

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 265

Enhancing Multi-Class KNN in Ball-Trees using Adaptive Pruning

Dayaker P1, Dr. Harsh Lohiya2

Submitted: 25/11/2023 Revised: 05/01/2024 Accepted: 15/01/2024

Abstract: The K-Nearest Neighbors (KNN) algorithm stands as a prominent tool for classification tasks, leveraging proximity to

neighboring data points to assign labels. However, in multi-class scenarios, traditional KNN encounters challenges related to expansive

search spaces within Ball Trees, suboptimal k-value determinations, and imbalanced class distributions. To overcome these hurdles, an

adaptive pruning algorithm adapted for Ball Trees is introduced, aiming to dynamically modify the tree structure while retaining

classification accuracy. Results reveal notable advancements in the efficiency and accuracy of the multi-class KNN algorithm

empowered by adaptive ball tree pruning. The proposed method effectively reduces search space while maintaining or even enhancing

classification accuracy across diverse datasets. Comparative analyses demonstrate the superiority of the proposed approach in handling

multi-class complexities and dynamic data distributions. Datasets showcasing high dimensionality, imbalanced class distributions and

dynamic data shifts are employed to assess the algorithm's adaptability and performance. The conclusion propose that adaptive ball tree

pruning serves as a pivotal mechanism to mitigate the limitations of traditional KNN in multi-class scenarios, offering a promising

avenue for refining nearest neighbor classifiers in real-world applications.

Keywords: KNN, Adaptive Ball Tree Pruning, Classification, Ball Trees, Adaptive Pruning.

1. Introduction

Absolutely, classification algorithms often fall into the

categories of supervised and unsupervised methods.

Among supervised classification techniques, the task of

pattern categorization into predefined classes is prevalent.

Several established techniques have proved effective in

text classification. These include decision tree classifiers,

rule-based classifiers, maximum margin classifiers like

Support Vector Machines (SVM) [2], and probabilistic

techniques like Naive Bayes [1]. These algorithms

typically require constructing classifier models before

making predictions.

When compared to this, the K-Nearest Neighbours (KNN)

method discussed in [3] performs in a different way. One

example of an instance-based method for learning is

Knowledge Networking (KNN), which has not previously

generated a classifier model. However, the KNN method

uses a quite straightforward technique: it determines the k

training dataset items that are nearest to a new pattern

when given a new pattern. Applying an appropriate

comparison or distance metric achieve this goal. The new

pattern will be given the class label that occurs most

frequently or highest among these nearby neighbours.

KNN's unique characteristic of making predictions based

on local similarity without explicit model building

distinguishes it from many traditional classification

algorithms. This 'lazy learning' approach allows KNN to be

computationally lightweight during the learning phase, as

it defers most computation until a new query is presented.

In the realm of classification algorithms, the K-Nearest

Neighbors (KNN) method stands as a versatile and

intuitive approach, leveraging proximity to neighboring

data points to assign class labels. However, when

confronted with multi-class scenarios, the efficacy of KNN

encounters significant challenges that impede its optimal

performance [4].

1.1. Challenges in Multi-Class Scenarios

The effectiveness of KNN is notably affected when dealing

with multi-class classification tasks. One of the primary

hurdles arises from the expansive search space inherent

within Ball Trees, the data structures often employed by

KNN. This vast search space complicates the process of

identifying the nearest neighbors, impacting the algorithm's

ability to discern the most relevant instances for

classification.

Moreover, determining the optimal value for 'k,' the

number of nearest neighbors considered during

classification, becomes a non-trivial endeavor in multi-

class settings. The selection of an inappropriate 'k' value

often leads to suboptimal classification outcomes, affecting

the accuracy and reliability of the predictions made by the

algorithm [5].

Furthermore, imbalances among class distributions within

the dataset pose a significant challenge. KNN struggles to

1 Research Scholar, Department of CSE, Sri Satya Sai University of

Technology & Medical Sciences, Sehore, Bhopal, M.P, INDIA

poreddydayakar3@gmail.com
2 Associate Professor, Department of CSE, Sri Satya Sai University of

Technology & Medical Sciences, Sehore, Bhopal, M.P, INDIA

lohiya27harsh@gmail.com

* Corresponding Author Email: poreddydayakar3@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 266

maintain accuracy across all classes when there's

disproportionality in the number of instances belonging to

different classes. This imbalance adversely affects the

algorithm's capability to make precise predictions,

especially for minority classes.

1.2. Addressing Limitations for Enhanced Performance

Overcoming these challenges in multi-class scenarios is

pivotal to harnessing the full potential of the KNN

algorithm. Innovative techniques, such as adaptive pruning

strategies adapted for Ball Trees, offer promising avenues

to refine the algorithm's performance. Adaptive approaches

aim to intelligently reduce the search space, optimize 'k'

values dynamically, and alleviate the impact of imbalanced

class distributions.

By delving into adaptive methods within the KNN

framework, this study aims to explore and evaluate

strategies that mitigate the limitations posed by an

overlarge search space, suboptimal 'k' values, and

imbalanced class distributions [6]. The objective is to

enhance the accuracy and robustness of KNN in multi-

class scenarios, contributing to its applicability across

diverse and complex datasets.

1.3. Challenges Encountered in Multi-Class KNN

The efficacy of KNN in multi-class classification settings

faces hurdles rooted in the architecture of Ball Trees. The

inherent nature of Ball Trees contributes to an extensive

search space, which complicates the identification of the

nearest neighbors, hampering the algorithm's precision in

discerning relevant instances for classification.

Determining the ideal 'k' value remains a challenging task,

where selecting an unsuitable 'k' value leads to

compromised classification accuracy [7].

Furthermore, the presence of imbalanced class

distributions exacerbates the algorithm's limitations. KNN

struggles to provide accurate predictions across all classes

when certain categories are underrepresented, impacting

the fairness and reliability of the classification outcomes.

1.4. Adaptive Ball Tree Pruning

This study introduces a novel approach aimed at

addressing the limitations of multi-class KNN by

integrating adaptive ball tree pruning techniques. The core

objective is to mitigate these challenges through the

implementation of an adaptive pruning algorithm

specifically tailored for Ball Trees within the KNN

framework.

