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Abstract: The evaluation of the preferences based utility function is a goal of the human cantered control (management) design. The 
achievement of this goal depends on the determination and on the presentation of the requirements, characteristics and preferences of 
the human behaviour in the appropriate environment (management, control or administration of complex processes). The decision 
making theory, the utility and the probability theory are a possible approach under consideration. This paper presents an approach to 
evaluation of human’s preferences and their utilization in complex problems. The stochastic approximation is a possible resolution to the 
problem under consideration. The stochastic evaluation bases on mathematically formulated axiomatic principles and stochastic 
procedures. The uncertainty of the human preferences is eliminated as typically for the stochastic programming. The evaluation is 
preferences-oriented machine learning with restriction of the “certainty effect and probability distortion” of the utility assessment.The 
mathematical formulations presented here serve as basis of tools development. The utility and value evaluation leads to the development 
of preferences-based decision support in machine learning environments and iterative control design in complex problems. 
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1. Introduction 
The aspiration for quantity measurements, estimations and 
prognosis at all phases of the decision making and problem-
solving is natural. But this task is carried out with very scarce 
initial information, especially in the initial development phase in 
complex problems and situations. In the initial stage of a decision 
process the heuristic of the investigator is very important, because 
in most of the cases there is a lack of measurements or even clear 
scales under which to implement these measurements and 
computations. This stage is often outside of the strict logic and 
mathematics and is close to the art, in the widest sense of the 
word, to choose the right decision among great number of 
circumstances and often without associative examples of similar 
activity. The correct assessment of the degree of informativity 
and usability of these types of knowledge requires careful 
analysis of the terms measurement, formalization, and admissible 
mathematical operations under the respective scale, which do not 
distort the initial empirical information. 
In the paper we describe approaches and methods for 
measurement and analytical presentations of empirical and 
scientific knowledge expressed as preferences. Due to 
multidisciplinary nature of the cognitive process and to 
multidisciplinary nature of the fields of applications our choice of 
scientific methods is oriented toward the utilization of the 
stochastic programming, the theory of measurement and utility 
theory [1], [7], [11], [13], [19]. In this manner we can pose the 
decision making problem as a problem of constructing value and 
utility functions based on stochastic recurrent procedures as 

machine learning, which can later be used in decision support, in 
intelligent information systems and human-adapted design 
process of optimization problems in complex systems with 
human participation. Validate mathematical evaluation of the 
human preferences as utility (value) is the first step in realization 
of a human-adapted design process and decision making [3], [11], 
[20].  
The analytical description of the expert's preferences as value or 
utility function will allow mathematically the inclusion of the 
decision maker (DM) in the model description of the complex 
system "Technologist-process" [18]. Value based design is a 
systems engineering strategy which enables multidisciplinary 
design optimization. Value-driven design creates an environment 
that enables optimization by providing designers with an 
objective function [5]. The objective (value/utility) function 
inputs the important attributes of the system being designed, and 
outputs a score. In this way we introduce the Model-driven 
decision making. Model-driven decision making and control 
emphasizes access to and manipulation of a statistical, financial, 
optimization, or simulation models and uses data and parameters 
provided by users to assist decision process in analyzing a 
complex situation. The American psychologists Griffiths and 
Tenenbaum by analyzing intuitive evaluations in the conditions 
of repetitive life situations have proved the statistical optimality 
of human assessments [8]. The idea of this study is that humans 
process the new data about the surrounding world by interpreting 
them in the framework of a built in their consciousness 
probability model. That means that the Bayesian approach was a 
natural basis on which human beings form their decisions, using 
their previous empirical experience expressed as preferences [7], 
[11], [20]. In such case the utility theory and its prescription to 
make decision based on the optimal mathematical expectation of 
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the utility has another scientific validation as methodology in the 
decision making.  
We will demonstrate this system engineering, value driven 
approach within two examples, determination of the equilibrium 
points in competitive trading, modeled by the Edgworth box and 
the control design based on the human evaluation of the best 
growth rate of a biotechnological process. 

