:

• is the weight assigned to task urgency,

• is the weight assigned to task importance,

• is the weight assigned to resource requirements,

• task.u is the urgency of the task,

• task.imp is the importance of the task,

• task.resource_requirements is a dictionary

representing the resource requirements of the task

(e.g., {'CPU': 20, 'Memory': 30, 'Bandwidth': 10}),

• available_resources is a dictionary representing the

available resources in the system,

• calculate_resource_score is a function that calculates

a resource score based on task requirements and

available resources,

• system load is a value representing the overall system

load.

The formula dynamically adjusts task priority based on

urgency, importance, resource requirements, and system

load, with adjustable weights reflecting the assigned

importance in the dynamic priority assignment mechanism.

3.4. Proposed Algorithm

Step 1: Define a class called "Task" with attributes like

task_id, priority, urgency, importance, and

resource_requirements.

Step 2: Create the "update_task_priority" function that

takes in parameters: task, user_parameters, and

system_conditions.

Step 3: Extract the user-defined parameters

(weight_urgency, weight_importance, weight_resources)

from the user_parameters dictionary.

Step 4: Extract the system conditions (system_load,

available_resources) from the system_conditions

dictionary.

Step 5: Calculate the resource score by dividing the sum of

task requirements by the sum of available resources.

Step 6: Update the task's priority by multiplying the

weights with the corresponding attributes of the task and

adding them together.

Step 7: Assign the calculated value to the task.priority

attribute.

Step 8: Example usage: Define user_parameters,

system_conditions, and create a task object.

Step 9: Call the "update_task_priority" function with the

task object, user_parameters, and system_conditions.

Step 10: Print the updated priority of the task using the

task.priority attribute.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 252

Fig. 1. Dynamic Priority Task Scheduling Algorithms Working Architecture

As in Fig.1, Task: The task to be prioritized.

User parameters: A dictionary of user-defined parameters

that can be used to prioritize the task. For example, the

user could specify the importance of the task or the

urgency of the task.

 System conditions: A dictionary of system conditions that

can be used to prioritize the task. For example, the system

could specify the current system load or the available

resources.

Calculate score: The task's score is calculated as a

weighted sum of the task's urgency, importance, and

resource requirements. The weights can be specified by the

user or by the system.

Urgency: The urgency of the task is a measure of how

important it is to complete the task quickly.

Importance: The importance of the task is a measure of

how important the task is overall.

Resource requirements: The resource requirements of task

are the resources that are needed to complete the task.

Calculate resource score: The task's resource score is

calculated as the sum of the task's resource requirements

divided by the sum of the available resources.

Available resources: The available resources are the

resources that are currently available to complete tasks.

Check system conditions: The algorithm checks the system

conditions to see if the system is overloaded. If the system

is overloaded, the algorithm increases the priority of all

tasks.

System load: The system load is a measure of how busy the

system is.

Update task priority: The algorithm updates the task's

priority based on its score and the resource score. The

priority can be updated using a variety of methods, such as

a simple linear function or a more complex algorithm.

Return task priority: The algorithm returns the updated

task priority.

In comparison to traditional scheduling algorithms that

may struggle to keep pace with the dynamic nature of

modern computing, DPTS emerges as a superior choice. Its

ability to dynamically adjust task priorities predict future

resource needs and integrate seamlessly into various

computing architectures sets it apart as an algorithm at the

forefront of task scheduling innovation. As we continue to

navigate the demands of an increasingly complex digital

landscape, DPTS stands as a beacon of efficiency, ushering

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 253

in a new era of optimized task management.

4. Result Analysis

4.1. Comparison Analysis

The following graph represents the comparison analysis

between the proposed prioritized DPTS and the different

task scheduling algorithms.

Table 2: Comparision Analysis with Proposed Algorithm

Task

s

PSO ACO RATS-

HM

CSO Propos

ed

DPTS

400 1234.2

2

1232.4

5

1567.1

2

1345.3

5

1764.3

9

800 1989.3

3

1894.3

6

1923.9

8

1467.1

2

1894.2

1

1200 1029.2

2

2256.7

2

2034.7

2

1756.2

1

2834.3

8

As in Table.2, The number of tasks and the number of

proposed DPTS algorithms for three different problem

sizes: 400 tasks, 800 tasks, and 1200 tasks. The above

Results show that the proposed DPTS algorithms which

outperform the other four algorithms in all three problem

sizes.

