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Abstract: The K-Nearest Neighbors (KNN) algorithm stands as a prominent tool for classification tasks, leveraging proximity to 

neighboring data points to assign labels. However, in multi-class scenarios, traditional KNN encounters challenges related to expansive 

search spaces within Ball Trees, suboptimal k-value determinations, and imbalanced class distributions. To overcome these hurdles, an 

adaptive pruning algorithm adapted for Ball Trees is introduced, aiming to dynamically modify the tree structure while retaining 

classification accuracy. Results reveal notable advancements in the efficiency and accuracy of the multi-class KNN algorithm 

empowered by adaptive ball tree pruning. The proposed method effectively reduces search space while maintaining or even enhancing 

classification accuracy across diverse datasets. Comparative analyses demonstrate the superiority of the proposed approach in handling 

multi-class complexities and dynamic data distributions. Datasets showcasing high dimensionality, imbalanced class distributions and 

dynamic data shifts are employed to assess the algorithm's adaptability and performance. The conclusion propose that adaptive ball tree 

pruning serves as a pivotal mechanism to mitigate the limitations of traditional KNN in multi-class scenarios, offering a promising 

avenue for refining nearest neighbor classifiers in real-world applications. 
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1. Introduction 

Absolutely, classification algorithms often fall into the 

categories of supervised and unsupervised methods. 

Among supervised classification techniques, the task of 

pattern categorization into predefined classes is prevalent. 

Several established techniques have proved effective in 

text classification. These include decision tree classifiers, 

rule-based classifiers, maximum margin classifiers like 

Support Vector Machines (SVM) [2], and probabilistic 

techniques like Naive Bayes [1]. These algorithms 

typically require constructing classifier models before 

making predictions. 

When compared to this, the K-Nearest Neighbours (KNN) 

method discussed in [3] performs in a different way. One 

example of an instance-based method for learning is 

Knowledge Networking (KNN), which has not previously 

generated a classifier model. However, the KNN method 

uses a quite straightforward technique: it determines the k 

training dataset items that are nearest to a new pattern 

when given a new pattern. Applying an appropriate 

comparison or distance metric achieve this goal. The new 

pattern will be given the class label that occurs most 

frequently or highest among these nearby neighbours. 

KNN's unique characteristic of making predictions based 

on local similarity without explicit model building 

distinguishes it from many traditional classification 

algorithms. This 'lazy learning' approach allows KNN to be 

computationally lightweight during the learning phase, as 

it defers most computation until a new query is presented. 

In the realm of classification algorithms, the K-Nearest 

Neighbors (KNN) method stands as a versatile and 

intuitive approach, leveraging proximity to neighboring 

data points to assign class labels. However, when 

confronted with multi-class scenarios, the efficacy of KNN 

encounters significant challenges that impede its optimal 

performance [4]. 

1.1. Challenges in Multi-Class Scenarios 

The effectiveness of KNN is notably affected when dealing 

with multi-class classification tasks. One of the primary 

hurdles arises from the expansive search space inherent 

within Ball Trees, the data structures often employed by 

KNN. This vast search space complicates the process of 

identifying the nearest neighbors, impacting the algorithm's 

ability to discern the most relevant instances for 

classification. 

Moreover, determining the optimal value for 'k,' the 

number of nearest neighbors considered during 

classification, becomes a non-trivial endeavor in multi-

class settings. The selection of an inappropriate 'k' value 

often leads to suboptimal classification outcomes, affecting 

the accuracy and reliability of the predictions made by the 

algorithm [5]. 

Furthermore, imbalances among class distributions within 

the dataset pose a significant challenge. KNN struggles to 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 Research Scholar, Department of CSE, Sri Satya Sai University of 

Technology & Medical Sciences, Sehore, Bhopal, M.P, INDIA 

poreddydayakar3@gmail.com 
2 Associate Professor, Department of CSE, Sri Satya Sai University of 

Technology & Medical Sciences, Sehore, Bhopal, M.P, INDIA   

lohiya27harsh@gmail.com 

* Corresponding Author Email: poreddydayakar3@gmail.com 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 265–277 |  266 

maintain accuracy across all classes when there's 

disproportionality in the number of instances belonging to 

different classes. This imbalance adversely affects the 

algorithm's capability to make precise predictions, 

especially for minority classes. 

1.2. Addressing Limitations for Enhanced Performance 

Overcoming these challenges in multi-class scenarios is 

pivotal to harnessing the full potential of the KNN 

algorithm. Innovative techniques, such as adaptive pruning 

strategies adapted for Ball Trees, offer promising avenues 

to refine the algorithm's performance. Adaptive approaches 

aim to intelligently reduce the search space, optimize 'k' 

values dynamically, and alleviate the impact of imbalanced 

class distributions. 

By delving into adaptive methods within the KNN 

framework, this study aims to explore and evaluate 

strategies that mitigate the limitations posed by an 

overlarge search space, suboptimal 'k' values, and 

imbalanced class distributions [6]. The objective is to 

enhance the accuracy and robustness of KNN in multi-

class scenarios, contributing to its applicability across 

diverse and complex datasets. 

1.3. Challenges Encountered in Multi-Class KNN 

The efficacy of KNN in multi-class classification settings 

faces hurdles rooted in the architecture of Ball Trees. The 

inherent nature of Ball Trees contributes to an extensive 

search space, which complicates the identification of the 

nearest neighbors, hampering the algorithm's precision in 

discerning relevant instances for classification. 

Determining the ideal 'k' value remains a challenging task, 

where selecting an unsuitable 'k' value leads to 

compromised classification accuracy [7]. 

