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Abstract: Non-Orthogonal Multiple Access (NOMA) has emerged as a promising technique to enhance the spectral efficiency and 

connectivity in wireless communication systems. This paper presents a novel approach for the detection of NOMA signals using Support 

Vector Machines (SVM), aiming to improve the efficiency and reliability of NOMA-enabled communication networks. The inherent 

challenge in NOMA lies in decoding multiple signals transmitted simultaneously on the same frequency channel. Conventional methods 

often struggle with the interference between these signals, leading to degraded performance. In this study, SVM, a machine learning 

algorithm known for its robust classification capabilities, is applied to effectively distinguish and demodulate NOMA signals. The proposed 

SVM-based detection system leverages the capability of SVM to find optimal hyperplanes in a high-dimensional space, enabling the 

classification of NOMA signals even in the presence of interference. The training phase involves the use of labelled datasets, where the 

SVM learns to differentiate between NOMA signals and potential interference patterns the parameters such as bit error rate (BER), Peak 

to average power ratio (PAPR) and power spectral density (PSD) are evaluated and analysed. Simulation results demonstrate the superior 

performance of the SVM-based NOMA signal detection compared to traditional methods. The SVM model exhibits high accuracy, 

robustness, and adaptability to varying signal conditions, making it a promising solution for the challenges posed by NOMA 

communication systems. 
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1. Introduction 

Non-Orthogonal Multiple Access (NOMA) waveform 

technology stands at the forefront of contemporary wireless 

communication systems, revolutionizing the way 

information is transmitted in the era of 5G and beyond. 

Unlike traditional orthogonal multiple access schemes, 

NOMA employs a novel approach by allowing multiple 

users to share the same time-frequency resources 

simultaneously [1]. This groundbreaking technique enables 

a more efficient use of the available spectrum, significantly 

boosting the overall system capacity and spectral efficiency. 

In NOMA, users are served with different power levels and 

modulated symbols, creating distinct signal signatures that 

can be successfully decoded by the receiver. This non-

orthogonal approach maximizes the utilization of resources 

and enhances the overall network throughput [2]. NOMA 

also plays a pivotal role in supporting diverse 

communication requirements, catering to a multitude of 

devices with varying data rates, latency constraints, and 

connectivity needs. The versatility of NOMA extends its 

applications across a spectrum of domains, from enhancing 

the capacity of massive machine-type communication 

(mMTC) to providing low-latency connectivity for mission-

critical applications [4]. As the telecommunications industry 

continues to advance, NOMA waveform technology stands 

as a key enabler for meeting the growing demand for high 

data rates, improved spectral efficiency, and diverse 

connectivity in the ever-evolving landscape of wireless 

communication. The detection of signals in NOMA 

waveforms is a critical aspect that underpins the efficiency 

and reliability of this advanced communication technology. 

NOMA relies on non-orthogonal resource allocation, where 

multiple users share the same time-frequency resources, 

each assigned a unique power level and modulated symbols 

[5]. Signal detection in NOMA involves the challenging 

task of separating and decoding these overlapping signals at 

the receiver accurately. To achieve this, advanced signal 

processing techniques are employed, such as successive 

interference cancellation (SIC) and maximum likelihood 

(ML) decoding. Successive interference cancellation 

enables the receiver to decode and remove stronger signals 

before decoding weaker ones, iteratively improving the 

accuracy of detection. ML decoding, on the other hand, 

optimally estimates the transmitted symbols by considering 

the entire set of possible signal combinations. Machine 

learning algorithms have also found application in NOMA 

signal detection, leveraging their ability to adapt and learn 

from the dynamic signal characteristics. The use of deep 

learning models, such as neural networks, has shown 

promise in enhancing the accuracy and efficiency of signal 
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detection in NOMA systems [6]. Efficient signal detection 

in NOMA not only ensures the reliable recovery of 

transmitted information but also contributes to maximizing 

the overall system capacity and spectral efficiency, making 

NOMA a key player in the evolution of modern wireless 

communication networks. Beamforming is a signal 

processing technique used in wireless communication 

systems to focus a transmitted or received signal in a 

specific direction. This technology is particularly prevalent 

in modern antenna arrays. Minimum mean square error 

(MMSE) detection is a signal processing algorithm used in 

communication systems to minimize the mean square error 

between the estimated and true transmitted signals [7]. Zero 

Forcing (ZFE) is a linear equalization technique used in 

communication systems to eliminate interference between 

different data streams. Machine learning enhances NOMA 

signal detection by leveraging algorithms to adaptively 

decode non-orthogonal signals. Through techniques like 

neural networks, ML optimizes signal separation, 

improving accuracy and efficiency. It enables NOMA 

systems to dynamically adapt to varying channel conditions, 

enhancing overall performance in the simultaneous 

transmission and reception of multiple signals [8]. 