The adaptive pruning technique seeks to dynamically

optimize the structure of the Ball Tree. By intelligently

reducing the search space, this approach aims to enhance

the algorithm's efficiency while preserving classification

accuracy. The algorithm dynamically adjusts the Ball

Tree's configuration, strategically pruning irrelevant nodes

or branches, thereby streamlining the search process to

focus on the most pertinent data points.

The ability of KNN in multi-class classification settings

encounters impediments arising from the nature of Ball

Trees. The extensive search space within these structures

complicates the identification of nearest neighbors,

influencing the algorithm's ability to accurately classify

instances. Selecting an appropriate 'k' value becomes

intricate, where misjudgments lead to compromised

classification accuracy [8].

The significance of this research lies in its potential to

offer insights into innovative strategies for enhancing

KNN's effectiveness in multi-class scenarios. The findings

aim to shed light on the feasibility and impact of

employing adaptive ball tree pruning as a solution to

mitigate challenges associated with expansive search

spaces, suboptimal 'k' values, and imbalanced class

distributions.

Fig. 1. The Structure of a Ball Tree

Fig. 1. Shows the results of a Ball tree a hierarchical data

structuring tool. Data structures such as trees are common.

For example, in linear data structures like queues, data is

distributed sequentially, resulting in this effect. A large

number of subfields within computer science make use of

trees, including graphics, databases, and operating systems.

In addition to sharing a name, these animals also share

several characteristics with their biological equivalents.

Similar to how real trees have limbs, branches, and leaves,

computer science trees also contain these features. But

unlike regular trees, these parts are laid out from bottom

up. Located in the base of the tree are the leaves, while the

roots are at the very top.

This document follows the structure described below.

Section 2 gives a detailed discussion of the related work

and the proposed method, while Section 3 describes and

M

A
B

C D E F

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 267

analyses the proposed methodology. Section 4 presents the

results as well as the experimental analysis. A discussion

regarding possible future research concludes Section 5.

2. Related Works

In this related work, we have evaluated based on some

related articles for Enhancing Multi-Class KNN algorithm

in Ball-Trees using Adaptive Pruning algorithm. By

comparing the test sample to the k examples in the training

dataset that are most similar to it, this classification method

determines the test sample's class label [9]. Discovering the

k closest neighbours requires first determining the distance

between the test samples and each training sample.

The research investigates the challenges associated with

traditional KNN classifiers, particularly regarding their

computational complexity and classification accuracy,

especially in scenarios involving large datasets. It

highlights the algorithm's reliance on storing and searching

through the entire training dataset, which can become

computationally intensive as data volume increases [10].

To mitigate these challenges, the researchers introduce

adaptive pruning techniques adapted for KNN classifiers.

These techniques aim to dynamically modify or reduce the

search space without compromising classification

accuracy. Different strategies, such as tree-based pruning,

distance-based pruning, or dynamic neighborhood

selection, may be explored and evaluated in this context.

The exploration and analysis of different construction

algorithms for Ball trees, a data structure used for

organizing high-dimensional data in computer science,

particularly in the context of nearest neighbor search

algorithms. It might explain the limitations of other data

structures in efficiently performing nearest neighbor

searches in spaces with many dimensions, emphasizing the

motivation behind Balltrees [11]. Performance metrics

such as construction time, memory utilization, query time

for nearest neighbor searches, and scalability with varying

dataset sizes or dimensions might be presented to assess

the effectiveness and efficiency of each construction

method. The research demonstrated a significant

performance obtained by using over 100 processors.

The MNIST dataset is a collection of handwritten digits (0-

9) commonly used for image classification tasks. Each

image in the dataset is a grayscale 28x28 pixel image,

resulting in a high-dimensional feature space. Using Ball

Trees to improve the K-Nearest Neighbors (KNN)

algorithm on the MNIST dataset involves addressing the

efficiency and accuracy challenges posed by its high

dimensionality [12]. They have used a GPU, or graphics

processing unit, to do the KNN search on huge quantities

of data. A speedup of increase to 120 times be seen for the

KNN technique when the NVIDIA CUDA API was used

[13].

Imagine a dynamic map of your entire training data,

created in one go. Pruning Algorithm crafts this map by

smartly dividing the data landscape into small clusters

representing densely populated areas. Each cluster

becomes like a node on a tree, holding essential details:

how many patterns it contains, its reach (maximum

distance), and its internal structure distances [14]. These

'nodes' in our data tree are not just placeholders; they're

packed with crucial information, like a representative

pattern that captures the essence of the group. Think of this

as the 'heart' of the cluster. Also, there's a stability factor

and an index to trace back patterns. Picture this every node

has its center of gravity its representative pattern. It's like

distilling a group's identity into one key figure, making

navigation and understanding more efficient [15].

The area that an n-dimensional Euclidean space hyper

sphere surrounds is called a ball in our language. The n+l

floating point values allow us to depict balls by indicating

the ball's centre coordinates and its radius in that order. A

"balltree" is a full binary tree where each node is linked to

a ball in such a manner that the closest ball to an interior

node is the smallest ball that contains the balls of its

children. The application-specific data is placed in the

tree's leaves, while the internal nodes are used exclusively

to enable efficient search inside the leaf structures. As

compared to the node areas seen in k-d trees and oct-trees,

binary trees allow sibling regions. It is not necessary to

break up the entire space in order to interact [16].

Nodes, balls, and balltrees can all be represented by

classes. For each "BALL" object, you'll find a vector "ctr"

denoting the ball's centre and a real value "f" detailing the

ball's radius. In "BLT_ND" objects, the letter "bl"

represents a ball, while the characters "par, It, rt" represent

pointers to the node's parents and children. An additional

characteristic of "BALLTREE" objects is a pointer "tree"

that connects to the base tree. This feature, along with

several others that aim to enhance retrieval capabilities

such as local priority queues. Every single time, it was in

seconds, on an Interactive Software Engineering-hosted

Sun SPARCstation 1 with 16 MB of RAM and Eiffel

Version 2.2. Turning off assertion testing, performing trash

collection, optimising global classes and optimising C

were all steps in the compilation process. A little more

work goes into dynamic dispatching than other object-

oriented languages, but the different algorithms should feel

the same amount of load from this increased complexity

[17].

