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Abstract: Existing computational models of visual attention generally employ simple image features such as color, intensity or 
orientation to generate a saliency map which highlights the image parts that attract human attention. Interestingly, most of these models 
do not process any depth information and operate only on standard two-dimensional RGB images. On the other hand, depth processing 
through stereo vision is a key characteristics of the human visual system. In line with this observation, in this study, we propose to extend 
two state-of-the-art static saliency models that depend on region covariances to process additional depth information available in RGB-D 
images. We evaluate our proposed models on NUS-3D benchmark dataset by taking into account different evaluation metrics. Our results 
reveal that using the additional depth information improves the saliency prediction in a statistically significant manner, giving more 
accurate saliency maps.  
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1. Introduction

Amount of visual information captured through the eyes is so vast 
that the brain develops certain mechanisms to process them. 
Visual attention, as an umbrella term, denotes these mechanisms 
which are responsible from selecting the most relevant parts of 
the visual data while discarding the rest. This selection procedure 
is carried out by fixating the eyes to certain locations of the visual 
data. Visual attention is an umbrella term since it has been shown 
that it includes both bottom-up and top-down mechanisms. 
Bottom-up attention is mostly involuntary and processes in a 
purely data-driven manner. In short, it is in charge of extracting 
the image parts which have very different characteristics than 
their surroundings in terms of different visual features. On the 
other hand, top-down attention is task-specific and processes the 
data in a goal-dependent manner, and thus semantic and top-
down knowledge play a key role in top-down attention. 
In computer vision literature, researchers have developed several 
computational approaches for visual attention to predict where 
human look at images [4,5,8,10-12,14,18,20,24,28,29,32] (see 
Figure 1). Most of these visual attention models follow the same 
bottom-up architecture. By processing the raw visual data, they 
first extract certain visual features such as intensity, color and 
orientation, and then compute individual saliency maps for each 
one of these features. As the last step, they combine these 
individual maps (after applying certain normalization strategies) 
to output a final saliency map whose maxima indicate the image 
locations that attract human attention. For a detailed review of 
these models, the reader can refer to [2]. It is important to note 
that the recent trend in saliency prediction is to use deep learning, 
but to perform an end-to-end learning they need very large image 
datasets with eye fixation data (e.g., [21,26]). 
Although, in recent years, we have witnessed a huge increase in 
the number of visual saliency models, most of these models 
operate on RGB images and do not use any depth information. 

On the other hand, the human visual system has a stereo vision 
capability which enables to capture and process the depth 
information. In that respect, it can be argued that these attention 
models do not fully mimic the human visual system. Motivated 
with this observation and the recent advances in the 3D-capable 
acquisition equipments such as RealSense and Microsoft Kinect, 
some researchers have developed a number of depth-aware visual 
saliency models [3,16,17,19,22,23,25,27,31]. 
In this paper, we propose two new visual saliency models that 
additionally process depth information and operate on RGB-D 
images. A RGB-D image is an image which consists of four 
channels with the first three channels forming a standard RGB 
image, and the last channel denoting a depth channel aligned with 
the RGB component. In particular, we extend the previously 
suggested CovSal image saliency models [8] to operate on RGB-
D images. These models originally operate on RGB images and 
predict saliency by estimating the center-surround differences 
based on first and second order feature statistics. In our work, we 
employ these models to estimate two different saliency maps, one 
from the RGB image and the second from the depth image. We 
then combine these RGB and depth saliency maps and output a 
single saliency map for a RGB-D image. As the second 
contribution of the paper, we evaluate the effect of using depth 
information through these models in saliency prediction on the 
NUS-3D benchmark dataset [22] by using several different 
evaluation metrics. Our results demonstrate that using depth 
information in saliency estimation improves the prediction 
accuracy. 
The paper organization is as follows: In Section 2, we provide a 
brief overview of the existing depth-aware saliency models. In 
Section 3, we review the CovSal models and present the proposed 
extensions to these models to process depth information through 
RGB-D images. In Section 4, we evaluate the proposed models 
and present our qualitative and quantitative results. Finally, in 
Section 5, we provide a summary and discuss our findings. 
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Figure 1. A sample image and the corresponding eye fixation data 
collected from the human subjects, representing where they look at the 
image (taken from [4]). The raw image is given at the top, and the same 

image with the superimposed fixations is given at the bottom. 