2. Measurement, Scales, Preferences, Value and 
Utility Evaluation 

The objective of value based decision making is to develop a 
mathematical framework (econometric) for management and 
modeling of complex systems. The aspiration for measurements, 
quantity estimations and prognosis is natural but the correct 
assessment requires careful analysis of the terms measurement, 
formalization and admissible mathematical operations. In 
complex processes, there is a lack of measurements or even 
clearly identifiable scales for the basic heuristic information. 
Internal human expectations and heuristic are generally expressed 
by qualitative preferences. The common sources of information 
in such a basic level are the human preferences. According to 
social-cognitive theories, people's strategies are guided both by 
internal expectations about their own capabilities of getting 
results, and by external feedback [3]. Probability theory and 
expected utility theory address decision making under these 
conditions [11].  
The mathematical description on such a fundamental level 
requires basic mathematical terms like sets, relations and 
operations over them, and their gradual elaboration to more 
complex and specific terms like functions, operators on 
mathematically structured sets as well, and equivalency of these 
descriptions with respect to a given real object. In the last aspect 
of equivalency of the mathematical descriptions we enter the 
theory of measurements and scaling [13,19].  
People’s preferences contain uncertainty of probabilistic nature 
due to the qualitative type of both the empirical expert 
information and human notions. A possible approach for solution 
of these problems is the stochastic programming [1, 15, 18]. The 
uncertainty of the subjective preferences could be considered as 
an additive noise that could be eliminated, as is typical in the 
stochastic approximation procedures. The main objective is the 
productive merger of the mathematical exactness with the 
empirical uncertainty in the human notions.  
We start by a brief introduction in the measurement theory. 
System with relations (SR) is called the set А in conjunction with 
a set of relations  Ri , i∈I, I={1,2,3,...,n} defined over it and we 
denote it by (А, (Ri), i∈I). In this manner we introduce an 
algebraic structure in the set А.  Relation of congruency is called 
a relation of equivalency (≈) (reflexive, symmetric and transitive 
relation) defined over the basic set А, if the property of 
substitution is satisfied, i.e. from the fulfillment of relations (x1, 
x2, x3, ....,xhi)∈Аhi and  (xj≈yj) for every  j=1, 2, 3 4,...,hi it follows 
that Ri(x1, x2, x3, ....,xhi)=Ri(y1, y2, y3, ....,yhi) for ∀ i, i∈I . We say 
that the relation of equivalency (≈2) is coarser than the 
equivalency (≈1), if the inclusion (≈1) ⊆ (≈2) is satisfied. It is 
known that there always exists a coarsest relation (≈А) over the 
SR (А, (Ri ), i∈I ). This means that if two elements are in 
congruency (x≈Аy), then they are undistinguishable with respect 
to the properties in the set А (the real object under investigation), 
described with the set of relations ((Ri ), i∈I ). If we factorize the 
set А by the coarsest congruency (≈А), then in the factor set А/≈А 
the congruency (≈А) is in fact equality (=). A SR (А, (Ri), i∈I), in 
which the congruency (≈А) is coarsest is called irreducible. In this 

case SR (А/≈А,(Ri ), i∈I ) is irreducible.  
A homomorphism is an image f, f: А→B between two systems 
with relations SR (А,(Ri ), i∈I) and SR (B, (Si ), i∈I) from the 
same type. The systems with relations SR (А,(Ri ), i∈I) and SR 
(B, (Si ), i∈I) are from the same type if for which ∀ i, i∈I and (x1, 
x2, x3, ....,xhi)∈ Ri  is satisfied Ri(x1, x2, x3, ....,xhi) ⇔ Si (f(x1), f(x2),  
f(x3),  ...., f(x hi)). 
DEFINITION: We call k-dimensional scale every 
homomorphism from irreducible empirical system into a number 
system SR (А, (Qi), i∈I).  
The empirical system of relations SR (А, (Ri ), i∈I) is an object 
from the reality with the properties described by the relations ((Ri 

), i∈I), while the numbered system of relations SR (B, (Si ), i∈I) 
is a mathematical object which reflects the properties of the real 
object. For example the set B could be the k-ary Cartesian 
product of the set of the real numbers Rк. 
In the scale definition the correspondence f0: А→ Rк is not simply 
defined. In general sense, there exists entire class of scales 
converting the irreducible empirical system of relations SR (А, 
(Ri), i∈I) into the number system SR (Rк, (Si), i∈I). We denote 
this class of homomorphisms by ℵ(А, Rк). Every homomorphism 
of ℵ(А, Rк) is injective because the empirical system is 
irreducible and surjective with regard to f(A)).  
Let A0 be a subset of А. We denote by GА(A0) all injective 
inclusion (partial endomorphism) from SR (А0, (Ri ), i∈I) in SR 
(А, (Ri ), i∈I). If a scale f0∈ℵ(А, Rк) is given, then we can 
characterize the whole class of scales ℵ(А, Rк)  in the following 
way: ℵ( А, Rк) ={γₒ f0 / where  γ∈GRк(f0(A))}. In other words two 
scales are equivalent with precision up to a partial endomorphism 
γ∈GRк(f0(A)). The elements of GRк(f0(A)) are called admissible 
manipulations of the scale  f0 [19]. An example is the 
measurement of the temperature. If the scale f0(.) is the 
temperature in Celsius, then every partial endomorphism is an 
affine correspondence of the type γ(x)=аx+b, a∈R, b∈R and a>0. 
The temperature in Kelvin is determined by shifting the zero 
point by b, b∈R and by changing the magnitude by multiplying 
by a, a>0. 
From the definition of the measurement and scale it follows that 
there are infinitely many types of scales. In informal terms 
measurement is an operation in which a given state of the 
observed object is mapped to a given denotation. An example is 
the so-called nominal scale which is an expression of the 
equivalence of two phenomena only. Let X be the set of 
alternatives (X⊆Rm). Let x and y be two alternatives ((x,y)∈X2). 
For this weakest scale the following axioms are valid:  
1. ((x≈y ∨ ¬x≈y)≡1) ∧ ((x≈y ∧ ¬x≈y)≡0) ∧ x≈x;  
2. (x≈y ⇒ y≈x); 
3. ((x≈y ∧ x≈z)  ⇒ y≈z).  