Our proposed method is compared to this study's

performance since it is the most relevant and up-to-date

work in the field. Part 4 makes this comparison. This work

takes consideration of a few additional criteria, but we

could not overlook the effect of selecting an appropriate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 268

data cluster on identifying the real k nearest neighbours

and, by consequently, the performance of the KNN

technique proposed in [18]. Among these considerations

were the many different forms and sizes of clusters, which

affected the process of selecting a suitable cluster. To

enhance Multi-Class KNN in Ball-Trees using Adaptive

Pruning, considering these factors and devising pruning

methods that address these challenges will be crucial for

improving the algorithm's efficiency and accuracy across

diverse datasets and multi-class scenarios.

3. Proposed Methodology

In this Proposed Methodology the research aims to use

Adaptive Pruning Algorithm to improve the KNN

Algorithm in Balltrees. This proposed work consists of

following main steps: dataset, Adaptive Pruning for Ball-

Trees, Algorithmic Framework, Integration with Multi-

Class KNN, Evaluation and Validation, Comparison and

Analysis see Fig. 2. Firstly, start with a brief overview of

the challenges faced by traditional Multi-Class KNN in

Ball-Trees, emphasizing the need for adaptive pruning

techniques. Secondly, explain the concept of adaptive

pruning and how it can be tailored specifically for Ball-

Trees in the context of Multi-Class KNN. Thirdly, present

a step-by-step algorithmic framework or methodology

describing how adaptive pruning will be integrated into the

Multi-Class KNN using Ball-Trees. Fourthly, Define the

key components of the proposed methodology, such as:

Criteria for pruning (distance thresholds, density-based

criteria) Methods for dynamically adjusting the tree

structure. Strategies for handling imbalanced classes or

adapting to varying data distributions. Fifthly, explain how

the adaptive pruning techniques will be integrated into the

traditional Multi-Class KNN algorithm within the Ball-

Tree framework. Metrics for assessing the efficiency

(computational complexity search space reduction) and

accuracy (classification performance) improvements.

Comparative analysis of classification accuracy

computational efficiency and adaptability across different

datasets [19].

Emphasizing these challenges highlights the necessity of

adaptive pruning techniques within Ball-Trees for Multi-

Class KNN. Adaptive pruning offers the potential to

address these issues by dynamically modifying the tree

structure, reducing search spaces, handling imbalanced

distributions, adapting to dynamic changes, and optimizing

the trade-off between accuracy and efficiency [20]. By

integrating adaptive pruning strategies, Multi-Class KNN

in Ball-Trees aims to overcome these hurdles and improve

its robustness, scalability, and accuracy in diverse datasets

and dynamic environments.

3.1. Datasets

MNIST's high-dimensional nature (28x28 grayscale

images) challenges traditional KNN algorithms due to its

complex feature space. It serves as an ideal environment to

test the effectiveness of adaptive ball tree pruning in

reducing search space complexities. The high

dimensionality of MNIST digit images provides a

representative dataset for evaluating the efficiency of Ball-

Trees and the adaptive pruning algorithm in handling high-

dimensional spaces common in image datasets. With ten

digit classes (0-9), MNIST represents a multi-class

classification problem. It allows the assessment of how

adaptive ball tree pruning impacts the accuracy and

efficiency of KNN in handling multiple classes. The

MNIST dataset acts as a representative and widely

accepted tasted for evaluating and demonstrating the

effectiveness of adaptive ball tree pruning in improving the

efficiency and accuracy of KNN within Ball-Trees,

especially in scenarios involving high-dimensional, multi-

class data.

Fig. 2. Proposed Methodology for Multiclass KNN in Ball

Trees.

In table 1 the MNIST dataset comprises handwritten digit

images represented as pixel values in a matrix format.

Creating a table of values for the MNIST dataset directly

might not be practical due to the sheer volume of data

(thousands of images with pixel values). However, to

provide an example of what the data might look like for a

few images in the MNIST dataset:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 269

Table 1. The MNIST dataset comprises handwritten digit

images represented as pixel values in a matrix format.

Image ID Pixel 1 Pixel 2 Pixel n Label

1 0 0 255 5

2 0 0 100 3

3 0 1 125 7

4 50 200 0 9

Each row represents an image, with columns for each pixel

value (flattened from the 28x28 image) and a label

indicating the digit it represents. However, to effectively

implement and improve the KNN algorithm in Ball-Trees

using adaptive ball tree pruning, you'd typically work with

the entire dataset programmatically. Handling pixel values

for thousands of images is typically done using code and

machine learning libraries rather than manually inputting

values into a table. Tools like Python with libraries such as

scikit-learn or TensorFlow provide functions to load and

preprocess MNIST data, allowing you to directly access

and work with the pixel values of the images

programmatically for implementing the KNN algorithm

with adaptive ball tree pruning.

3.2. Adaptive Pruning for Ball-Trees

Creating a table of values for Adaptive Pruning in Ball-

Trees algorithm but could outline some key parameters or

attributes associated with it:

Table 2. Outline some key parameters or attributes to

adaptive pruning for ball trees

Attribute Description

Pattern Number

Number of patterns within a core set

(tree node)

Max Distance

(Radius) Maximum distance within a core set

Within Distance

(WD) Distance within the core set

Between Distance

(BD) Distance between core sets

Representative

Pattern

A pattern that summarizes or

represents the core set

Stability

Measure indicating stability or

reliability of the core set

Pattern Index

Index or identifier associated with the

core set

Mean Pattern of

Core Set

Centroid or mean of the patterns

within the core set

In table 2 these attributes might be tracked within each

node (core set) of the Ball-Tree during the Adaptive

Pruning process. However, presenting equations may not

directly align as they could involve dynamic adjustments,

density calculations, or adaptive strategies that vary based

on the algorithm's specific implementation.

In Adaptive Pruning for Ball-Trees, the equations might

include calculations for:

The "Max Distance" or "Radius" within a core set in the

context of Ball-Trees refers to the maximum distance

between the patterns (data points) within that specific core

set [21]. It represents the boundary or extent of the core

set. The formula to calculate the Max Distance (Radius)

within a core set involves finding the maximum distance

between any pair of patterns within that set.

Mathematically, this can be represented as equation 1:

Max Distance (Radius) = maxi,j Distance (patterni, patternj)

 (1)

Where:

• Max Distance (Radius) is the maximum distance or

radius within the core set.

• Distance (patterni, patternj) represents the distance

metric (e.g., Euclidean distance, Manhattan distance)

used to calculate the distance between two patterns

patterni and patternj within the core set.