2. Literature Review  

In [9], a DL-based NOMA receiver is intended to decode 

messages for numerous users in a single operation. The DL-

based NOMA receiver is shown by a deep neural network 

(DNN) that estimates the channel and finds the signal at the 

same time. After being trained offline using simulation data 

based on channel statistics, the DNN is directly used to get 

the transmitted symbols during the online deployment step. 

In [10], a SVM-based method for NOMA signal recognition 

over a fading channel is suggested and investigated with a 

variable number of receiver antennas. The simulations show 

that for the suggested method to work better, the SNR needs 

to be about 5 dB higher than for the advanced Maximum 

Likelihood (ML)-based receiver with receiver diversity 

order two. However, for a slow, frequency-non-selective 

fading channel, increasing the receiver diversity improves 

the proposed system's BER performance. New hybrid 

algorithms are used in [11] for 16x16, 64x64, and 256x256 

MIMO architectures. These include QR-MLD (Q-

maximum likelihood detection), MMSE (minimum means 

square error), ZFE (zero forcing equalization) and BF (beam 

forming). With negligible complexity, the hybrid algorithms 

achieved an efficient bit error rate (BER) of 10-3 at the SNR 

of 2.9 dB. A number of detection techniques have been 

presented in [12] that can effectively raise the framework's 

BER gain at the expense of increased computing 

complexity. A hybrid approach is introduced in the 

proposed article for various MIMO sizes. Beam Forming 

(BF) and QR Decomposition M-algorithm-Maximum 

Likelihood Detection (QRM-MLD) are used to create the 

hybrid method. This work in [13] investigates the use of 

multi-level amplitude modulation with trellis coding in a 

downlink non-orthogonal multiple access channel in the 

context of visible light communication (VLC). The non-

orthogonal transmission is done with the help of a trellis 

decoder, superposition coding, and successive interference 

cancellation. Lambert states that a channel model addresses 

the VLC. The study in [14] examines several access 

strategies for both uplink and downlink data transfers in 

cellular networks that have a large number of Internet of 

Things (IoT) devices. Remember that conventionally, 

uplink and downlink broadcasts in narrow-band IoT have 

used single-carrier frequency division multiple access and 

orthogonal frequency division multiple access, which are 

orthogonal multiple access (OMA) techniques. The study in 

[15] examines several access strategies for both uplink and 

downlink data transfers in cellular networks that have a 

large number of Internet of Things (IoT) devices. 

Remember that conventionally, uplink and downlink 

broadcasts in narrow-band IoT have used single-carrier 

frequency division multiple access and orthogonal 

frequency division multiple access, which are OMA 

techniques. 

3. System Model 

Support Vector Machines (SVM), a powerful machine 

learning algorithm, can be harnessed for the detection of 

signals in NOMA systems. NOMA, with its non-orthogonal 

resource allocation, poses a challenge in efficiently 

separating and decoding overlapping signals. SVMs, known 

for their ability to handle complex relationships and non-

linear data, prove valuable in addressing the intricate nature 

of NOMA signal detection. In the context of NOMA, the 

application of SVM involves the extraction of relevant 

features from received signals. These features could 

encompass diverse parameters such as power levels, 

modulation schemes, or other characteristics that distinguish 

different NOMA signals [16]. The SVM operates by seeking 

the optimal hyperplane in the feature space that maximally 

separates the various classes, where each class corresponds 

to a distinct type of NOMA signal. This hyperplane is 

strategically positioned to maximize the margin, the 

distance between the support vectors (data points closest to 

the decision boundary) of different classes, facilitating 

effective classification. A key strength of SVMs lies in their 

ability to handle non-linear relationships through the use of 

a kernel function [17]. NOMA signals, often exhibiting 

intricate and non-linear patterns, benefit from this 

capability. Kernels like the Radial Basis Function (RBF), 

polynomial, or sigmoid are applied to implicitly map the 

original feature space into a higher-dimensional space, 

enabling the SVM to uncover complex patterns without 

explicitly calculating the transformation. The selection of an 

appropriate kernel is pivotal and depends on the specific 
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characteristics of NOMA signal data [18]. Training the 

SVM involves presenting it with a labeled dataset, where 

each example is associated with a class label [19]. The SVM 

learns to construct the optimal decision boundary during 

training, taking into account the relationships between the 

extracted features. Hyperparameters, such as the 

regularization parameter (C) and kernel parameters, are 

tuned to optimize the model's performance and ensure 

adaptability to different NOMA signal scenarios. SVMs 

offer several advantages in the context of NOMA signal 

detection. Their effectiveness in high-dimensional feature 

spaces makes them suitable for dealing with NOMA signals 

characterized by multiple parameters [20]. The robustness 

to overfitting is crucial when training data is limited, as is 

often the case in real-world communication scenarios. 