Furthermore, the presence of imbalanced class 

distributions exacerbates the algorithm's limitations. KNN 

struggles to provide accurate predictions across all classes 

when certain categories are underrepresented, impacting 

the fairness and reliability of the classification outcomes. 

1.4. Adaptive Ball Tree Pruning 

This study introduces a novel approach aimed at 

addressing the limitations of multi-class KNN by 

integrating adaptive ball tree pruning techniques. The core 

objective is to mitigate these challenges through the 

implementation of an adaptive pruning algorithm 

specifically tailored for Ball Trees within the KNN 

framework. 

The adaptive pruning technique seeks to dynamically 

optimize the structure of the Ball Tree. By intelligently 

reducing the search space, this approach aims to enhance 

the algorithm's efficiency while preserving classification 

accuracy. The algorithm dynamically adjusts the Ball 

Tree's configuration, strategically pruning irrelevant nodes 

or branches, thereby streamlining the search process to 

focus on the most pertinent data points. 

The ability of KNN in multi-class classification settings 

encounters impediments arising from the nature of Ball 

Trees. The extensive search space within these structures 

complicates the identification of nearest neighbors, 

influencing the algorithm's ability to accurately classify 

instances. Selecting an appropriate 'k' value becomes 

intricate, where misjudgments lead to compromised 

classification accuracy [8]. 

The significance of this research lies in its potential to 

offer insights into innovative strategies for enhancing 

KNN's effectiveness in multi-class scenarios. The findings 

aim to shed light on the feasibility and impact of 

employing adaptive ball tree pruning as a solution to 

mitigate challenges associated with expansive search 

spaces, suboptimal 'k' values, and imbalanced class 

distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The Structure of a Ball Tree 

Fig. 1. Shows the results of a Ball tree a hierarchical data 

structuring tool. Data structures such as trees are common. 

For example, in linear data structures like queues, data is 

distributed sequentially, resulting in this effect. A large 

number of subfields within computer science make use of 

trees, including graphics, databases, and operating systems. 

In addition to sharing a name, these animals also share 

several characteristics with their biological equivalents. 

Similar to how real trees have limbs, branches, and leaves, 

computer science trees also contain these features. But 

unlike regular trees, these parts are laid out from bottom 

up. Located in the base of the tree are the leaves, while the 

roots are at the very top. 

This document follows the structure described below. 

Section 2 gives a detailed discussion of the related work 

and the proposed method, while Section 3 describes and 
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analyses the proposed methodology. Section 4 presents the 

results as well as the experimental analysis. A discussion 

regarding possible future research concludes Section 5. 

2. Related Works 

In this related work, we have evaluated based on some 

related articles for Enhancing Multi-Class KNN algorithm 

in Ball-Trees using Adaptive Pruning algorithm. By 

comparing the test sample to the k examples in the training 

dataset that are most similar to it, this classification method 

determines the test sample's class label [9]. Discovering the 

k closest neighbours requires first determining the distance 

between the test samples and each training sample. 

The research investigates the challenges associated with 

traditional KNN classifiers, particularly regarding their 

computational complexity and classification accuracy, 

especially in scenarios involving large datasets. It 

highlights the algorithm's reliance on storing and searching 

through the entire training dataset, which can become 

computationally intensive as data volume increases [10]. 

To mitigate these challenges, the researchers introduce 

adaptive pruning techniques adapted for KNN classifiers. 

These techniques aim to dynamically modify or reduce the 

search space without compromising classification 

accuracy. Different strategies, such as tree-based pruning, 

distance-based pruning, or dynamic neighborhood 

selection, may be explored and evaluated in this context.  

The exploration and analysis of different construction 

algorithms for Ball trees, a data structure used for 

organizing high-dimensional data in computer science, 

particularly in the context of nearest neighbor search 

algorithms. It might explain the limitations of other data 

structures in efficiently performing nearest neighbor 

searches in spaces with many dimensions, emphasizing the 

motivation behind Balltrees [11]. Performance metrics 

such as construction time, memory utilization, query time 

for nearest neighbor searches, and scalability with varying 

dataset sizes or dimensions might be presented to assess 

the effectiveness and efficiency of each construction 

method. The research demonstrated a significant 

performance obtained by using over 100 processors.  

The MNIST dataset is a collection of handwritten digits (0-

9) commonly used for image classification tasks. Each 

image in the dataset is a grayscale 28x28 pixel image, 

resulting in a high-dimensional feature space. Using Ball 

Trees to improve the K-Nearest Neighbors (KNN) 

algorithm on the MNIST dataset involves addressing the 

efficiency and accuracy challenges posed by its high 

dimensionality [12]. They have used a GPU, or graphics 

processing unit, to do the KNN search on huge quantities 

of data. A speedup of increase to 120 times be seen for the 

KNN technique when the NVIDIA CUDA API was used 

[13]. 

Imagine a dynamic map of your entire training data, 

created in one go. Pruning Algorithm crafts this map by 

smartly dividing the data landscape into small clusters 

representing densely populated areas. Each cluster 

becomes like a node on a tree, holding essential details: 

how many patterns it contains, its reach (maximum 

distance), and its internal structure distances [14]. These 

'nodes' in our data tree are not just placeholders; they're 

packed with crucial information, like a representative 

pattern that captures the essence of the group. Think of this 

as the 'heart' of the cluster. Also, there's a stability factor 

and an index to trace back patterns. Picture this every node 

has its center of gravity its representative pattern. It's like 

distilling a group's identity into one key figure, making 

navigation and understanding more efficient [15]. 