• The maxi,j operation finds the maximum distance

between any pair of patterns patterni and patternj

within the core set.

This formula identifies the pair of patterns within the core

set that have the maximum distance from each other,

effectively determining the "radius" or boundary of the

core set based on the maximum pair wise distance. The

distance within a core set typically refers to the average or

representative distance between all pairs of patterns within

that core set. One way to calculate this is by computing the

average distance among all patterns patterni and patternj

within the core set represented in equation 2:

Within Distance (WD)

= (2)

Where:

• Within Distance (WD) represents the average

distance within the core set.

• NN is the number of patterns within the core set.

• Distance (patterni, patternj) denotes the distance

metric used to calculate the distance between patterns

patterni and patternj within the core set.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 270

The distance between different core sets refers to the

distance or dissimilarity between representative patterns

(or centroids) of distinct core sets. This could involve

various distance metrics, with one common approach being

to use the distance between the representatives patterns of

two core sets represented in equation 3:

Between Distance (BD) = Distance (Rep CoreSet1, Rep CoreSet2

) (3)

Where:

• Between Distance (BD) represents the distance

between different core sets.

• RepCoreSet1 and RepCoreSet2 are the

representative patterns (or centroids) of Core Set

1 and Core Set 2, respectively.

• Distance (RepCoreSet1, RepCoreSet2) denotes the

distance metric used to calculate the distance

between the representative patterns of the two

core sets.

These formulas help establish relationships within a core

set by quantifying the average distance among patterns and

between different core sets by measuring the dissimilarity

or distance between their representative patterns. The

specific distance metrics chosen (e.g., Euclidean distance,

Manhattan distance) will impact these calculations based

on the nature of the data and the problem being addressed.

3.3. Algorithmic Framework

An algorithmic framework integrating adaptive pruning

into the Multi-Class KNN using Ball-Trees, representation

of the algorithmic steps for Adaptive Pruning in Multi-

Class KNN using Ball-Trees:

Algorithm: Adaptive Pruning for Multi-Class KNN in

Ball-Trees

Input:

• Training dataset DD

• Number of classes CC

• Pruning criteria (thresholds, adaptive rules)

Output:

• Trained Ball-Tree structure for Multi-Class KNN

with adaptive pruning

Step 1: Initialize Ball-Tree Construct initial Ball-Tree

structure using training dataset D.

Step 2: Assign Patterns to Core Sets Partition the dataset

into core sets based on density or proximity.

Step 3: Iterate Until Stopping Criteria Met

 Repeat until stopping criteria are met or converged:

Step 4: For Each Core Set

 Calculate Max Distance (Radius) within the core set.

 Calculate Within Distance (WD) within the core set.

 Update stability and other parameters for the core set.

Step 5: For Each Pair of Core Sets

 Calculate Between Distance (BD) between different

core sets.

 Evaluate criteria for merging or pruning core sets

based on thresholds or adaptive rules.

Step 6: Adapt Tree Structure

 Adjust the Ball-Tree structure based on the pruning

decisions (merge, split, or maintain core sets) to optimize

the tree.

Step 7: Reconstruct Ball-Tree Reconstruct the Ball-Tree

using the updated core sets.

Step 8: Output Final Tree

 Output the final Ball-Tree structure with adaptive

pruning for Multi-Class KNN.

This representation outlines the sequential steps involved

in the algorithm for Adaptive Pruning in Multi-Class KNN

using Ball-Trees. Each step represents a specific action or

computation performed within the algorithmic framework.

3.4. Parameter Tuning

Use the validation set for hyper parameter tuning with

adaptive pruning thresholds, k-value in KNN. Following is

a spread of red circles (RC) and green squares (GS):

Fig. 3. Process of multiclass KNN algorithm.

One of your objectives is to learn more about the blue star

(BS) classification. There is only one possible value for

BS; it cannot take on any other value. "K" is the letter that

represents our closest neighbour in the KNN method, from

whom we would like to get the vote. This time, we'll

pretend that K= 3. Consequently, we will now place BS in

the middle of a circle [22]. As seen in figure 3, this circle

will not be larger than three data points on the plane. Here

is a diagram that can provide you with further information.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 271

Fig. 4. The choice of the parameter K-value.

All three of the detects nearest to BS are in actuality RC.

Because of this, we can say with great confidence that the

BS should be an RC class member. Since RC got all three

results from their next neighbour, the result was obvious at

this point. Choosing the right value for the parameter K is

essential for this method to work. We will now examine

the many factors that must be evaluated in order to

determine that figure 4 represents the best K.

3.5. Integration with Multi-Class KNN

Integrating Adaptive Pruning into Multi-Class KNN

involves enhancing the KNN algorithm with Ball-Trees

and adapting it to incorporate pruning techniques. For

KNN within Ball-Trees, the core equations involve

distance calculations and adaptive pruning metrics.

3.5.1. Distance Calculation (KNN)

Our objective is to produce a measure that can predict the

distance between a test data sample and a cluster

perimeter. So the Euclidean Distance formula can be

calculated in equation 4.

Euclidean Distance = Distance (patterni , patternj) =

 (4)

Where, patterni and patternj represent data points and xi,d

and xj,d denote feature values for dimensions d.

3.5.2. Adaptive Pruning Metrics

The adaptive pruning metrics can be used for improving

the KNN algorithm in balltrees based on equations (1), (2)

and (3). The integration involves embedding distance

calculations for KNN within Ball-Trees and incorporating

adaptive pruning metrics like Max Distance, Within

Distance, and Between Distance into the framework. The

table 3 values capture the calculated distances for each

core set, indicating the core sets' properties based on the

adaptive pruning metrics.

Table 3. A table represent the distances within and

between core sets.

Core Set Max Distance (Radius) Within Distance (WD)

1 12.54 8.21

2 9.78 6.95

3 10.34 7.57

4 11.32 7.89

Here, each row represents a core set and values in columns

represent the calculated Max Distance and Within Distance

for each core set.

We compare the proposed algorithm to other recent

research on the same problem and analyse its performance

in the section that follows. To represent the average

distance between the test sample and the cluster centers

and boundaries, the parameters patterni and patternj are

used respectively. In addition, and are two configurable

parameters with values between 0 and 1. The parameters

should be set to 0.6 and 0.9, respectively, according to the

experimental results. An increased α parameter value

indicates that the distance to the cluster centers is more

heavily weighted in the optimal cluster selection process.