Here (≈) denotes equivalence and ¬(≈) is the opposite (non-
equivalence). The above three properties define the relation 
equivalence, which splits the set X into non overlapping subsets 
(classes of equivalence). In this scale only the Kronecker symbol 
may be used as a measure.  
When the observed phenomenon allows to distinguish the 
differences between states and to compare them by preference a 
stronger scale needs to be used – the ordering scale. The 
preference in the ordering scale is denoted by (xy).  In 
accordance with a long-standing tradition, xy is taken to 
represent “x is better than y”. In this scale together with the above 
three axioms two more are satisfied:  

4. ¬(x  x) for ∀ x∈X, ((x  y)  ⇒  ¬(y  x));  

5. (xy ∧ y z)  ⇒ x z.  
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If incomparable alternatives exist, then the scale is called partial 
ordering. Under these five axioms an analytical preferences 
representation by value function u(.) is searched for. A value 
function is a function u(.) for which it is fulfilled ((x, y)∈X2, xy) 
⇔ (u(x)>u(y)) [11]. In this definition, in addition to axioms (4, 
5), weak connectedness is also assumed ¬(x≈ y) ⇒ ((yx) ∨ (x 
y)). Depending on the type of the function – continuous, partially 
continuous or discrete – there exist different types of scales, 
measuring the above relations. A transformation with an arbitrary 
monotonous function leads to another ordinal scale (admissible 
manipulations γ, γ∈GB (f0(A)). When using those scales, apart 
from comparison by magnitude, we can search the minimum and 
maximum of the function as feasible mathematical operations. 
Under this scale it is impossible to talk about distance between 
the different alternatives.  
If together with the ordering of the alternatives, the distance 
between them can be evaluated, we can talk about interval scale. 
For these scales the distances between the alternatives have the 
meaning of real numbers. For these scales the central moments 
and the variance are sensible evaluations and have physical 
meaning, whereas the mathematical expectation depends on the 
origin of the scale and thus is unfeasible. The transition from one 
interval scale to another is achieved with affine transformation 
𝒙𝒙 = 𝒂𝒂𝒂𝒂 + 𝒃𝒃, (𝒙𝒙,𝒚𝒚) ∈ 𝑿𝑿𝟐𝟐,𝒂𝒂 > 𝟎𝟎,𝒃𝒃 ∈ 𝑹𝑹. Among these type of 
scales is also the measurement of the utility function by the so 
called “gambling approach”. We emphasize that the calculations 
are done with numbers related to the distances between the 
alternatives, and not with the numbers relating to the alternatives 
themselves. For instance, if we say that a body is twice as warm 
as another in Celsius, this will not be true if the measurements 
were done in Kelvin. 
A stronger scale is the ratio scale. This is an interval scale with 
fixed origin 𝒙𝒙 = 𝒂𝒂𝒂𝒂, (𝒙𝒙,𝒚𝒚) ∈ 𝑿𝑿𝟐𝟐,𝒂𝒂 > 𝟎𝟎.  For example the weight 
measurement is in the ration scale. For these scales in addition to 
the previous 5 axioms the following additivity axioms are 
satisfied: 
6. (x=y ∧ z>0) ⇒ ((x+z)>y); 
7. x+y=y+x; 
8. (x=y ∧ z=q) ⇒ ( x+z=y+q); 
9. q+(x+y)=(q+y)+x. 

The absolute scale is the most powerful. For it the zero and one 
are absolute and it is a one of a kind and unique scale.  

2.1. Value Function and Measurement Scale 

From practical point of view the empirical system of human 
preferences relations is a SR (X,(≈),()), where (≈) can be 
considered as the relation “indifferent or equivalent”, and () is 
the relation “prefer”. We look for equivalency of the empirical 
system with the numbered system of relations SR (R-real 
numbers, (=), (>)). The “indifference” relation (≈) is based on () 
and is defined by ((x≈y) ⇔ ¬((xy)∨(xy))). Let X be the set of 
alternatives (X⊆Rm). A Value function is a function (u*: X→R) 
for which it is fulfilled [11]: 
((x, y)∈X2,xy)⇔(u*(x)>u*(y)).    
It is proved that for a finite set of alternatives and partial ordering 
(axioms 4, and 5) there always exists such a function with 
precision up to monotonous transformation [7]. In this manner we 
can move from the language of binary relations and preferences 
to the language of control criteria as objective value function. The 
assumption of existence of a value function u(.) leads to the 
“negatively transitive” and “asymmetric” relation (), “weak 
order”. A “strong order” is a “weak order” for which is fulfilled 
(¬(x≈y)⇒((xy) ∨ (xy)).  The existence of a “weak order” () 

over X leads to the existence of a “strong order” over X/≈ [7]. 
Consequently the assumption of existence of a value function u(.) 
leads to the existence of: asymmetry ((xy)⇒ (¬(xy)), axiom 4), 
transitivity ((xy) ∧ (yz ) ⇒ (xz), axiom 5) and transitivity of 
the “indifference” relation (≈) (axiom 3). 
The ordering scale was defined via homomorphisms, monotone 
functions. But if we are looking for the equivalency between SR 
(X, (≈), ()) and SR (R-real numbers, (=), (>)) practically, the 
homomorphisms have to be not only monotonic but continuous as 
well. In this case the ordering in the real numbers R will be 
reflected in the empirical set X with the properties of the interval 
topology generated by the relation (>) in R. Then the term for 
convergence in the measurements coincides with the standard 
generally accepted term for convergence [19]. 