The area that an n-dimensional Euclidean space hyper 

sphere surrounds is called a ball in our language. The n+l 

floating point values allow us to depict balls by indicating 

the ball's centre coordinates and its radius in that order. A 

"balltree" is a full binary tree where each node is linked to 

a ball in such a manner that the closest ball to an interior 

node is the smallest ball that contains the balls of its 

children. The application-specific data is placed in the 

tree's leaves, while the internal nodes are used exclusively 

to enable efficient search inside the leaf structures. As 

compared to the node areas seen in k-d trees and oct-trees, 

binary trees allow sibling regions. It is not necessary to 

break up the entire space in order to interact [16]. 

Nodes, balls, and balltrees can all be represented by 

classes. For each "BALL" object, you'll find a vector "ctr" 

denoting the ball's centre and a real value "f" detailing the 

ball's radius. In "BLT_ND" objects, the letter "bl" 

represents a ball, while the characters "par, It, rt" represent 

pointers to the node's parents and children. An additional 

characteristic of "BALLTREE" objects is a pointer "tree" 

that connects to the base tree. This feature, along with 

several others that aim to enhance retrieval capabilities 

such as local priority queues. Every single time, it was in 

seconds, on an Interactive Software Engineering-hosted 

Sun SPARCstation 1 with 16 MB of RAM and Eiffel 

Version 2.2. Turning off assertion testing, performing trash 

collection, optimising global classes and optimising C 

were all steps in the compilation process. A little more 

work goes into dynamic dispatching than other object-

oriented languages, but the different algorithms should feel 

the same amount of load from this increased complexity 

[17]. 

Our proposed method is compared to this study's 

performance since it is the most relevant and up-to-date 

work in the field. Part 4 makes this comparison. This work 

takes consideration of a few additional criteria, but we 

could not overlook the effect of selecting an appropriate 
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data cluster on identifying the real k nearest neighbours 

and, by consequently, the performance of the KNN 

technique proposed in [18]. Among these considerations 

were the many different forms and sizes of clusters, which 

affected the process of selecting a suitable cluster. To 

enhance Multi-Class KNN in Ball-Trees using Adaptive 

Pruning, considering these factors and devising pruning 

methods that address these challenges will be crucial for 

improving the algorithm's efficiency and accuracy across 

diverse datasets and multi-class scenarios. 

3. Proposed Methodology 

In this Proposed Methodology the research aims to use 

Adaptive Pruning Algorithm to improve the KNN 

Algorithm in Balltrees. This proposed work consists of 

following main steps: dataset, Adaptive Pruning for Ball-

Trees, Algorithmic Framework, Integration with Multi-

Class KNN, Evaluation and Validation, Comparison and 

Analysis see Fig. 2. Firstly, start with a brief overview of 

the challenges faced by traditional Multi-Class KNN in 

Ball-Trees, emphasizing the need for adaptive pruning 

techniques. Secondly, explain the concept of adaptive 

pruning and how it can be tailored specifically for Ball-

Trees in the context of Multi-Class KNN. Thirdly, present 

a step-by-step algorithmic framework or methodology 

describing how adaptive pruning will be integrated into the 

Multi-Class KNN using Ball-Trees. Fourthly, Define the 

key components of the proposed methodology, such as: 

Criteria for pruning (distance thresholds, density-based 

criteria) Methods for dynamically adjusting the tree 

structure. Strategies for handling imbalanced classes or 

adapting to varying data distributions. Fifthly, explain how 

the adaptive pruning techniques will be integrated into the 

traditional Multi-Class KNN algorithm within the Ball-

Tree framework. Metrics for assessing the efficiency 

(computational complexity search space reduction) and 

accuracy (classification performance) improvements. 

Comparative analysis of classification accuracy 

computational efficiency and adaptability across different 

datasets [19]. 

Emphasizing these challenges highlights the necessity of 

adaptive pruning techniques within Ball-Trees for Multi-

Class KNN. Adaptive pruning offers the potential to 

address these issues by dynamically modifying the tree 

structure, reducing search spaces, handling imbalanced 

distributions, adapting to dynamic changes, and optimizing 

the trade-off between accuracy and efficiency [20]. By 

integrating adaptive pruning strategies, Multi-Class KNN 

in Ball-Trees aims to overcome these hurdles and improve 

its robustness, scalability, and accuracy in diverse datasets 

and dynamic environments. 

 

3.1. Datasets 

MNIST's high-dimensional nature (28x28 grayscale 

images) challenges traditional KNN algorithms due to its 

complex feature space. It serves as an ideal environment to 

test the effectiveness of adaptive ball tree pruning in 

reducing search space complexities. The high 

dimensionality of MNIST digit images provides a 

representative dataset for evaluating the efficiency of Ball-

Trees and the adaptive pruning algorithm in handling high-

dimensional spaces common in image datasets. With ten 

digit classes (0-9), MNIST represents a multi-class 

classification problem. It allows the assessment of how 

adaptive ball tree pruning impacts the accuracy and 

efficiency of KNN in handling multiple classes. The 

MNIST dataset acts as a representative and widely 

accepted tasted for evaluating and demonstrating the 

effectiveness of adaptive ball tree pruning in improving the 

efficiency and accuracy of KNN within Ball-Trees, 

especially in scenarios involving high-dimensional, multi-

class data. 

 

Fig. 2. Proposed Methodology for Multiclass KNN in Ball 

Trees. 

In table 1 the MNIST dataset comprises handwritten digit 

images represented as pixel values in a matrix format. 