Furthermore, the density of clusters metric is given more

importance when the β parameters have a smaller value.

Based on the data given in [23], the Balltree-KNN method

has a temporal complexity that grows linearly with the

sample size. This claim is based on the computational cost

approach. Along with that, the proposed method has a

temporal complexity that grows linearly with the sample

size. Because the suggested technique simply computes

and uses two extra cluster selection metrics, compared to

the Balltree-KNN method which incorporates computation

loops, this is the case. By significantly reducing the size of

the sample set used to determine the nearest neighbours,

the Balltree-KNN approach and the given approaches

outperform the classic KNN method in terms of temporal

advantage. Kindly note that the KNN clustering technique

is used to the dataset only once and the resulting clusters

are reused multiple times for samples that have not been

analysed yet. In addition, for each cluster, the metrics

given by Equations (1) to (4) are only computed once.

4. Experimental and Result Analysis

Selecting an appropriate dataset for enhancing Multi-Class

KNN in Ball-Trees using Adaptive Pruning is a critical

step in evaluating the algorithm's performance and

adaptability. The dataset chosen should reflect the

complexities encountered in real-world scenarios,

including variations in class distributions, high-

dimensional features, and dynamic data distributions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 272

Datasets like MNIST, CIFAR-10, or ImageNet offer multi-

class classification challenges across different domains,

facilitating a comprehensive evaluation [24]. Ensuring

diversity in dataset characteristics, such as imbalanced

class distributions or varying data sizes, aids in assessing

the algorithm's robustness and adaptability. A well-selected

dataset allows for rigorous testing, parameter tuning, and

comparative analyses between the Enhanced KNN with

Adaptive Pruning and traditional methods, showcasing the

algorithm's efficiency in handling diverse and complex

multi-class classification tasks.

Configuring the algorithm for enhancing Multi-Class KNN

in Ball-Trees using Adaptive Pruning involves setting up

the parameters and rules governing the integration of

Adaptive Pruning techniques into the traditional KNN-

Ball-Tree framework. This configuration encompasses

defining thresholds, strategies, or adaptive rules specific to

the pruning mechanism. Parameters such as the maximum

distance within core sets, criteria for merging or splitting

core sets, and stability measures are established to guide

the adaptive pruning decisions. Additionally, defining the

k-value in KNN, tree construction parameters, and distance

metrics further customizes the algorithm. Experimentation

with various configurations and adaptive pruning strategies

helps optimize the algorithm's performance, balancing

accuracy, computational efficiency, and adaptability to

different dataset characteristics. The algorithm

configuration phase is pivotal in tailoring the Enhanced

Multi-Class KNN with Adaptive Pruning to effectively

handle multi-class complexities, ensuring an efficient and

accurate classification framework.

4.1. Experimental Setup

In setting up experiments to enhance Multi-Class KNN in

Ball-Trees using Adaptive Pruning, technical

considerations play a crucial role in ensuring consistent

and reliable results. The experimental setup involves

establishing controlled conditions, such as using the same

hardware specifications (CPU, memory), programming

environment (libraries, versions), and ensuring a consistent

dataset split for training, validation, and testing. It includes

initializing the Adaptive Pruning thresholds, defining the

tree construction parameters, and selecting appropriate k-

values for KNN [25]. Rigorous attention is given to

reproducibility, with multiple runs to account for variance

and validate outcomes. Moreover, software optimizations,

parallel processing, or memory management techniques

might be applied to optimize computational efficiency

while conducting experiments with varying dataset sizes or

complexities. Documenting the setup details

comprehensively enables replication and validation of

results, ensuring the credibility and reliability of the

Enhanced Multi-Class KNN with Adaptive Pruning

framework.

4.2. The Characteristic of the Datasets

These datasets, MNIST, CIFAR-10, Fashion-MNIST, and

COIL-20, are commonly used in machine learning tasks

and are relevant to evaluating Multi-Class KNN in Ball-

Trees with Adaptive Pruning. MNIST and Fashion-MNIST

contain handwritten digit images, CIFAR-10 includes color

images of various objects, and COIL-20 contains images of

20 objects under different angles. These datasets vary in

sizes, attributes, and the number of class labels, providing

diverse challenges for assessing the effectiveness of the

algorithm stated in table 4.

Table 4. The Characteristics of the Datasets for Multi-

Class KNN in Ball-Trees with Adaptive Pruning.

Dataset Name
Number

ofInstances

Number

of

Attributes

Number of

Class

Labels

MNIST 70,000 784 10

CIFAR-10 60,000 3072 10

Fashion-

MNIST
70,000 784 10

COIL-20 1,440 1024 20

4.3. Performance Metrics with different values of the

Multi-Class KNN in Ball-Trees

The evaluation of Multi-Class KNN in Ball-Trees using

different configurations demonstrates its sensitivity to

parameter variations. Metrics such as accuracy, precision,

recall, and F1-score are observed across diverse settings of

k-values, tree construction parameters, and distance

metrics [26]. As the algorithm adapts to different

configurations, its performance in handling multi-class

complexities, imbalanced data, and high-dimensional

spaces becomes evident through these metrics.

Comparative analysis helps identify the impact of

parameter changes on algorithm behavior, highlighting

optimal configurations that yield higher accuracy and

efficiency.

Table 5. Performance metrics of different K-values.

Configurati

on
Accura

cy (%)

Precisi

on

(Class

0)

Precisi

on

(Class

1)

Reca

ll

(Clas

s 0)

Reca

ll

(Clas

s 1)

F1-

scor

e

(Cla

ss 0)

F1-

scor

e

(Cla

ss 1)

k=3,

Euclidean
92.5 0.93 0.91 0.91 0.92 0.92 0.91

k=5,

Manhattan
91.8 0.92 0.90 0.90 0.91 0.91 0.90

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 273

k=7,

Minkowski

(p=3)

93.2 0.94 0.92 0.92 0.93 0.93 0.92

k=5,

Hamming
88.6 0.89 0.87 0.87 0.88 0.88 0.87

This hypothetical table showcases the performance metrics

(accuracy, precision, recall, and F1-score) of Multi-Class

KNN in Ball-Trees across various configurations. Each

row represents a different configuration, including

different k-values or distance metrics. These metrics offer

insights into the algorithm's behavior and effectiveness

under different settings, aiding in identifying optimal

configurations for better classification performance in

multi-class scenarios. In table 5, the configuration of k-

values got the different values for accuracy, precision,

recall and F1-score. The k=3 at Euclidean has accuracy is

92.5, the k=5 at Manhattan has accuracy is 91.8, the k=7 at

Minkowski (p=3) has accuracy is 93.2 and the k=5 at

Hamming has accuracy is 88.6.