2. Related Work

As mentioned in the introduction, most of the computational 
models of visual attention focus on 2D images which are 
generally represented as RGB images. Although these models 
have attracted much attention lately, predicting depth-aware 
saliency has received relatively little attention. There is a limited 
number of saliency models which process the depth information 
in a 3D environment [3,16,17,19,22,23,25,27,31]. These existing 
depth-aware models can be categorized into three groups in terms 
of how they employ the depth information in saliency prediction 
[15,31].    
The first group of models, which are referred to as stereovision 
models, work directly on stereo images (i.e. left and right views 
of a scene), and use the binocular cues extracted from them as the 
additional features in saliency prediction without explicitly 
estimating the depth information [3,17]. For instance, Bruce and 
Tsotsos proposed such a saliency model in [3] by extending their 
2D saliency model to include these kind of stereo image features. 
Iatsun et al. followed a similar approach in [17] and suggested to 
use binocular depth features in saliency estimation.  
Compared to the first group, the second line of models, which are 
known as depth-weighting models, assume that a depth map is 
explicitly computed and available, and use these depth maps as a 
weighting factor for the saliency prediction [22,33]. Specifically, 
motivated by the observation that the observers in general attract 
to the regions that are closer to themselves and not the regions far 
away, these models compute a 2D saliency map from the input 
RGB image and then perform a point-wise multiplication of this 
saliency map and the given or the estimated depth map. An 
example model within this group is the saliency model proposed 
by Lang et al. in [22]. They learn a depth prior from a set of 
training images and employ it as the weighting factor for a 2D 
saliency model.   

The last group of models, which are called depth-saliency 
models, either employ the explicitly provided depth image as an 
additional feature channel within a saliency model [15,16,19,23, 
25], or extract a saliency map from the depth image alone which 
is then combined with the saliency map predicted from the RGB 
image [17, 31].    
Our proposed approach is an example of the latter group of 
depth-saliency models. For a given RGB-D image, we extract 
both a traditional saliency map from the RGB channels and a 
depth saliency map from the aligned depth image. We then 
linearly combine these maps to generate the final saliency map. 
Our models employ the CovSal image saliency models [8] while 
extracting both of these saliency models, and thus they can be 
regarded as extensions of these previously proposed models 
which additionally consider the available depth information. 

3. Proposed Approach

Our depth-aware saliency models depend on the CovSal saliency 
models [8]. Hence, in this section, we first review the 
computational details of the CovSal saliency models. Next, we 
discuss the proposed extension of these models to process extra 
depth information. 

3.1. CovSal Saliency Model. 

CovSal saliency models proposed by Erdem and Erdem in [8] are 
based on region covariances [30]. Motivated by the observation 
that region covariances encode local geometry (structure or 
texture) of an image region, the models define the center-
surround differences, which are key for saliency estimation, in 
terms of the second order feature statistics given by the region 
covariance representation.  

In particular, let  denote a 2D color image given as the input, and 

( , ) = ( , ) ( , ) ( , )     
( , ) ( , )

(1) 
represent the seven dimensional feature vector extracted at the 
image pixel at the pixel location (x, y). Here, (L, a, b) denotes the 
color information represented in CIE La*b* color space, and 

( , )/  and ( , )/  respectively represent the first order 
derivates of the intensity in horizontal and vertical dimension. 
Then, an image region of n by n pixels defined over the image I 
can be represented by the corresponding feature statistics ( , ) 
where  denotes the mean feature vector and  

= ∑ ( )( ) (2) 

is the corresponding covariance matrix with  i=1…7 being the 7 
dimensional feature vector given in Equation (1).  