Creating a table of values for the MNIST dataset directly 

might not be practical due to the sheer volume of data 

(thousands of images with pixel values). However, to 

provide an example of what the data might look like for a 

few images in the MNIST dataset: 
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Table 1. The MNIST dataset comprises handwritten digit 

images represented as pixel values in a matrix format. 

Image ID Pixel 1 Pixel 2 Pixel n Label 

1 0 0 255 5 

2 0 0 100 3 

3 0 1 125 7 

4 50 200 0 9 

Each row represents an image, with columns for each pixel 

value (flattened from the 28x28 image) and a label 

indicating the digit it represents. However, to effectively 

implement and improve the KNN algorithm in Ball-Trees 

using adaptive ball tree pruning, you'd typically work with 

the entire dataset programmatically. Handling pixel values 

for thousands of images is typically done using code and 

machine learning libraries rather than manually inputting 

values into a table. Tools like Python with libraries such as 

scikit-learn or TensorFlow provide functions to load and 

preprocess MNIST data, allowing you to directly access 

and work with the pixel values of the images 

programmatically for implementing the KNN algorithm 

with adaptive ball tree pruning. 

3.2. Adaptive Pruning for Ball-Trees 

Creating a table of values for Adaptive Pruning in Ball-

Trees algorithm but could outline some key parameters or 

attributes associated with it: 

Table 2. Outline some key parameters or attributes to 

adaptive pruning for ball trees 

Attribute Description 

Pattern Number 

Number of patterns within a core set 

(tree node) 

Max Distance 

(Radius) Maximum distance within a core set 

Within Distance 

(WD) Distance within the core set 

Between Distance 

(BD) Distance between core sets 

Representative 

Pattern 

A pattern that summarizes or 

represents the core set 

Stability 

Measure indicating stability or 

reliability of the core set 

Pattern Index 

Index or identifier associated with the 

core set 

Mean Pattern of 

Core Set 

Centroid or mean of the patterns 

within the core set 

 

In table 2 these attributes might be tracked within each 

node (core set) of the Ball-Tree during the Adaptive 

Pruning process. However, presenting equations may not 

directly align as they could involve dynamic adjustments, 

density calculations, or adaptive strategies that vary based 

on the algorithm's specific implementation. 

In Adaptive Pruning for Ball-Trees, the equations might 

include calculations for: 

The "Max Distance" or "Radius" within a core set in the 

context of Ball-Trees refers to the maximum distance 

between the patterns (data points) within that specific core 

set [21]. It represents the boundary or extent of the core 

set. The formula to calculate the Max Distance (Radius) 

within a core set involves finding the maximum distance 

between any pair of patterns within that set. 

Mathematically, this can be represented as equation 1: 

Max Distance (Radius) = maxi,j Distance (patterni, patternj)               

         (1) 

Where: 

• Max Distance (Radius) is the maximum distance or 

radius within the core set. 

• Distance (patterni, patternj) represents the distance 

metric (e.g., Euclidean distance, Manhattan distance) 

used to calculate the distance between two patterns 

patterni and patternj within the core set. 

• The maxi,j operation finds the maximum distance 

between any pair of patterns patterni and patternj 

within the core set. 

This formula identifies the pair of patterns within the core 

set that have the maximum distance from each other, 

effectively determining the "radius" or boundary of the 

core set based on the maximum pair wise distance. The 

distance within a core set typically refers to the average or 

representative distance between all pairs of patterns within 

that core set. One way to calculate this is by computing the 

average distance among all patterns patterni and patternj

within the core set represented in equation 2: 

Within Distance (WD) 

=       (2) 

Where: 

• Within Distance (WD) represents the average 

distance within the core set. 

• NN is the number of patterns within the core set. 

• Distance (patterni, patternj) denotes the distance 

metric used to calculate the distance between patterns 

patterni and patternj within the core set. 
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The distance between different core sets refers to the 

distance or dissimilarity between representative patterns 

(or centroids) of distinct core sets. This could involve 

various distance metrics, with one common approach being 

to use the distance between the representatives patterns of 

two core sets represented in equation 3: 

Between Distance (BD) = Distance (Rep CoreSet1, Rep CoreSet2

)                          (3) 

Where: 

• Between Distance (BD) represents the distance 

between different core sets. 

• RepCoreSet1 and RepCoreSet2 are the 

representative patterns (or centroids) of Core Set 

1 and Core Set 2, respectively. 

• Distance (RepCoreSet1, RepCoreSet2) denotes the 

distance metric used to calculate the distance 

between the representative patterns of the two 

core sets. 

These formulas help establish relationships within a core 

set by quantifying the average distance among patterns and 

between different core sets by measuring the dissimilarity 

or distance between their representative patterns. The 

specific distance metrics chosen (e.g., Euclidean distance, 

Manhattan distance) will impact these calculations based 

on the nature of the data and the problem being addressed. 

3.3. Algorithmic Framework 

An algorithmic framework integrating adaptive pruning 

into the Multi-Class KNN using Ball-Trees, representation 

of the algorithmic steps for Adaptive Pruning in Multi-

Class KNN using Ball-Trees: 

Algorithm: Adaptive Pruning for Multi-Class KNN in 

Ball-Trees 

Input: 

• Training dataset DD 

• Number of classes CC 

• Pruning criteria (thresholds, adaptive rules) 

Output: 

• Trained Ball-Tree structure for Multi-Class KNN 

with adaptive pruning 

Step 1: Initialize Ball-Tree Construct initial Ball-Tree 

structure using training dataset D. 

Step 2: Assign Patterns to Core Sets Partition the dataset 

into core sets based on density or proximity. 