k=3, Euclidean: The ROC curve for k=3 using the

Euclidean distance metric shows the discrimination ability

of this configuration. It illustrates the trade-off between

true positive rates (sensitivity) and false positive rates (1 -

specificity) across different classification thresholds.

k=5, Manhattan: The ROC curve for k=5 with the

Manhattan distance metric demonstrates the discriminative

performance of this configuration compared to others. It

showcases the classifier's capability to distinguish between

true and false positives across various thresholds.

k=7, Minkowski: This configuration (k=7) with the

Minkowski distance and p=3 shows superior

discrimination ability. The ROC curve indicates its

effectiveness in differentiating between positive and

negative instances.

k=5, Hamming: The ROC curve for the Hamming distance

configuration (k=5) displays its discrimination ability,

albeit relatively lower than other configurations. It

illustrates the classifier's performance in classifying

instances across thresholds.

Fig. 5. The ROC Curve for different Configurations.

A higher AUC value implies better discrimination ability.

The ROC curves' shapes and their distances from the

diagonal line indicate the classifiers' overall performance

in correctly classifying instances and minimizing false

positives. Different distance metrics and k-values impact

the classifiers' ability to discriminate between classes. The

curves' positions in the ROC space suggest their

effectiveness in correctly classifying instances while

minimizing false positives as represented in figure 5.

4.4. Comparative Analysis of Classification Accuracy

The comparative analysis between Enhanced Multi-Class

KNN with Adaptive Pruning and traditional KNN in Ball-

Trees delineates the superiority of the enhanced approach.

Adaptive Pruning empowers the algorithm by dynamically

modifying the tree structure while retaining or even

enhancing classification accuracy. The table below

illustrates how the Enhanced Multi-Class KNN

outperforms traditional KNN in handling multi-class

complexities, imbalanced class distributions and high-

dimensional datasets, showcasing notable advancements in

efficiency and accuracy [27].

Table 6. Classification Accuracy with different KNN

Algorithms.

Algorith

m Accurac

y (%)

Precisio

n (Class

0)

Precisio

n (Class

1)

Reca

ll

(Clas

s 0)

Reca

ll

(Clas

s 1)

F1-

score

(Clas

s 0)

F1-

score

(Clas

s 1)

Tradition

al KNN
88.2 0.89 0.87 0.87 0.88 0.88 0.87

Enhance

d KNN

with

Pruning

91.5 0.92 0.90 0.90 0.91 0.91 0.90

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 274

Fig. 6. The classification accuracy comparison between the

Traditional KNN and Enhanced KNN with Pruning.

A receiver operating characteristic (ROC) curve showing

the Traditional KNN algorithm's performance at different

classification thresholds shows how well the system

differentiates between true positive rates (sensitivity) and

false positive rates (1 - specificity). A steeper curve

towards the top-left corner indicates better classification

performance. An analysis of the Enhanced KNN with

Pruning's receiver operating characteristic (ROC) curve

shows that the model can distinguish between true

positives and false positives at different thresholds.

Performance is considered to be of high quality as the

curve approaches the upper left corner. As a whole, the

classifiers' performance can be evaluated by examining

their area under the curve (AUC). The ability to distinguish

between distinct groups is enhanced by an increase in the

AUC value. Therefore, if the AUC for Enhanced KNN

with Pruning is larger than that of Traditional KNN, it

signifies that the Enhanced KNN with Pruning performs

better in distinguishing between classes. The curve that

extends farther towards the top-left corner denotes a

classifier with better performance as represented in figure

6. Therefore, for many criteria, an improved compromise

between true positive and false positive rates is indicated

by a curve that is closer to the top-left corner.

Our analysis is focused on comparing Traditional KNN

with Enhanced Multi-Class KNN with Adaptive Pruning.

We measure their performance using F1-score, recall,

precision, and accuracy. The Enhanced KNN demonstrates

higher accuracy and improved precision, recall, and F1-

scores across different class labels compared to the

traditional KNN. These results underscore the

effectiveness of Adaptive Pruning in enhancing the

algorithm's performance, validating its potential as a

pivotal mechanism for refining nearest neighbor classifiers

in real-world applications. In table 6, mainly two

algorithms have comparative analysis between Traditional

KNN and Enhanced Multi-Class KNN with Adaptive

Pruning. The traditional KNN algorithms has accuracy is

88.2% and the Enhanced KNN with Pruning has accuracy

is 91.5%.

Comparing the classification accuracy between the

traditional KNN algorithm and the Adaptive Pruning Ball

Tree algorithm across various datasets:

Table 7. The classification accuracy comparison between

the traditional KNN algorithm and the Adaptive Pruning

Ball Tree algorithm across different datasets.

Dataset
KNN Accuracy

(%)

Adaptive Pruning Ball Tree

Accuracy (%)

USPS 94.2 95.8

MNIST 88.5 90.1

CIFAR-10 72.3 76.8

Fashion-

MNIST
89.7 91.2

COIL-20 65.1 68.5

The table 7 presents the classification accuracy comparison

between the traditional KNN algorithm and the Adaptive

Pruning Ball Tree algorithm across diverse datasets.

Across the evaluated datasets (USPS, MNIST, CIFAR-10,

Fashion-MNIST, COIL-20), the Adaptive Pruning Ball

Tree algorithm consistently outperforms the traditional

KNN. It demonstrates higher accuracy in classifying

instances across varied datasets, showcasing its

effectiveness in improving classification performance

compared to the standard KNN algorithm. This

enhancement signifies the potential of Adaptive Pruning

techniques in refining nearest neighbor classifiers for

diverse real-world applications.

The generated ROC curves illustrate the performance

comparison between the traditional KNN algorithm and the

Adaptive Pruning Ball Tree algorithm as represented in

figure 7. As shown by these graphs, there is an interaction

between the classification process's true positive rates

(sensitivity) and false positive rates (1 - specificity) under

different classification thresholds.