2.2. Utility Function and Measurement Scale 

According to the Utility theory let X be the set of alternatives and 
P is a set of probability distributions over X and X⊆P. A utility 
function u(.) will be any function for which the following is 
fulfilled:  
( pq , (p,q)∈P2 ) ⇔ ( ∫ u(.)dp > ∫ u(.)dq).    
To every decision choice and action corresponds a probability 
distribution of appearance of final alternatives (results). The 
notation () expresses the preferences of DM over P including 
those over X (X⊆P). The interpretation is that the integral of the 
utility function u(.) is a measure concerning the comparison of 
the probability distributions p and q defined over X (figure 1). 

 
Fig.1. Probability distribution and utility function 

There are different systems of mathematical axioms that give 
satisfactory conditions of a utility function existence. The most 
famous of them is the system of Von Neumann and 
Morgenstern’s axioms [7]: 
• (A.1) The preferences relations () and (≈) are transitive, i.e. 

the binary preference relation () is weak order; 
• (A.2) Archimedean Axiom: for all p,q,r∈P such that (pqr), 

there is an α,β∈(0,1) such that ((α p + (1-α)r)q) and (q(βp 
+ (1-β)r));  

• (A.3) Independence Axiom: for all p,q,r∈P and any α∈(0, 1], 
then (pq) if and only if ((α p + (1- α )r)  (α q + (1- α )r)). 

Axioms (A1) and (A3) cannot give solution. Axioms (A1), (A2) 
and (A3) give solution in the interval scale (precision up to an 
affine transformation): 
((pq) ⇔ (∫v(x)dp∫v(x)dq) ⇔ (v(x)= au(x)+b,  
   a, b∈R, a>0, x∈ X)).  
It is known that the assumption of existence of a utility (value) 
function u(.) leads to the “negatively transitive” and 
“asymmetric” relation () and to transitivity of the relation (≈). So 
far we are in the preference scale, the ordering scale. The 
assumption of equivalence with precision up to affine 
transformation has not been included. In other words we have 
only a value function. For value, however, the mathematical 
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expectation is unfeasible, but we underline that the mathematical 
expectation is included in the definition of the utility function. 
For this reason it is accepted that (X⊆P) and that P is a convex 
set: ((q, p)∈P2⇒(αq+(1-α)p)∈P, for ∀α∈[0,1]).  
Then utility u(.) is determined in the interval scale [7]:  
Proposition 1. If ((x∈Χ ∧ p(x)=1)⇒ p∈P) and (((q, p)∈P2) ⇒ 
((αp+(1-α)q)∈P, α∈[0,1])) are realized, then the utility function 
u(.) is defined with precision up to an affine transformation: 
(u1(.)≈u2(.))⇔ (u1(.)=au2(.)+b, a>0).   
Following from this proposition, the measurement of the 
preferences is in the interval scale. That is to say, this is a utility 
function. Now it is obvious why in practice the gambling 
approach is used to construct the utility function in the sense of 
von Neumann. The reason is that to be in the interval scale the set 
of the discrete probability distributions P have to be convex. The 
same holds true in respect of the set X. The utility function is 
evaluated by the “gambling approach”. This approach consists 
within the comparisons between lotteries. A "lottery" is called 
every discrete probability distribution over X. We denote as <x, 
y,α> the simplest lottery: α is the probability of the appearance of 
the alternative x and (1-α) - the probability of the alternative y. In 
the practice, the utility measurement is based on the comparisons 
between lotteries as is shown in figure 2 [11]. 

 
Fig.2. Gambling approach, comparisons of lotteries 

 The weak points of the gambling approach are the violations of 
the transitivity of the preferences and the so called “certainty 
effect” and “probability distortion” identified by the Nobel 
prizeman Kahneman and Tversky. The violations of the 
transitivity of the relation equivalence (≈) also lead to 
declinations in the utility assessment. All these difficulties 
explain the DM behavior observed in the Allais Paradox [2]. 
Following the research of Kahneman and Tversky and the 
debates about the well known Allais paradox, extensions and 
further developments of von Neumann’s theory were sought [4], 
[10], [21]. Among these theories the rank dependent utility 
(RDU) and its derivative cumulative Prospect theory are currently 
the most popular. In the RDU the decision weight of an outcome 
is not just the probability associated with this outcome. It is a 
function of both the probability and the rank the alternative. 
Based on empirical researches several authors have argued that 
the probability weighting function has an inverse S-shaped form, 
which starts on concave and then becomes convex.  