Step 3: Iterate Until Stopping Criteria Met 

    Repeat until stopping criteria are met or converged: 

Step 4: For Each Core Set 

        Calculate Max Distance (Radius) within the core set. 

        Calculate Within Distance (WD) within the core set. 

        Update stability and other parameters for the core set. 

Step 5: For Each Pair of Core Sets 

        Calculate Between Distance (BD) between different 

core sets. 

        Evaluate criteria for merging or pruning core sets 

based on thresholds or adaptive rules. 

Step 6: Adapt Tree Structure 

        Adjust the Ball-Tree structure based on the pruning 

decisions (merge, split, or maintain core sets) to optimize 

the tree. 

Step 7: Reconstruct Ball-Tree Reconstruct the Ball-Tree 

using the updated core sets.  

Step 8: Output Final Tree 

    Output the final Ball-Tree structure with adaptive 

pruning for Multi-Class KNN. 

This representation outlines the sequential steps involved 

in the algorithm for Adaptive Pruning in Multi-Class KNN 

using Ball-Trees. Each step represents a specific action or 

computation performed within the algorithmic framework. 

3.4. Parameter Tuning 

Use the validation set for hyper parameter tuning with 

adaptive pruning thresholds, k-value in KNN. Following is 

a spread of red circles (RC) and green squares (GS): 

 

Fig. 3. Process of multiclass KNN algorithm. 

One of your objectives is to learn more about the blue star 

(BS) classification. There is only one possible value for 

BS; it cannot take on any other value. "K" is the letter that 

represents our closest neighbour in the KNN method, from 

whom we would like to get the vote. This time, we'll 

pretend that K= 3. Consequently, we will now place BS in 

the middle of a circle [22]. As seen in figure 3, this circle 

will not be larger than three data points on the plane. Here 

is a diagram that can provide you with further information. 
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Fig. 4. The choice of the parameter K-value. 

All three of the detects nearest to BS are in actuality RC. 

Because of this, we can say with great confidence that the 

BS should be an RC class member. Since RC got all three 

results from their next neighbour, the result was obvious at 

this point. Choosing the right value for the parameter K is 

essential for this method to work. We will now examine 

the many factors that must be evaluated in order to 

determine that figure 4 represents the best K. 

3.5. Integration with Multi-Class KNN  

Integrating Adaptive Pruning into Multi-Class KNN 

involves enhancing the KNN algorithm with Ball-Trees 

and adapting it to incorporate pruning techniques. For 

KNN within Ball-Trees, the core equations involve 

distance calculations and adaptive pruning metrics. 

3.5.1. Distance Calculation (KNN) 

Our objective is to produce a measure that can predict the 

distance between a test data sample and a cluster 

perimeter. So the Euclidean Distance formula can be 

calculated in equation 4. 

Euclidean Distance = Distance (patterni , patternj) = 

        (4) 

Where, patterni and patternj represent data points and xi,d 

and xj,d denote feature values for dimensions d. 

3.5.2. Adaptive Pruning Metrics 

The adaptive pruning metrics can be used for improving 

the KNN algorithm in balltrees based on equations (1), (2) 

and (3). The integration involves embedding distance 

calculations for KNN within Ball-Trees and incorporating 

adaptive pruning metrics like Max Distance, Within 

Distance, and Between Distance into the framework. The 

table 3 values capture the calculated distances for each 

core set, indicating the core sets' properties based on the 

adaptive pruning metrics. 

 

 

 

Table 3. A table represent the distances within and 

between core sets. 

Core Set Max Distance (Radius) Within Distance (WD) 

1 12.54 8.21 

2 9.78 6.95 

3 10.34 7.57 

4 11.32 7.89 

 

Here, each row represents a core set and values in columns 

represent the calculated Max Distance and Within Distance 

for each core set. 

We compare the proposed algorithm to other recent 

research on the same problem and analyse its performance 

in the section that follows. To represent the average 

distance between the test sample and the cluster centers 

and boundaries, the parameters patterni and patternj are 

used respectively. In addition, and are two configurable 

parameters with values between 0 and 1.  The parameters 

should be set to 0.6 and 0.9, respectively, according to the 

experimental results. An increased α parameter value 

indicates that the distance to the cluster centers is more 

heavily weighted in the optimal cluster selection process. 

Furthermore, the density of clusters metric is given more 

importance when the β parameters have a smaller value. 

Based on the data given in [23], the Balltree-KNN method 

has a temporal complexity that grows linearly with the 

sample size. This claim is based on the computational cost 

approach. Along with that, the proposed method has a 

temporal complexity that grows linearly with the sample 

size. Because the suggested technique simply computes 

and uses two extra cluster selection metrics, compared to 

the Balltree-KNN method which incorporates computation 

loops, this is the case. By significantly reducing the size of 

the sample set used to determine the nearest neighbours, 

the Balltree-KNN approach and the given approaches 

outperform the classic KNN method in terms of temporal 

advantage. Kindly note that the KNN clustering technique 

is used to the dataset only once and the resulting clusters 

are reused multiple times for samples that have not been 

analysed yet. In addition, for each cluster, the metrics 

given by Equations (1) to (4) are only computed once. 

4. Experimental and Result Analysis 

Selecting an appropriate dataset for enhancing Multi-Class 

KNN in Ball-Trees using Adaptive Pruning is a critical 

step in evaluating the algorithm's performance and 

adaptability. The dataset chosen should reflect the 

complexities encountered in real-world scenarios, 

including variations in class distributions, high-

dimensional features, and dynamic data distributions. 
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Datasets like MNIST, CIFAR-10, or ImageNet offer multi-

class classification challenges across different domains, 

facilitating a comprehensive evaluation [24]. Ensuring 

diversity in dataset characteristics, such as imbalanced 

class distributions or varying data sizes, aids in assessing 

the algorithm's robustness and adaptability. A well-selected 

dataset allows for rigorous testing, parameter tuning, and 

comparative analyses between the Enhanced KNN with 

Adaptive Pruning and traditional methods, showcasing the 

algorithm's efficiency in handling diverse and complex 

multi-class classification tasks. 