SVMs excel at handling non-linear relationships, providing 

a means to capture the intricate patterns present in NOMA 

signals. The emphasis on margin maximization promotes a 

resilient decision boundary, contributing to better 

generalization when faced with new, unseen data. However, 

SVMs also present challenges. Training SVMs can be 

computationally demanding, especially when dealing with 

large datasets or high-dimensional feature spaces. The 

selection of an appropriate kernel and tuning of associated 

parameters require careful consideration, as different 

NOMA signal characteristics may necessitate different 

kernel choices [21]. Additionally, while SVMs provide 

effective classification, their decision boundaries might lack 

the intuitive interpretability offered by some other machine 

learning algorithms. SVM offer a robust and adaptable 

solution for the detection of signals in NOMA systems. 

Their ability to handle complex relationships, non-linear 

patterns, and high-dimensional feature spaces makes them a 

valuable tool in the evolving landscape of wireless 

communication. he Support Vector Machine (SVM) is a 

supervised machine learning algorithm used for 

classification tasks. In the context of signal detection in 

Non-Orthogonal Multiple Access (NOMA), we can 

formulate the mathematical system model as follows: 

Consider a training dataset consisting of labeled samples 

(𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 represents the features extracted from 

NOMA signals, and 𝑦𝑖  is the corresponding class label. The 

goal is to train an SVM to learn a decision function f(x) that 

maps input features to a binary classification output 

(−1 𝑜𝑟 + 1). The decision function for a linear SVM is 

given by [22]: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (𝑤. 𝑥 + 𝑏)    (1) 

Here, w is the weight vector perpendicular to the 

hyperplane, x is the input feature vector, and b is the bias 

term. The objective function for training the SVM is to 

minimize [23]: 

1
2⁄ ‖𝑤‖2 + 𝐶 ∑ ξ𝑖

𝑁
𝑖          (2), subject to the constraints: 

𝑦𝑖(𝑤. 𝑥 + 𝑏) ≥ (1 − ξ𝑖).    (2) 

where 𝐶 is the regularization parameter that balances the 

trade-off between maximizing the margin and minimizing 

classification errors, and ξ𝑖 are slack variables that allow for 

some misclassification. The decision function in the 

kernelized SVM is given by [24]: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑏𝑖  𝐾(𝑁
𝑖 𝑥𝑖 , 𝑥) + 𝑏      (3) 

Here, 𝐾(𝑥𝑖 , 𝑥) is the kernel function, and 𝛼𝑖 are Lagrange 

multipliers obtained during the training process. The 

objective function for the kernelized SVM is to maximize: 

∑ 𝛼𝑖
𝑁
𝑖 −

1

2
∑ 𝛼𝑖𝑖,𝑗 𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥)      (4) 

Here 𝐾(𝑥𝑖 , 𝑥) implicitly maps the input feature vectors into 

a higher-dimensional space. The Radial Basis Function 

(RBF) kernel is commonly used in SVMs for handling non-

linear relationships in NOMA signals and is defined as [25]: 

𝐾(𝑥𝑖 , 𝑥) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

)         (5) 

Here, 𝛾 is a parameter that controls the width of the 

Gaussian kernel. The steps of SVM Detection for NOMA 

Signals are given below [26-27]: 

1. Data Preparation: 

Feature Extraction: Extract relevant features from NOMA 

signals. These features could include power levels, 

modulation schemes, or other characteristics that 

differentiate different NOMA signals. 

Labelling: Assign class labels to the extracted features, 

indicating the type or characteristics of each NOMA signal. 

2. Data Splitting: 

Training and Testing Sets: Split the dataset into training and 

testing sets. This allows for model training on one subset 

and evaluating its performance on another, unseen subset. 

3. Model Initialization: 

Choose Kernel: Decide on the type of kernel to be used. For 

NOMA signals, a linear kernel or non-linear kernels like the 

Radial Basis Function (RBF) may be suitable. 

Initialize SVM Model: Choose an SVM variant (e.g., SVC 

for classification) and set the desired parameters, including 

the kernel type. 