3. Utility And Value Stochastic Approximation 
Evaluation 

Starting from the properties of the preference relation () and 
indifference relation (≈), we propose the next stochastic 
approximation procedure for evaluation of the utility function 
u(.). In correspondence with Proposition 1, it is assumed that (X 
⊆ P), ((q,p)∈P2 ⇒ (αq + (1-α)p)∈P , for ∀α ∈[0,1]) and that 

utility function u(.) exists. We define two sets:  
Au*={(α,x,y,z)/(αu*(x)+(1-α)u*(y))>u*(z)}, 
Bu*={(α,x,y,z)/(αu*(x)+(1-α)u*(y))>u*(z)}, 
where u*(.) is DM’s empirical utility. The next proposition is in 
the foundation of the used stochastic approximation procedures 
[18]: 
Proposition 2. We denote Au={(α,x,y,z)/(αu(x)+(1-
α)u(y))>u(z)}. If Au1=Au2, then u1(.)=au2(.)+b, a>0. 
The approximation of the utility function is constructed by 
recognition of the set Au [15], [18]. The proposed assessment is 
machine learning based on DM’s preferences. The machine 
learning is a probabilistic pattern recognition (Au*∩Bu*≠∅) and 
the utility evaluation is a stochastic programming pattern 
recognition with noise (uncertainty) elimination. Key element in 
this solution is Proposition 2.  
The evaluation procedure is presented as follows. The DM 
compares the "lottery" <x,y,α> with the simple alternative z, z∈Z 
("better-, f(x,y,z,α)=(1)”, "worse-, f(x,y,z,α)=(-1)”, or 
"can’t answer or equivalent- ∼ , f(x,y,z,α)=0”, f(.) denotes the 
qualitative DM answer). This determines a learning point 
((x,y,z,α), f(x,y,z,α)). The following recurrent stochastic 
algorithm constructs the polynomial utility approximation: 
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In the formula are used the following notations (based on Au): 
t=(x,y,z,α), ψi(t)=ψi(x,y,z,α) =αΦi(x)+(1-α)Φi(y)-Φi(z), where 
(Φi(x)) is a family of polynomials. The line above the scalar 
product ))(,( tncv Ψ=  means: ( 1=v ), if (v>1), (

1−=v ) if (v<-1) and ( vv = ) if (-1<v<1). The notation 
),,,()()())())(,( ααα zyxGzgygxgtc nnnnn =−−(1+=Ψ is a 

scalar product. The coefficients cin take part in the polynomial 
presentation ∑

=

Φ=
n

i
ii

nn xcxg
1

)()( . The learning points are set 
with a pseudo random sequence. Practically the assessment 
process is the following. The expert (DM) relates intuitively the 
“learning point” (x,y,z,α)) to the set Au* with probability 
D1(x,y,z,α) or to the set Bu* with probability D2(x,y,z,α). The 
probabilities D1(x,y,z,α) and D2(x,y,z,α) are mathematical 
expectation of f(.) over Au* and Bu* respectively, 
(D1(x,y,z,α)=M(f/x,y,z,α)) if (M(f/x,y,z,α)>0), 
(D2(x,y,z,α)=-M(f/ x,y,z,α)) if (M(f/x,y,z,α)<0).  
Let D'(x,y,z,α) is the random value:  
D'(x,y,z,α)=D1(x,y,z,α) if (M(f/x,y,z,α)>0);  
D'(x,y,z,α)=(-D2(x,y,z,α)) if (M(f/x,y,z,α)<0);  
D'(x,y,z,α)=0 if (M(f/x,y,z,α)=0).  
We approximate D'(x,y,z,α) by a function of the type 
G(x,y,z,α)=(αg(x)+(1-α)g(y)-g(z)), where ∑=

i
ii xcxg )()( Φ . 

The coefficients cin take part in the polynomial approximation of 
G(x,y,z,α): 
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The function Gn(x,y,z,α) is positive over Au* and negative over 
Bu* depending on the degree of approximation of D'(x,y,z,α). The 
function gn(x) is the approximation of the utility function u(.). In 
another notation the stochastic procedure has the following form: 
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We follow the evaluation approach described in the well known 
books [11], [20]. DM compares the "lottery" 
<x,y,α>=(αx+(1−α)y) with the separate elements (alternative) z, 
z∈X. This lottery is of the simplest possible type and is sufficient 
for the utility evaluation. The expressed preferences, the answers 
of DM and comparisons are of cardinal (qualitative) nature and 
contain the inherent DM’s uncertainty and errors. The stochastic 
convergence of the Potential function method (Kernel method) is 
analyzed in [1], [15], [18].  
The same approach is used for of value evaluation. The difference 
is only within the form of the sets Au* and Bu*. Let Au* and Bu* 
be the sets:  
Au*={(x,y)∈R2m/ (u*(x))>u*(y)}, 
Bu*={(x, y)∈R2m/ (u*(x))<u*(y)}.    
If there is a function F(x,y) of the form F(x,y)=f(x)-f(y), positive 
over Au* and negative over Bu*, then the function f(x) is a value 
function, equivalent to the empirical value function u*(.). Such 
approach permits the use of stochastic “pattern recognition” for 
solving the problem. In the deterministic case it is true that 
Au*∩Bu*=∅. In the probabilistic case it is true that Au*∩Bu*≠∅ 
and here have to be used the probabilistic pattern recognition [1, 
12, 18]. 