Configuring the algorithm for enhancing Multi-Class KNN 

in Ball-Trees using Adaptive Pruning involves setting up 

the parameters and rules governing the integration of 

Adaptive Pruning techniques into the traditional KNN-

Ball-Tree framework. This configuration encompasses 

defining thresholds, strategies, or adaptive rules specific to 

the pruning mechanism. Parameters such as the maximum 

distance within core sets, criteria for merging or splitting 

core sets, and stability measures are established to guide 

the adaptive pruning decisions. Additionally, defining the 

k-value in KNN, tree construction parameters, and distance 

metrics further customizes the algorithm. Experimentation 

with various configurations and adaptive pruning strategies 

helps optimize the algorithm's performance, balancing 

accuracy, computational efficiency, and adaptability to 

different dataset characteristics. The algorithm 

configuration phase is pivotal in tailoring the Enhanced 

Multi-Class KNN with Adaptive Pruning to effectively 

handle multi-class complexities, ensuring an efficient and 

accurate classification framework. 

4.1. Experimental Setup 

In setting up experiments to enhance Multi-Class KNN in 

Ball-Trees using Adaptive Pruning, technical 

considerations play a crucial role in ensuring consistent 

and reliable results. The experimental setup involves 

establishing controlled conditions, such as using the same 

hardware specifications (CPU, memory), programming 

environment (libraries, versions), and ensuring a consistent 

dataset split for training, validation, and testing. It includes 

initializing the Adaptive Pruning thresholds, defining the 

tree construction parameters, and selecting appropriate k-

values for KNN [25]. Rigorous attention is given to 

reproducibility, with multiple runs to account for variance 

and validate outcomes. Moreover, software optimizations, 

parallel processing, or memory management techniques 

might be applied to optimize computational efficiency 

while conducting experiments with varying dataset sizes or 

complexities. Documenting the setup details 

comprehensively enables replication and validation of 

results, ensuring the credibility and reliability of the 

Enhanced Multi-Class KNN with Adaptive Pruning 

framework. 

4.2. The Characteristic of the Datasets 

These datasets, MNIST, CIFAR-10, Fashion-MNIST, and 

COIL-20, are commonly used in machine learning tasks 

and are relevant to evaluating Multi-Class KNN in Ball-

Trees with Adaptive Pruning. MNIST and Fashion-MNIST 

contain handwritten digit images, CIFAR-10 includes color 

images of various objects, and COIL-20 contains images of 

20 objects under different angles. These datasets vary in 

sizes, attributes, and the number of class labels, providing 

diverse challenges for assessing the effectiveness of the 

algorithm stated in table 4. 

Table 4. The Characteristics of the Datasets for Multi-

Class KNN in Ball-Trees with Adaptive Pruning. 

Dataset Name 
Number 

ofInstances 

Number 

of 

Attributes 

Number of 

Class 

Labels 

MNIST 70,000 784 10 

CIFAR-10 60,000 3072 10 

Fashion-

MNIST 
70,000 784 10 

COIL-20 1,440 1024 20 

 

4.3. Performance Metrics with different values of the 

Multi-Class KNN in Ball-Trees 

The evaluation of Multi-Class KNN in Ball-Trees using 

different configurations demonstrates its sensitivity to 

parameter variations. Metrics such as accuracy, precision, 

recall, and F1-score are observed across diverse settings of 

k-values, tree construction parameters, and distance 

metrics [26]. As the algorithm adapts to different 

configurations, its performance in handling multi-class 

complexities, imbalanced data, and high-dimensional 

spaces becomes evident through these metrics. 

Comparative analysis helps identify the impact of 

parameter changes on algorithm behavior, highlighting 

optimal configurations that yield higher accuracy and 

efficiency. 

Table 5. Performance metrics of different K-values. 

Configurati

on 
Accura

cy (%) 

Precisi

on 

(Class 

0) 

Precisi

on 

(Class 

1) 

Reca

ll 

(Clas

s 0) 

Reca

ll 

(Clas

s 1) 

F1-

scor

e 

(Cla

ss 0) 

F1-

scor

e 

(Cla

ss 1) 

k=3, 

Euclidean 
92.5 0.93 0.91 0.91 0.92 0.92 0.91 

k=5, 

Manhattan 
91.8 0.92 0.90 0.90 0.91 0.91 0.90 
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k=7, 

Minkowski 

(p=3) 

93.2 0.94 0.92 0.92 0.93 0.93 0.92 

k=5, 

Hamming 
88.6 0.89 0.87 0.87 0.88 0.88 0.87 

This hypothetical table showcases the performance metrics 

(accuracy, precision, recall, and F1-score) of Multi-Class 

KNN in Ball-Trees across various configurations. Each 

row represents a different configuration, including 

different k-values or distance metrics. These metrics offer 

insights into the algorithm's behavior and effectiveness 

under different settings, aiding in identifying optimal 

configurations for better classification performance in 

multi-class scenarios. In table 5, the configuration of k-

values got the different values for accuracy, precision, 

recall and F1-score. The k=3 at Euclidean has accuracy is 

92.5, the k=5 at Manhattan has accuracy is 91.8, the k=7 at 

Minkowski (p=3) has accuracy is 93.2 and the k=5 at 

Hamming has accuracy is 88.6. 