4. Model Training: 

Fit the Model: Train the SVM model using the training set 

by calling the fit method on the SVM model object. 

Tune Hyperparameters: Fine-tune hyperparameters such as 

the regularization parameter (C) for optimal performance. 

5. Predictions: 

Apply the Model: Use the trained SVM model to make 

predictions on the testing set by calling the predict method 

on the SVM model object. 
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6. Evaluation: 

Assess Accuracy: Evaluate the performance of the SVM 

model by comparing its predictions to the actual labels in 

the testing set. 

Metrics: Utilize metrics such as accuracy, precision, recall, 

and F1-score to assess the model's classification 

performance. 

Confusion Matrix: Examine the confusion matrix for a 

detailed breakdown of true positive, true negative, false 

positive, and false negative predictions. 

7. Optimization: 

Hyperparameter Tuning: If necessary, perform 

hyperparameter tuning using techniques like grid search or 

randomized search to find the optimal set of parameters. 

Cross-Validation: Implement cross-validation to ensure the 

model's robustness and generalizability. 

8. Deployment (Optional): 

Deployment Considerations: If the SVM model performs 

well in testing, consider deploying it for real-time NOMA 

signal detection in a communication system. 

4. Simulation Results 

In this section, we have analysed the performance of the 

proposed SVM and conventional detection methods for 

NOMA signal. Matlab-2016 is use to thoroughly analysed 

the parameters such as BER and PSD of the framework. The 

simulation is obtained for 20000 symbols, 64-QAM, 256-

FFT, 0.1 roll factor under the Rician and Rayleigh channel. 

The analysis of the BER for NOMA signals is crucial for 

assessing the performance and reliability of communication 

systems. BER quantifies the accuracy of signal transmission 

by measuring the ratio of incorrectly received bits to the 

total transmitted bits. In the context of NOMA, 

understanding the BER is essential for optimizing signal 

detection algorithms, evaluating system capacity, and 

ensuring effective communication in scenarios where 

multiple signals share the same resources. BER analysis 

guides the design and implementation of robust NOMA 

systems, enhancing overall communication efficiency and 

quality. Figure 1 indicate the BER performance of the 

NOMA waveform when conventional and proposed SVM 

detection algorithms are applied with Rayleigh channel. The 

BER of 10-3 is obtained at the SNR of 3.5 dB by proposed 

SVM, 5.8. dB by BF, 6.3 dB by MMSE and 7.2 dB by ZFE 

respectively. Hence it is concluded that the proposed 

algorithm obtained the throughput gain of 2.3 dB, 2.8 dB 

and 3.7 dB as compared with BF, MMSE and ZFE methods.  

 

Fig 1. BER under Rayleigh channel 

Analyzing BER in NOMA within Rician and Rayleigh 

channels is essential for realistic performance evaluation. In 

the Rician channel, which has both scattered and line-of-

sight parts, BER analysis shows how well NOMA works in 

different propagation conditions, which helps with 

designing the system. Rayleigh channels, representing 

scenarios without a dominant line-of-sight, require BER 

assessment to gauge NOMA's resilience in fading 

environments. Understanding BER in both channels helps 

improve signal processing methods, which in turn makes it 

possible to build strong NOMA communication systems 

that can adapt to changing channel conditions, which in turn 

improves performance and reliability. Fig 2 indicate the 

BER for Rician channel when conventional and proposed 

SVM methods are applied to the NOMA waveform. The 

SNR 0f 2.8 dB, 4.6 dB, 5.3 dB and 6.4 dB respectively are 

achieved by the proposed SVM, BF, MMSE and ZFE. 

Hence, it is concluded that the proposed SVM outperforms 

the conventional methods. Because there is a prominent 

line-of-sight component in Rician channels, the throughput 

of NOMA in these channels is generally higher than in 

Rayleigh channels. Higher throughput results from this line-

of-sight component's increased signal intensity, decreased 

fading effects, and improved communication dependability. 

 

Fig 2. BER under Rician channel 
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 The Power Spectral Density (PSD) of NOMA signals, 

when the SVM detection method is applied, reflects the 

distribution of signal power across different frequencies as 

shown in fig 3. SVM, a machine learning algorithm, adapts 

to the unique characteristics of NOMA signals, influencing 

the PSD. By optimizing signal detection, SVM mitigates 

interference and enhances spectral efficiency. The PSD 

analysis provides crucial insights into how SVM-based 

NOMA systems allocate and distribute power, aiding in the 

design of communication systems for efficient use of 

frequency resources, improved signal separation, and 

overall enhanced performance. The PSD of -500, -390, -

280, -210 and -152 are obtained by the proposed SVM, BF, 

MMSE and ZFE. Hence, SVM achieved a gain of -110, -

220, and -348 as compared with conventional methods. 