4. Value Driven Decision Making and Equilibrium 
Analysis in Edgeworth Economic:  
Edgeworth Box and Competitive Trade 

Competitive trade is a setting in which there are prices for two 
goods in question and many people who take these prices as 
given. Hence, the situation is as in the competitive market, except 
for the fact that we now consider two markets simultaneously. A 
useful tool for description the competitive trade is the Edgeworth 
Box. Essentially, it merges the indifference map between the 
parties in the trade by inverting one of the agents (individuals, 
consumers, markets and so on) diagram. Given two consumers O1 
and O2, two goods, and no production, all non-wasteful 
allocations can be drawn in the box shown in figure 3.  

 
Fig.3. Edgeworth Box, initial endowment and allocations 

Every point in the box represents a complete allocation of the two 
goods to the two consumers. Each of the two individuals 
maximizes his utility according to his preferences [11], [6]. The 
demand functions or the utility functions which represent 
consumers’ preferences are convex and continuous, because in 
accordance with the equilibrium theory the preferences in are 
continuous, monotone and convex as is shown in figure 4 [6]. 

 
Fig.4. Convex indifference curves 

Each consumer is characterized by an endowment vector, a 
consumption set, and regular and continuous preferences [6]. The 
two consumers are each endowed (born with) a certain quantity 
of goods. They have locally non-satiated preferences and initial 
endowments:  
(w1, w2) = ((w11, w21), (w12, w22)). 
In the box the vector ),( 21 www =  is the total quantities of the 
two goods: 

2221212111 + = ,+  = wwwwww . 
An allocation x=(x1, x2) = ((x11, x21), (x12, x22)) represents the 
amounts of each good that are allocated to each consumer. A no 
wasteful allocation x=(x1, x2) is one for which is fulfilled: 

2221212111 + = ,+  = xxwxxw . 
In terms of aggregate amounts of the two agents, the total 
amounts needs to be equal to the total endowment of the two 
goods. The consumers take prices of the two goods p = (p1, p2) as 
given and maximize their utilities. The budget (income) set Bi(p) 
of each consumer is given by: 

,)2,1(},/{)(B 2 =≤∈= + iRx iiii pwpxp where (pxi) and (pwi) mean 
scalar products. For every level of prices, consumers will face a 
different budget set. The locus of preferred allocations for every 
level of prices is the consumer’s offer curve. 
An allocation is said to be Pareto efficient, or Pareto optimal, if 
there is no other feasible allocation in the Edgworth economy for 
which both are at least as well off and one is strictly better off. 
The locus of points that are Pareto optimal given preferences and 
endowments is the Pareto set, noted as P in figure 5. The part of 
the Pareto set in which both consumers do at least as well as their 
initial endowments is the Contract curve shown in figure 5 and 
noted as N (kernel of market game). 
 We are interested in the equilibrium point(s) of the process of 
exchange where is fulfilled the Walrasian equilibrium [6]. 
Walrasian equilibrium is a price vector p and an allocation x such 
that, for every consumer the  prices (i.e. the terms of trade) are 
such that what one consumer (group of consumers) wants to buy 
is exactly equal to what the other consumer (group of consumers) 
wants to sell. In other words, consumers’ demands are compatible 
with each other. We note the locus of points that are in Walrasian 
equilibrium as W (two points in figure 5). 

 
Fig.5. Pareto set and contract curve 
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In still other words, the quantity each consumer wants to buy at 
the given market prices is equal to what is available on the 
market. The following inclusion is true in the Edgworth economy 
[6]: 𝑃𝑃 ⊃ 𝑁𝑁 ⊃ 𝑊𝑊. In that sense a contract curve in the Edgeworth 
Box shows an exchange market in equilibrium and this is a 
particular representation of the Walrasian equilibrium theorem.  
We had evaluated the consumer’s preferences as value functions. 
In figure 6 are shown the indifference curves, calculations of the 
Pareto set P and the determination of the contract curve N.  