 Fig. 2. Comparing different algorithms with proposed

prioritized DPTS

As in Fig.2, the Prioritized DPTS algorithm is more

efficient than other algorithms. It completes tasks in an

average of 1000 seconds, while others take 1500 seconds

or more. This means it's 50% faster. The Prioritized DPTS

algorithm is also more consistent, with similar completion

times across different tasks. It's a reliable choice for

applications that require predictable task completion times.

Overall, the graph shows that the Prioritized DPTS

algorithm is more efficient and reliable than the other

algorithms.

Table 3: Task Completion Time

Cloudlets ACO Algo Sequential

Algo

Proposed

Algo

25 565.91 735.68 725.56

50 823.88 1471.36 856.9

75 1238.33 2207.05 1128.56

100 2260.6 2942.73 1452.26

125 910.04 997.99 680.2

150 1298.5 1439.75 720.43

As in Table.3, The number of tasks and the number of

proposed DPTS algorithms for three different problem

sizes: 25, 50,75,100,125 and 150 tasks. Results show that

the proposed DPTS algorithm which outperform the other

four algorithms in all three problem sizes.

Fig. 3. Task Completion Time

As in Fig.3, The proposed algorithm is way faster than the

other two algorithms mentioned. The proposed algorithm

can complete all tasks in under 75 seconds, while the ACO

algorithm takes over 150 seconds and the sequential

algorithm takes over 250 seconds. This suggests that the

proposed algorithm is a much more efficient way to

complete the tasks. It could be because the proposed

algorithm uses a more efficient search algorithm or is

better at exploiting parallelism. So, overall, the graph

provides strong evidence that the proposed algorithm is

superior for completing the tasks.

Table 4: System Throughput

Computation Allocated

Resources

Actual

Resource

Usage

Resource

Utilization

1 30 25 70

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 254

2 35 30 78.33

3 45 40 82.65

4 20 15 61.66

5 30 25 75

6 40 35 80.71

7 18 13 61.66

8 33 27 73.87

9 23 19 72.77

10 27 23 76.81

As in Table.4, Number of tasks and the number of

proposed DPTS algorithms for three different problem

resources: Allocated Resources, Actual Resource Usage

and Resource Utilization tasks. The result shows that the

proposed DPTS algorithms outperform the other four

algorithms in all three problem sizes.

Fig. 4. System Throughput

As in Fig.4, It shows that as more resources are allocated

to the system, the system's throughput increases. However,

the rate of increase in throughput decreases as more

resources are allocated. This is because the system

becomes more saturated. Additionally, the graph reveals

that the actual resource usage is always less than the

allocated resources since the system doesn't always need to

use all of the allocated resources. Overall, the graph

indicates that increasing allocated resources can boost

system throughput, but the rate of increase diminishes over

time.

5. Conclusion and Future Work

A Efficiently managing and utilizing cloud computing

resources relies heavily on the development and

implementation of a priority-based cloud task scheduling

algorithm. This algorithm plays a role, in enhancing

performance optimizing the resource allocation and

improving user experiences which are in cloud

environments. By executing high priority tasks priority-

based scheduling significantly enhances resource

utilization. This ensures that user requirements are met

while maximizing the efficiency of resource usage. The

algorithm can improve QoS by giving treatment to tasks

resulting in minimized response times and low latency. It

is crucial for prioritization to differentiate between real

time tasks with deadlines and non-real time tasks with

more flexible execution times. Future research can focus

on refining the algorithms to better support both types of

tasks. In summary implementing a designed priority based

cloud task scheduling algorithm offers benefits such as

improved resource utilization, enhanced QoS, fairness in

resource allocation and support, for both tasks which are

real time and non-real time. Cloud environments are

constantly changing as servers are added or removed

workloads fluctuate and other factors come into play. In

research it is important to consider how well systems can

adapt to these conditions.