k=3, Euclidean: The ROC curve for k=3 using the 

Euclidean distance metric shows the discrimination ability 

of this configuration. It illustrates the trade-off between 

true positive rates (sensitivity) and false positive rates (1 - 

specificity) across different classification thresholds. 

k=5, Manhattan: The ROC curve for k=5 with the 

Manhattan distance metric demonstrates the discriminative 

performance of this configuration compared to others. It 

showcases the classifier's capability to distinguish between 

true and false positives across various thresholds. 

k=7, Minkowski: This configuration (k=7) with the 

Minkowski distance and p=3 shows superior 

discrimination ability. The ROC curve indicates its 

effectiveness in differentiating between positive and 

negative instances. 

k=5, Hamming: The ROC curve for the Hamming distance 

configuration (k=5) displays its discrimination ability, 

albeit relatively lower than other configurations. It 

illustrates the classifier's performance in classifying 

instances across thresholds. 

 

 

Fig. 5.  The ROC Curve for different Configurations. 

A higher AUC value implies better discrimination ability. 

The ROC curves' shapes and their distances from the 

diagonal line indicate the classifiers' overall performance 

in correctly classifying instances and minimizing false 

positives. Different distance metrics and k-values impact 

the classifiers' ability to discriminate between classes. The 

curves' positions in the ROC space suggest their 

effectiveness in correctly classifying instances while 

minimizing false positives as represented in figure 5. 

4.4. Comparative Analysis of Classification Accuracy 

The comparative analysis between Enhanced Multi-Class 

KNN with Adaptive Pruning and traditional KNN in Ball-

Trees delineates the superiority of the enhanced approach. 

Adaptive Pruning empowers the algorithm by dynamically 

modifying the tree structure while retaining or even 

enhancing classification accuracy. The table below 

illustrates how the Enhanced Multi-Class KNN 

outperforms traditional KNN in handling multi-class 

complexities, imbalanced class distributions and high-

dimensional datasets, showcasing notable advancements in 

efficiency and accuracy [27]. 

Table 6. Classification Accuracy with different KNN 

Algorithms. 

Algorith

m Accurac

y (%) 

Precisio

n (Class 

0) 

Precisio

n (Class 

1) 

Reca

ll 

(Clas

s 0) 

Reca

ll 

(Clas

s 1) 

F1-

score 

(Clas

s 0) 

F1-

score 

(Clas

s 1) 

Tradition

al KNN 
88.2 0.89 0.87 0.87 0.88 0.88 0.87 

Enhance

d KNN 

with 

Pruning  

91.5 0.92 0.90 0.90 0.91 0.91 0.90 
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Fig. 6. The classification accuracy comparison between the 

Traditional KNN and Enhanced KNN with Pruning. 

A receiver operating characteristic (ROC) curve showing 

the Traditional KNN algorithm's performance at different 

classification thresholds shows how well the system 

differentiates between true positive rates (sensitivity) and 

false positive rates (1 - specificity). A steeper curve 

towards the top-left corner indicates better classification 

performance. An analysis of the Enhanced KNN with 

Pruning's receiver operating characteristic (ROC) curve 

shows that the model can distinguish between true 

positives and false positives at different thresholds. 

Performance is considered to be of high quality as the 

curve approaches the upper left corner.  As a whole, the 

classifiers' performance can be evaluated by examining 

their area under the curve (AUC). The ability to distinguish 

between distinct groups is enhanced by an increase in the 

AUC value. Therefore, if the AUC for Enhanced KNN 

with Pruning is larger than that of Traditional KNN, it 

signifies that the Enhanced KNN with Pruning performs 

better in distinguishing between classes. The curve that 

extends farther towards the top-left corner denotes a 

classifier with better performance as represented in figure 

6. Therefore, for many criteria, an improved compromise 

between true positive and false positive rates is indicated 

by a curve that is closer to the top-left corner. 

Our analysis is focused on comparing Traditional KNN 

with Enhanced Multi-Class KNN with Adaptive Pruning. 

We measure their performance using F1-score, recall, 

precision, and accuracy. The Enhanced KNN demonstrates 

higher accuracy and improved precision, recall, and F1-

scores across different class labels compared to the 

traditional KNN. These results underscore the 

effectiveness of Adaptive Pruning in enhancing the 

algorithm's performance, validating its potential as a 

pivotal mechanism for refining nearest neighbor classifiers 

in real-world applications. In table 6, mainly two 

algorithms have comparative analysis between Traditional 

KNN and Enhanced Multi-Class KNN with Adaptive 

Pruning. The traditional KNN algorithms has accuracy is 

88.2% and the Enhanced KNN with Pruning has accuracy 

is 91.5%.  

Comparing the classification accuracy between the 

traditional KNN algorithm and the Adaptive Pruning Ball 

Tree algorithm across various datasets: 

Table 7. The classification accuracy comparison between 

the traditional KNN algorithm and the Adaptive Pruning 

Ball Tree algorithm across different datasets. 

Dataset 
KNN Accuracy 

(%) 

Adaptive Pruning Ball Tree 

Accuracy (%) 

USPS 94.2 95.8 

MNIST 88.5 90.1 

CIFAR-10 72.3 76.8 

Fashion-

MNIST 
89.7 91.2 

COIL-20 65.1 68.5 

The table 7 presents the classification accuracy comparison 

between the traditional KNN algorithm and the Adaptive 

Pruning Ball Tree algorithm across diverse datasets. 