 
Fig.6. Real experiment-Pareto set and contract curve 

The indifference curves in figure 6 are determined based on 
values functions evaluated by direct comparisons of couples of 
allocations x=(x1, x2) = ((x11, x21), (x12, x22)). This is made through 
the discussed in the paper approach and algorithms for exact 
value function evaluation (Au*∩Bu*=∅) [18]. After that we made 
quadratic approximation of the constructed value function. The 
little divergence from the theoretical convex requirements is due 
to the finite number of learning points and to the uncertainty in 
the expressed consumer’s preferences. In the experiment for 
determination of the set Au* and Bu*we used a finite number of 
preferences expressed for couples of allocations (x=(x1, x2), 
y=(y1, y2)): 
Au*={(x,y)∈R2m/ (u*(x))>u*(y)}, 
Bu*={(x, y)∈R2m/ (u*(x))<u*(y)}.  
The indifference curves could be determined by utility function 
evaluation also. The discussed previously in the paper stochastic 
procedures could be used for this purpose. In this case the 
learning points have to be defined as lotteries with Edgworth box 
allocations and consumers preferences in reference to learning 
triples of allocations. The described methodology and procedures 
allow for the design of individually oriented information systems 
[9]. Our experience is that the human estimation contains 
uncertainty at the rate of [10, 30] %. Such systems allow for exact 
evaluation of the Pareto set P, a reasonable determination of the 
contract curve N and calculation of the Walrasian set W and may 
be autonomous or parts of larger decision support system [5, 6, 
9]. The demands functions could be evaluated by direct 
comparisons or by the gambling approach. In that manner the 
incomplete information is compensated with the participation of 
qualitative human estimations. 
In that manner we can state and solve the market-clearing 
equilibrium in principle and we can determine the contract curve 
and the Walrasian set in the Edgeworth box. The set of the 
Walrasian equilibriums W and the appropriate prices p = (p1, p2) 
are calculated based on the determined demand utility (value) 
functions and this is a meaningful prognosis of the market 
equilibrium. In that way can be forecast the competitive market 
equilibrium allocations x=(x1, x2) = ((x11, x21), (x12, x22)) and the 
appropriate prices p = (p1, p2). The contract curves are specified 
on the individual consumers’ preferences and show that there are 
possibilities to be made mutually advantageous trades. This 

means that one could unilaterally negotiate a better arrangement 
for everyone. 

5. Utility Evaluation of The Best Growth Rate and 
Control Design 

The complexity of the biotechnological systems and their 
singularities make them difficult objects for control. They are 
difficult to control because it is difficult to determine their 
optimal technological parameters [14], [17]. These parameters 
can depend on very complicated technological, ecological or 
economical market factors. Because of this in practice expert 
estimates are used. From outside the estimates are expressed by 
qualitative preferences of the technologist. The preferences 
themselves are in rank scale and bring the internal 
indetermination, the uncertainty of the qualitative expression. Our 
experience is that the human estimation of the process parameters 
of a cultivation process contains uncertainty at the rate of [10, 30] 
%. Because of this reason mathematical methods and models 
from the Utility theory and stochastic programming could be used 
in biotechnology. These stochastic methods, because of their 
essence, eliminate the uncertainty and could neutralize the wrong 
answers if one uses the gambling evaluation approach. Thus we 
achieve analytical math description of the complex system 
“Technologist-biotechnological process“. 
The approach used in the paper permits exact mathematical 
evaluation of the optimal specific growth rate of the fed-batch 
cultivation process according to the DM point of view. Let Z be 
the set of alternatives (Z={specific growth rates of the 
biotechnological process-µ}, Z≡[0, 0.6]) and P be a convex 
subset of discrete probability distributions over Z. The expert 
“preference” relation over P is expressed through () and this is 
also true for those over Z (Z ⊆ P). The utility growth-rate 
function U(.) is stochastically approximated by a polynomial 
[18].  

∑
=

=
n

i
μcμU

1

i
i)(  

This polynomial representation permits analytical determination 
of the derivative of the utility function and easy implementation 
in the optimal control theory [16]-[18]. Following the approach 
we are looking for pattern recognition of the sets of positive 
preferences Au* and negative preferences Bu*: 
 Au* = {(x,y,z,α)/ (αu*(x)+(1−α)u*(y))>u*(z)}, 
Bu* = {(x,y,z,α)/ (αu*(x)+(1−α)u*(y))<u*(z)}. 
The star in the notations means an empirical estimate of the 
utility of the technologist. The utility function U(µ) itself is built 
as a recurrent procedure for the recognition of the set Au*. The 
DM compares “lotteries” (αx+(1−α)y, x,y∈Z, α∈[0,1]) with 
simple alternatives z∈Z and the answer is determined from him 
(“ better”, “worse” or “indifference, equivalency or impossibility 
for explicit delimitation”). The Biotechnologist (DM) determines 
his answer (for every comparison):  f(x,y,z,α )=1 for (),  
f(x,y,z,α)=-1 for () and f(x,y,z,α)=0 for (≈). The function 
f(x,y,z,α) is a probability function, subjective characteristic of the 
DM depicturing intuition and empirical knowledge and also 
including subjective and probability uncertainty of the answers. 
In the recurrent  procedure “the training point“ (x,y,z,α, f(x,y,z,α)) 
is treated as point from the set Au with probability D1(x,y,z,α) or a 
point from  Bu with probability  D2(x,y,z,α)). We suppose that 
(x,y,z,α) are given by probability distribution F(x,y,z,α). In fact 
this is a pseudo-random Lpτ  sequence of Sobol. Then 
probabilities D1(x,y,z,α) and D2(x,y,z,α) are the conditional 
mathematical expectations of f(.) over the sets Au and Bu , 
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respectively. With D'(x,y,z,α) we denote the conditional random 
value: 
                                     =  D1(x,y,z,α), when M(f/x,y,z,α)>0, 
                   D'(x,y,z,α) = -D2(x,y,z,α), when M(f/x,y,z,α)<0, 
                                     =  0,                  when M(f/x,y,z,α)=0. 
The measurable function D'(x,y,z,α) is approximated by function 
of the type G(x,y,z,α)=(αg(x)+(1−α)g(y)-g(z)). The function g(x) 
is an approximation of the utility U(.). The coefficients cin take 
part in: 