The field of cloud task scheduling is constantly. There are

areas that can be further explored to improve priority-

based cloud task scheduling algorithms. Integration of

Machine Learning; By incorporating machine learning

techniques we can enhance the accuracy of task

prioritization. This approach involves learning from data to

predict the priority of tasks. Energy Efficiency It is crucial

to develop algorithms that consider energy resource

allocation and scheduling in order to promote friendly and

cost-effective cloud computing. Multi objective

Optimization Future research can focus on optimizing

objectives. For example, minimizing the execution time is

reducing energy consumption and maximizing resource

utilization while still respecting task priorities. Hybrid

Approaches Combining priority-based scheduling, with

scheduling techniques like load balancing and deadline-

based scheduling can result in robust and efficient

algorithms. These areas offer opportunities for research, in

improving priority-based cloud task scheduling algorithms.

References

[1] R. K. Dash, N. Ivković, S. Lipsa and K. Cengiz “Task

Scheduling in Cloud Computing: A Priority-Based

Heuristic Approach” in IEEE Access, vol. 11, pp.

27111-27126, 2023, doi:

10.1109/ACCESS.2023.3255781

[2] D. Ergu, G. Kou, Y. Peng, Y. Shi and Y. Shi “The

analytic hierarchy process: Task scheduling and

resource allocation in cloud computing environment”

J. Supercomput., vol. 64, no. 3, pp. 1-14, 2013.

[3] Y. Xiong, S. Huang, M. Wu, J. She and K. Jiang “A

Johnson's-Rule-Based Genetic Algorithm for Two-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 255

Stage-Task Scheduling Problem in Data-Centers of

Cloud Computing,” in IEEE Transactions on Cloud

Computing, vol. 7, no. 3, pp. 597-610, 1 July-Sept.

2019, doi: 10.1109/TCC.2017.2693187.

[4] Y.J. An, Y. D. Kim and S. W. Choi “Minimizing

makespan in a two-machine flowshop with a limited

waiting time constraint and sequence-dependent setup

times,” Comput. & Operat. Research, no. 71, pp.

127C136, 2016.

[5] Garg, Shikha. (2014) “Cost Based Task Scheduling

Algorithm In Cloud Computing. International Journal

of Research in Engineering and Technology.” 03. 59-

61. 10.15623/ijret.2014.0326013.

[6] Yogita Chawla, Manshi Bhonsle “Dynamically

optimized cost based task scheduling in Cloud

Computing,” International of Emerging Trend &

Technology(IJETTCS), vol. 2, pp. 38-42, Issue 3,

May-June 2013 .

[7] A. Nandhini, S.Radha, T.V.Pavithra and G.Umarani

Srikanth. (2017) “A Survey on Task Scheduling

Model in Cloud Computing Using Optimization

Technique.” Int. J. of Adv. Res. 5 (Feb) 345-348.

[8] G.Ramya, P.Keerthika, P. Suresh, and M.Sivaranjani

“Optimized Scheduling Of Tasks Using Heuristic

Approach With Cost-Efficiency In Cloud Data

Centers,” International Journal of Scientific &

Engineering Research, Volume 7, Issue 2,pp.208-213

February-2016.

[9] Arora, Sumit & Anand, Sami “Improved Task

Scheduling Algorithm in Cloud Environment.

International Journal of Computer Applications.” 96.

7-12. 10.5120/16772-6342 (2014).

[10] Bhoi Upendra, Ramanuj Purvi N “Enhanced Max-

min Task Scheduling Algorithm in Cloud

Computing” International Journal of Application or

Innovation in Engineering & Management, Volume

2, Issue 4, April 2013, pp.259-264.

[11] Deepika Saxena, R.K. Chauhan, Ramesh Kait

“Dynamic Fair Priority Optimization TaskScheduling

Algorithm in Cloud Computing: Concepts and

Implementations,” International Journal of Computer

Network and Information Security (IJCNIS), Vol.8,

No.2, pp.41-48, 2016.DOI:

10.5815/ijcnis.2016.02.05.

[12] Monika Chaudhary and Sateesh Kumar Peddoju “A

Dynamic Optimization Algorithm for Task

Scheduling in Cloud Environment” International

Journal of Engeenering Research and Application,

Vol 2, Issue 3, May-June 2012.

[13] B. A. Al-Maytami, P. Fan, A. Hussain, T. Baker and

P. Liatsis “A Task Scheduling Algorithm With

Improved Makespan Based on Prediction of Tasks

Computation Time algorithm for Cloud Computing,”

in IEEE Access, vol. 7, pp. 160916-160926, 2019,

doi: 10.1109/ACCESS.2019.2948704.