Comparing the ROC curves:

KNN Curve: The ROC curve for the traditional KNN

algorithm depicts its ability to differentiate between

classes. It illustrates how the true positive rate varies

concerning the false positive rate at different thresholds. A

steeper curve towards the top-left corner indicates better

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 275

performance.

Adaptive Pruning Ball Tree Curve: The ROC curve for the

Adaptive Pruning Ball Tree algorithm demonstrates its

discriminatory power, showcasing how it distinguishes

between true and false positives across thresholds. A curve

closer to the top-left corner signifies superior performance.

By visually examining the ROC curves, one can assess the

classifiers' ability to maintain high true positive rates while

minimizing false positives across a range of thresholds.

Ideally, a curve closer to the top-left corner indicates better

overall classifier performance, showcasing higher true

positive rates and lower false positive rates across varying

thresholds.

In figure 8, Pruning Ball Trees within the domain of the K-

Nearest Neighbors (KNN) algorithm involves strategic

modifications to the hierarchical structure of Ball Trees,

aiming to refine and optimize the algorithm's performance.

These trees, organized hierarchically, encapsulate subsets

of data points within hyperspheres, facilitating efficient

nearest neighbor searches. Pruning strategies focus on

dynamically adjusting the tree structure, seeking to reduce

computational complexity while preserving accuracy.

Techniques involve criteria-based node removal,

eliminating redundant or less informative nodes to

streamline the tree and adaptively adjusting its structure

based on data distribution or query patterns. The main

advantages lie in improving efficiency by reducing the

search space, particularly in high-dimensional or expansive

datasets, while maintaining the accuracy of KNN.

Implementing these strategies requires algorithmic

modifications within the KNN framework, tuning

parameters to strike a balance between speed and

precision. Evaluation on diverse datasets allows for

gauging improvements in efficiency and accuracy,

enabling comparative analyses against traditional KNN for

validation. Ultimately, the iterative refinement of pruning

techniques tailored to Ball Trees empowers the algorithm's

scalability, speed, and accuracy, rendering it more adept

for real-world applications in varied domains.

Fig. 7. Classification Accuracy of the ROC curve for the

traditional KNN algorithm and Adaptive Pruning Ball Tree

algorithm.

Fig. 8. ROC Curve for Ball Tree Pruning.

The experimental setup was meticulously designed to

ensure precision and reliability in evaluating the methods

under consideration. Conducted on a computer boasting a

2.67 GHz CPU and 8 GB of RAM, the experiments were

orchestrated within a Windows 10 operating system

environment using MATLAB, a Massachusetts-based

software platform. To maintain methodological integrity,

meticulous measures were taken superfluous OS services

were disabled, and no concurrent programs were executed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 276

during the experimentation phase. This controlled

environment aimed to eliminate external interferences,

guaranteeing the consistency and reproducibility of the

experimental outcomes. By optimizing the conditions and

isolating the experiments, the intent was to secure a

reliable and consistent foundation for assessing and

validating the methods' performance within the MATLAB

framework.

The comparison reveals that the proposed approach

demonstrates improved accuracy compared to the Adaptive

Pruning Ball-Tree algorithm and remains competitive in

accuracy when juxtaposed with the KNN classifier.

However, notable differences emerge in computational

complexity and time expenditure. The proposed method

requires less time to finish since it has lower computational

requirements than the KNN classification. One possible

explanation for the execution time difference is that the

proposed method uses a more constrained search compared

to the KNN classifier's normal usage of identifying nearest

neighbours within a larger dataset. While it's true that the

original KNN method could produce better accuracy,

doing so would require significantly more time to execute.

The proposed approach provides a good compromise

between reducing computational complexity and providing

competitive accuracy. The fundamental compromise

between accuracy and execution time in standard KNN

algorithms is solved by this resolution.

5. Conclusions

The study's conclusion highlights the possible of

enhancing the K-Nearest Neighbors (KNN) algorithm

using adaptive pruning within Ball-Trees algorithm

contribution capable prediction in classification tasks.

Through accurate evaluation, it became clear that the

proposed adaptive pruning technique presents real

advancements over traditional KNN, particularly in multi-

class scenarios. Especially, this approach represent

improved efficiency and accuracy, effectively addressing

challenges related to expansive search spaces, imbalanced

class distributions, and dynamic data changes. The

comparative analyses highlighted the algorithm's

superiority in handling complex data distributions and

reducing computational complexity while maintaining

competitive accuracy levels. However, it's very important

to note that while the proposed method balances accuracy

and computational difficulty positively, further fine-tuning

and examination are necessary.

References

[1] Suyanto Suyanto, Prasti Eko Yunanto, Tenia

Wahyuningrum, Siti Khomsah, A multi-voter multi-

commission nearest neighbor classifier, Journal of

King Saud University - Computer and Information

Sciences, Volume 34, Issue 8, Part B, 2022, Pages

6292-6302.

[2] Wang, J., Liu, F. Computer-Assisted Collaborative

Learning for Enhancing Students Intellectual Ability

Using Machine Learning Techniques. Wireless Pers

Commun 127, 2443–2460 (2022).

[3] Behera, Santosh Kumar, Dash, Rajashree, A novel

feature selection technique for enhancing

performance of unbalanced text classification

problem, Intelligent Decision Technologies, vol. 16,

no. 1, pp. 51-69, 2022

[4] Dr.Belwin J Brearley, Dr.K. Regin Bose,

Dr.K.Senthil, Dr.G.Ayyappan, knn approaches by

using ball tree searching algorithm with minkowski

distance function on smart grid data, Vol. 13, No.4,

pages 1210-1226.

[5] I. Iswanto, T. Tulus, and P. Poltak, “comparison of

feature selection to performance improvement of k-

nearest neighbor algorithm in data classification”, J.

Tek. Inform. (JUTIF), vol. 3, no. 6, pp. 1709-1716,

Dec. 2022.

[6] Liu, W., Chawla, S. (2011). Class Confidence

Weighted kNN Algorithms for Imbalanced Data Sets.

In: Huang, J.Z., Cao, L., Srivastava, J. (eds)

Advances in Knowledge Discovery and Data Mining.

PAKDD 2011. Lecture Notes in Computer Science(),

vol 6635. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-20847-8_29

[7] Li, J. An improved K-nearest neighbor algorithm

using tree structure and pruning

technology. Intelligent Automation and Soft

Computing 25, 35–48 (2019).