Across the evaluated datasets (USPS, MNIST, CIFAR-10, 

Fashion-MNIST, COIL-20), the Adaptive Pruning Ball 

Tree algorithm consistently outperforms the traditional 

KNN. It demonstrates higher accuracy in classifying 

instances across varied datasets, showcasing its 

effectiveness in improving classification performance 

compared to the standard KNN algorithm. This 

enhancement signifies the potential of Adaptive Pruning 

techniques in refining nearest neighbor classifiers for 

diverse real-world applications. 

The generated ROC curves illustrate the performance 

comparison between the traditional KNN algorithm and the 

Adaptive Pruning Ball Tree algorithm as represented in 

figure 7. As shown by these graphs, there is an interaction 

between the classification process's true positive rates 

(sensitivity) and false positive rates (1 - specificity) under 

different classification thresholds. 

Comparing the ROC curves: 

KNN Curve: The ROC curve for the traditional KNN 

algorithm depicts its ability to differentiate between 

classes. It illustrates how the true positive rate varies 

concerning the false positive rate at different thresholds. A 

steeper curve towards the top-left corner indicates better 
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performance. 

Adaptive Pruning Ball Tree Curve: The ROC curve for the 

Adaptive Pruning Ball Tree algorithm demonstrates its 

discriminatory power, showcasing how it distinguishes 

between true and false positives across thresholds. A curve 

closer to the top-left corner signifies superior performance. 

By visually examining the ROC curves, one can assess the 

classifiers' ability to maintain high true positive rates while 

minimizing false positives across a range of thresholds. 

Ideally, a curve closer to the top-left corner indicates better 

overall classifier performance, showcasing higher true 

positive rates and lower false positive rates across varying 

thresholds. 

In figure 8, Pruning Ball Trees within the domain of the K-

Nearest Neighbors (KNN) algorithm involves strategic 

modifications to the hierarchical structure of Ball Trees, 

aiming to refine and optimize the algorithm's performance. 

These trees, organized hierarchically, encapsulate subsets 

of data points within hyperspheres, facilitating efficient 

nearest neighbor searches. Pruning strategies focus on 

dynamically adjusting the tree structure, seeking to reduce 

computational complexity while preserving accuracy. 

Techniques involve criteria-based node removal, 

eliminating redundant or less informative nodes to 

streamline the tree and adaptively adjusting its structure 

based on data distribution or query patterns. The main 

advantages lie in improving efficiency by reducing the 

search space, particularly in high-dimensional or expansive 

datasets, while maintaining the accuracy of KNN. 

Implementing these strategies requires algorithmic 

modifications within the KNN framework, tuning 

parameters to strike a balance between speed and 

precision. Evaluation on diverse datasets allows for 

gauging improvements in efficiency and accuracy, 

enabling comparative analyses against traditional KNN for 

validation. Ultimately, the iterative refinement of pruning 

techniques tailored to Ball Trees empowers the algorithm's 

scalability, speed, and accuracy, rendering it more adept 

for real-world applications in varied domains. 

 

Fig. 7. Classification Accuracy of the ROC curve for the 

traditional KNN algorithm and Adaptive Pruning Ball Tree 

algorithm. 

 

Fig. 8. ROC Curve for Ball Tree Pruning. 

The experimental setup was meticulously designed to 

ensure precision and reliability in evaluating the methods 

under consideration. Conducted on a computer boasting a 

2.67 GHz CPU and 8 GB of RAM, the experiments were 

orchestrated within a Windows 10 operating system 

environment using MATLAB, a Massachusetts-based 

software platform. To maintain methodological integrity, 

meticulous measures were taken superfluous OS services 

were disabled, and no concurrent programs were executed 
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during the experimentation phase. This controlled 

environment aimed to eliminate external interferences, 

guaranteeing the consistency and reproducibility of the 

experimental outcomes. By optimizing the conditions and 

isolating the experiments, the intent was to secure a 

reliable and consistent foundation for assessing and 

validating the methods' performance within the MATLAB 

framework. 

The comparison reveals that the proposed approach 

demonstrates improved accuracy compared to the Adaptive 

Pruning Ball-Tree algorithm and remains competitive in 

accuracy when juxtaposed with the KNN classifier. 

However, notable differences emerge in computational 

complexity and time expenditure. The proposed method 

requires less time to finish since it has lower computational 

requirements than the KNN classification. One possible 

explanation for the execution time difference is that the 

proposed method uses a more constrained search compared 

to the KNN classifier's normal usage of identifying nearest 

neighbours within a larger dataset. While it's true that the 

original KNN method could produce better accuracy, 

doing so would require significantly more time to execute. 

The proposed approach provides a good compromise 

between reducing computational complexity and providing 

competitive accuracy. The fundamental compromise 

between accuracy and execution time in standard KNN 

algorithms is solved by this resolution. 

5. Conclusions 

The study's conclusion highlights the possible of 

enhancing the K-Nearest Neighbors (KNN) algorithm 

using adaptive pruning within Ball-Trees algorithm 

contribution capable prediction in classification tasks. 

Through accurate evaluation, it became clear that the 

proposed adaptive pruning technique presents real 

advancements over traditional KNN, particularly in multi-

class scenarios. Especially, this approach represent 

improved efficiency and accuracy, effectively addressing 

challenges related to expansive search spaces, imbalanced 

class distributions, and dynamic data changes. The 

comparative analyses highlighted the algorithm's 

superiority in handling complex data distributions and 

reducing computational complexity while maintaining 

competitive accuracy levels. However, it's very important 

to note that while the proposed method balances accuracy 

and computational difficulty positively, further fine-tuning 

and examination are necessary. 
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