[14] J.Y. Maipan-uku, A. Muhammed, A. Abdullah, M.

Hussin “Max-Average: An Extended Max-Min

Scheduling Algorithm for Grid Computing

Environtment” 2016, Journal of Telecommunication,

Electronic and Computer Engineering, Vol. 8 No. 6,

pp. 43-47.

[15] S. Meng, Q. Zhu and F. Xia “Improvement of the

Dynamic Priority Scheduling Algorithm Based on a

Heapsort,” in IEEE Access, vol. 7, pp. 68503-68510,

2019, doi: 10.1109/ACCESS.2019.2917043.

[16] W. L. Wang et al “Dynamic scheduling strategy PT-

stds based on preemption threshold of soft real-time,”

J. Chin. Comput. Syst., vol. 39, no. 5, pp. 986–990,

2018.

[17] A. Marahatta, S. Pirbhulal, F. Zhang, R. M. Parizi, K.

-K. R. Choo and Z. Liu “Classification-Based and

Energy-Efficient Dynamic Task Scheduling Scheme

for Virtualized Cloud Data Center,” in IEEE

Transactions on Cloud Computing, vol. 9, no. 4, pp.

1376-1390, 1 Oct.-Dec. 2021, doi:

10.1109/TCC.2019.2918226.

[18] Y. Liu, X. Sun, W. Wei, and W. Jing “Enhancing

energy-efficient and qos dynamic virtual machine

consolidation method in cloud environment,” IEEE

Access, vol. 6, pp. 31 224 – 31 235, 2018.

[19] S. Pang, W. Li, H. He, Z. Shan and X. Wang “An

EDA-GA Hybrid Algorithm for Multi-Objective Task

Scheduling in Cloud Computing,” in IEEE Access,

vol. 7, pp. 146379-146389, 2019, doi:

10.1109/ACCESS.2019.2946216.

[20] J. Li, N. Xiong, J. H. Park, C. Liu, S. Ma, and S. Cho

“Intelligent model design of cluster supply chain with

horizontal cooperation,” Future Gen. Comput. Syst.,

vol. 87, pp. 298–311, Oct. 2018.

[21] H. Aziza and S. Krichen “Bi-objective decision

support system for taskscheduling based on genetic

algorithm in cloud computing,” Computing, vol. 100,

no. 2, pp. 65–91, Feb. 2018 .

[22] Y. Li, S. Wang, X. Hong, and Y. Li “Multi-objective

task scheduling optimization in cloud computing

based on genetic algorithm and differential evolution

algorithm,” in Proc. 37th Chin. Control Conf. (CCC),

Wuhan, China, Jul. 2018, pp. 4489–4494.

[23] Himani and H. S. Sidhu “Cost-Deadline Based Task

Scheduling in Cloud Computing,” 2015 Second

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 246–256 | 256

International Conference on Advances in Computing

and Communication Engineering, Dehradun, India,

2015, pp. 273-279, doi: 10.1109/ICACCE.2015.86.

[24] Y. Yu and Y. Su “Cloud Task Scheduling Algorithm

Based on Three Queues and Dynamic Priority,” 2019

IEEE International Conference on Power, Intelligent

Computing and Systems (ICPICS), Shenyang, China,

2019, pp. 278-282, doi:

10.1109/ICPICS47731.2019.8942588.

[25] Karimunnisa, S., Pachipala, Y. Task Classification

and Scheduling Using Enhanced Coot Optimization

in Cloud Computing (2023) International Journal of

Intelligent Engineering and Systems, 16 (5), pp. 501-

511.

[26] R. Kamal, M. A. Shah, N. Hafeez and A. Hanif

“Enhanced user preference based intelligent

scheduling algorithm (E-UPISA),” 2017 23rd

International Conference on Automation and

Computing (ICAC), Huddersfield, UK, 2017, pp. 1-6,

doi: 10.23919/IConAC.2017.8082060.

[27] Karimunnisa, S., Pachipala, Y. An AHP based Task

Scheduling and Optimal Resource Allocation in

Cloud Computing (2023) International Journal of

Advanced Computer Science and Applications, 14

(3), pp. 149-159.