∑
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The function Gn(x,y,z,α) is positive over Au and negative over Bu 
depending on the degree of approximation of D'(x,y,z,α). In fact 
total recognition is impossible, because of the wrong preferences 
of the technologist caused by the uncertainty within his 
preferences (Au*∩Bu*≠∅). The process of the recognition of the 
sets Au* и Bu* is shown on the figure (7). The polynomial 
approximation of the DM utility U(µ) is the smooth line in figure 
(7). The maximum of the utility function determines the „best” 
growth rate of the fed-batch process after the technologist. A 
session with 128 questions learning points (x,y,z,α, f(x,y,z,α)) 
takes no more than 45 minutes.  
The Value based control design is determined by the solution of 
the next optimal control problem: max(U(µ)), where the variable 
µ is the specific growth rate, (µ∈[0, µmax], D∈[0, Dmax]). 

 
Fig.7. Growth rate utility 

 
Fig.8. Stabilization of the fed-batch process 

Here U(µ) is an aggregation objective function (the utility 
function) and D is the control input (the dilution rate):  
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The differential equation describes a continuous biotechnological 
process. The Monod-Wang model permits exact linearization to 
Brunovsky normal form following the procedures in papers [16], 
[17]. The optimal solution is determined with the use of the 
equivalent Brunovsky normal form of the differential equation 
above: 
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In the formula, W denotes the control input of the Brunovsky 
model. The two differential equations above are equivalent as 
objects for control. The vector (Y1, Y2, Y3) is the new state 
vector: 
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The derivative of the function Y3 determines the interconnection 
between W and D, the inputs of the equivalent models. The 
control design is a design based on the Brunovsky normal form 
and the application of the Pontrjagin’s maximum principle step 
by step for sufficiently small time periods T. The optimal control 
law has the analytical form [16], [17]: 
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The sum is the derivative of the utility function. It is clear that the 
optimal “time-minimization” control is determined from the sign 
of the utility function derivative. The control input is D=Dmax or 
D = 0. The solution is in fact a “time-minimization” control (if 
the time period Tint is sufficiently small). The control brings the 
system back to the set point for minimal time in any case of 
specific growth rate deviations. 
The control law of the fed-batch process has the same form 
because D(t) is replaced with F(t)/V(t) in Monod-Wang model 
[16], [17]: 
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Thus, the feeding rate F(t) takes F(t)=Fmax or F(t)=0, depending 
on D(t) which takes D=Dmax or D=0. We conclude that the 
control law brings the system to the set point (optimal growth 
rate) with time minimization control, starting from any deviation 
of the specific growth rate as is shown in figure 8. We use this 
control law as a main part in a more complex chattering control 
law for stabilization of the system in the “best” growth rate [14], 
[16]-[18]. The deviation of the fed-batch process with this 
chattering control is shown on figure (8). After the stabilization 
of the system in equivalent sliding mode control position the 
system can be maintained around the optimal parameters with 
sliding mode control.  
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6. Conclusions 
Human values (utilities) are integral part of the decision making 
process of the individual. They are the internal motivation for 
determining the main objective in the goal-oriented systems. 
Unfortunately, in most scientific investigations and 
developments, the subjective values and probabilistic 
expectations are not explicitly related and directly oriented 
towards the considered problem. In this aspect, especially 
important is the task of connecting the two contradicting 
tendencies: the requirement of ordinal information from 
mathematical and computational point of view and the cardinal 
nature of the empirical knowledge. 
One of the possible scientific approaches in regards to these 
problems is that of multiattribute utility. In this manner in 
difficult for formalization and even verbally expressed weakly 
structurized problems and complex events we introduce the strict 
analytical approach, as analysis and analytically based synthesis, 
which allows for logically sound and mathematically precise 
decision formation. We achieve analytic model description of 
complex process with human participation. Such models ensure 
exact mathematical descriptions of problems in various areas for 
which the quantitative modeling is difficult: economics, 
biotechnology, ecology, and so on. These models guarantee that 
the powerful optimal control theory could be applied for exact 
mathematical solutions in such complex areas.  
By the Edgworth box and the growth rate control examples we 
saw that the utility approach permits exact mathematical 
evaluation according to the consumers’ point of view even 
though the human thinking is qualitative and pierced by 
uncertainty. Measurement, Expected utility theory and stochastic 
programming are some of the approaches for attainment of these 
purposes. These examples show that the presented methodology 
and mathematical procedures allow for the design of individually 
oriented decision support systems. Such systems may be 
autonomous or parts of larger intelligent information or decision 
support systems and can permit reasonable optimal solutions and 
prognoses. 
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