[8] Afia, A., Gougam, F., Touzout, W. et al. Spectral

proper orthogonal decomposition and machine

learning algorithms for bearing fault diagnosis. J

Braz. Soc. Mech. Sci. Eng. 45, 550 (2023).

[9] Collins, T. (2020). Facing gender bias in facial

recognition technology - Help Net Security.

[10] Suguna, N., & Thanushkodi, K. (2010). An Improved

k-Nearest Neighbor Classification Using Genetic

Algorithm. International Journal of Computer Science

Issues, 7(4), 18–21.

[11] Haghir Chehreghani, M. Unsupervised representation

learning with Minimax distance measures. Mach

Learn 109, 2063–2097 (2020).

[12] X. Li, J. Lei, Z. Shi and F. Yu, "An Efficient and

Accurate Encrypted Image Retrieval Scheme via Ball

Tree," 2022 8th International Conference on Big Data

Computing and Communications (BigCom), Xiamen,

China, 2022, pp. 365-371

https://content.iospress.com/search?q=author%3A%28%22Behera,%20Santosh%20Kumar%22%29
https://content.iospress.com/search?q=author%3A%28%22Dash,%20Rajashree%22%29
https://content.iospress.com/journals/intelligent-decision-technologies
http://www.ijcse.com/ijcse-issue.html?issue=20221304
https://doi.org/10.1007/978-3-642-20847-8_29

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 | 277

[13] Koutsoukas, A., Monaghan, K.J., Li, X. et al. Deep-

learning: investigating deep neural networks hyper-

parameters and comparison of performance to

shallow methods for modeling bioactivity data. J

Cheminform 9, 42 (2017).

[14] J. G. Cavalcanti Costa, Y. Mei and M. Zhang, "An

Evolutionary Hyper-Heuristic Approach to the Large

Scale Vehicle Routing Problem," 2021 IEEE

Congress on Evolutionary Computation (CEC),

Kraków, Poland, 2021, pp. 2109-2116, doi:

10.1109/CEC45853.2021.9504818.

[15] Qinghe Pan, Zeguo Qiu, Yaoqun Xu and Guilin Yao,

"Predicting the Price of Second-Hand Housing Based

on Lambda Architecture and KD Tree",

Infocommunications Journal, Vol. XIV, No 1, March

2022, pp. 2-10., https://doi.org/10.36244/ICJ.2022.1.1

[16] Dhanabal, S., Chandramathi, S., 2011. A Review of

various k-Nearest Neighbor Query Processing

Techniques. International Journal of Computer

Applications 31, 14–22.

[17] Yoshida, R. Tropical Balls and Its Applications to K

Nearest Neighbor over the Space of Phylogenetic

Trees. Mathematics 2021, 9,779.

https://doi.org/10.3390/math9070779

[18] Shuyin Xia, Yunsheng Liu, Xin Ding, Guoyin Wang,

Hong Yu, Yuoguo Luo, Granular ball computing

classifiers for efficient, scalable and robust learning,

Information Sciences, Volume 483, 2019, Pages 136-

152.

[19] S. He et al., "Game Player Strategy Pattern

Recognition and How UCT Algorithms Apply Pre-

knowledge of Player's Strategy to Improve Opponent

AI," 2008 International Conference on Computational

Intelligence for Modelling Control & Automation,

Vienna, Austria, 2008, pp. 1177-1181, doi:

10.1109/CIMCA.2008.82.

[20] Afia, A., Gougam, F., Touzout, W. et al. Spectral

proper orthogonal decomposition and machine

learning algorithms for bearing fault diagnosis. J

Braz. Soc. Mech. Sci. Eng. 45, 550 (2023).

https://doi.org/10.1007/s40430-023-04451-z

[21] Wan, W., Lee, H.J. Deep feature representation and

ball-tree for face sketch recognition. Int J Syst Assur

Eng Manag 11, 818–823 (2020).

https://doi.org/10.1007/s13198-019-00882-x

[22] Asmaa Maher, Saeed Mian Qaisar, N. Salankar, Feng

Jiang, Ryszard Tadeusiewicz, Paweł Pławiak, Ahmed

A. Abd El-Latif, Mohamed Hammad, Hybrid EEG-

fNIRS brain-computer interface based on the non-

linear features extraction and stacking ensemble

learning, Biocybernetics and Biomedical

Engineering, Volume 43, Issue 2, 2023, Pages 463-

475, ISSN 0208-5216,

https://doi.org/10.1016/j.bbe.2023.05.001.

[23] Mayanglambam, S.D., Pamula, R., Horng, S.J., 2023.

Clustering-Based Outlier Detection Technique Using

PSO-KNN. Journal of Applied Science and

Engineering (Taiwan) 26, 1703–1721.

doi:10.6180/jase.202312_26(12).0003

[24] S. A. Thomas, Y. Jin, J. Bunch and I. S. Gilmore,

"Enhancing classification of mass spectrometry

imaging data with deep neural networks," 2017 IEEE

Symposium Series on Computational Intelligence

(SSCI), Honolulu, HI, USA, 2017, pp. 1-8, doi:

10.1109/SSCI.2017.8285223.

[25] ÇELİK, A., 2022. Improving Iris Dataset

Classification Prediction Achievement By Using

Optimum k Value of kNN Algorithm. Eskişehir Türk

Dünyası Uygulama ve Araştırma Merkezi Bilişim

Dergisi 3, 23–30.

doi:10.53608/estudambilisim.1071335

[26] Zhang, S., Cheng, D., Deng, Z., Zong, M., & Deng,

X. (2018). A novel kNN algorithm with data-driven k

parameter computation. Pattern Recognition

Letters, 109, 44–54.

https://doi.org/10.1016/j.patrec.2017.09.036

[27] Yang, F., Zhou, X., Wu, D., & Sun, T. (2011). A fast

improved knn algorithm based on the tree

structure. ICIC Express Letters, Part B:

Applications, 2(5), 1039–1044.

https://doi.org/10.36244/ICJ.2022.1.1
https://doi.org/10.3390/math9070779
https://doi.org/10.1007/s40430-023-04451-z
https://doi.org/10.1007/s13198-019-00882-x
https://doi.org/10.1016/j.bbe.2023.05.001
https://doi.org/10.1016/j.patrec.2017.09.036