 

Fig. 3 PSD of NOMA under Rayleigh channel 

The PSD of NOMA signals, employing the SVM detection 

method, differs in Rician channels is given in fig 4. In the 

Rician channel, characterized by a dominant line-of-sight 

component, SVM aids in optimizing signal separation, 

resulting in a more concentrated and reliable PSD. 

Conversely, in the Rayleigh channel, with no dominant line-

of-sight, SVM adapts to fading conditions, influencing a 

more dispersed PSD. The PSD comparison reflects the 

impact of SVM-based NOMA signal detection on spectral 

efficiency and signal reliability, providing valuable insights 

for designing robust communication systems under varying 

channel characteristics. SVM outperforms the conventional 

methods by achieving a gain of -320, -250, -190 and -140 

respectively as compared with conventional methods. 

 

Fig. 4 PSD of NOMA under Rician channel 

The Peak-to-Average Power Ratio (PAPR) in NOMA with 

SVM detection under Rayleigh channel conditions refers to 

the ratio between the maximum instantaneous power level 

and the average power level of the transmitted signal. In 

NOMA, multiple signals are superimposed, contributing to 

variations in the signal's peak power. SVM, as a detection 

method, helps in accurately identifying and separating these 

signals. Under Rayleigh fading, where the channel 

conditions are subject to multipath propagation and fading 

effects, SVM aids in managing the non-linear 

characteristics, potentially mitigating PAPR fluctuations 

and contributing to more stable and efficient signal 

transmission in NOMA systems. Fig 5 indicate the PAPR of 

the NOMA. The CCDF of 10-4 is obtained at the PAPR of 

the 6.8 dB by SVM, 7.6 dB by BF, 8.2 dB by MMSE and 

9.1 dB ZFE and 10.8 by NOMA respectively. 

 

Fig 5. PAPR of NOMA under Rayleigh channel 

The PAPR of NOMA with SVM detection in a Rician 

channel is superior to that of a Rayleigh channel. Compared 

to Rayleigh channels, Rician channels have a prominent 

line-of-sight component, which makes the channel 

conditions less vulnerable to severe fading. A more steady 

and predictable power distribution may result from this 
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lessening of the fading effect, which lowers the PAPR. SVM 

is a technique for finding signals that helps to more precisely 

identify and separate them. This may lead to better power 

management and better PAPR performance in NOMA 

systems that work in Rician channels. 

 

Fig 6. PAPR of NOMA under Rician channel 

5. Conclusion 

This study has demonstrated the effectiveness of using SVM 

for NOMA signal detection in wireless communication 

systems. The SVM-based method showed better 

performance in reliably classifying and demodulating 

NOMA signals, even when interference was present. This 

was a major problem that had to be solved in NOMA-

enabled communication networks. The SVM is a good way 

to deal with the problems that come up with NOMA signal 

identification because it is good at classifying things and 

finding the best hyperplanes in environments with a lot of 

dimensions. During the testing and training phases, the 

SVM model showed that it could learn and generalize 

patterns from characterized datasets very well. This made it 

possible to detect signals in real time in a wide range of 

dynamic settings. The encouraging results of this study not 

only develop NOMA communication systems but also 

demonstrate how machine learning methods, especially 

SVM, may be used to maximize wireless network 

performance. The results show that using SVM-based 

detection methods can make NOMA's communication 

systems much more reliable and efficient, which will help 

the development of next-generation wireless technologies. 

There are other directions to pursue in this area in the future. 

First, the SVM model can be further improved to maximize 

its parameters and increase its flexibility in response to 

changing signal conditions. Furthermore, for practical 

applications, it will be essential to examine how well SVM-

based NOMA signal recognition performs in the presence 

of real-world impairments and channel uncertainty. To 

improve detection even more, the use of sophisticated 

machine learning methods, including deep learning 

algorithms, might be investigated. Because they 

automatically pull-out hierarchical characteristics, deep 

learning models might be able to help us learn more about 

and improve NOMA signal detection, which is a very 

complicated field. Additionally, it is necessary to look into 

how well the suggested SVM-based technique scales and 

applies to large-scale, multi-user NOMA scenarios. It will 

be crucial for NOMA's continuous success to modify and 

expand the suggested SVM-based detection approach in 

order to handle the complexity of changing communication 

networks as it becomes more and more prominent in future 

communication standards.   
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