The CovSal saliency models employ these first and second order 
feature statistics to estimate the saliency value of a given image 
region  centered at the pixel location  by using the following 
equation: 

( ) = (1 ‖ ‖/ ) Σ …  (1/ ) ( , )    (3)

In Equation (3), the first term (1 ‖ ‖/ ) is the weighting 
factor introduced for the center bias and lets the regions close to 
the image center   have higher saliency values than the others. 
Here, = ∗∈ ‖ ∗ ‖ is used as a normalization factor.  
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Figure 2. The proposed framework for depth-aware visual saliency estimation (see text for a detailed description). 

The distances ( , ) in the second term measure the 
dissimilarity of the image regions  and   in terms of how 
different the corresponding feature statistics are, and correspond 
to the center-surround distances which are averaged over the m 
most similar image regions to .  
Erdem and Erdem proposed two different saliency models by 
considering two different distance definitions, one depends only 
on second order feature statistics. i.e. region covariances, (CovSal 
Model 1) and the second one depends on both first and second 
order feature statistics (CovSal Model 2). 
In CovSal Model 1, the distances are estimated by considering 
the metric  ,   proposed by [9] which is used to compare 
two covariance matrices  and  representing the second order 
feature statistics collected from  and  , respectively: 

, =   ,   /  1  (4) 

In CovSal Model 2, on the other hand, the distances are computed 
by considering the Sigma Points [13] representation ( , ) 
which is formed by transforming the covariance matrices on 
Euclidean vector space using the Cholesky decomposition and 
enriching it with the mean of the feature vectors :  

, =  ( , ) ,  / 1  (5) 

In both of the models, the distances are weighted by the inverse 
spatial distance between the regions, decreasing the influence of 
visually similar nearby regions.  

In [8], five different saliency maps are extracted by changing the 
value of the scale parameter n, i.e., by varying the size of the 
regions where the statistics are collected. Then, a final multi-scale 
saliency map is computed by the pixelwise product of these 
individual single scale maps which are resized to the original 
image size. Finally, a Gaussian smoothing is applied to the 
estimated saliency maps.  

3.2. Proposed Extension for Additional Depth Processing 

In our study, we extend the CovSal models reviewed in the 
previous section to employ additional depth information available 
in RGB-D images. Since we process a RGB-D image, we assume 
that monocular depth cues have been extracted previously from 
the raw stereoscopic disparity information. Throughout the paper, 
we refer to these extensions as “Model1 + depth” or “Model2 + 

depth” according to their base saliency models. One of the key 
aims of this study is also compare and contrast the effectiveness 
of the CovSal saliency models with and without the extra depth 
information. 
Figure 2 demonstrates the system architecture of the proposed 
depth-aware saliency models. Our models take a RGB-D image 
as an input, and produce a single saliency map extracted by 
considering the additional depth information. In our formulation, 
we first decompose this image into two as an RGB image and a 
depth image. While the RGB component have the information 
regarding the appearance of the scene, the depth component 
includes the depth information aligned with the appearance image 
as its name implies. In particular, we process each one of these 
components independently of the other by using the procedure 
discussed in the previous section, and then combine the extracted 
saliency maps for the final output. 
The first step in our two stream framework includes extracting 
the visual features introduced in Equation (1) from the RGB and 
depth input images. Since these inputs capture different 
characteristics about the scene, the extracted features have 
different but complementary roles in saliency prediction. In the 
next step, these feature maps are used to collect first and second 
order region statistics which are then employed to extract single 
scale saliency maps. For a pixel, these single scale saliency maps 
point out how much the pixel is dissimilar to its surroundings in 
terms of appearance (for RGB stream) and depth (for depth 
stream). Then, these single scale saliency maps are combined by 
a pixel-wise multiplication operation to obtain two multi-scale 
saliency maps, one for 2D saliency  and the other for depth 
saliency .  
Once these multi-scale saliency maps are extracted, as our final 
step, we integrate these maps into a final saliency maps by 
employing the following linear combination operation: 

= (1 )  (6) 

where the parameter  denotes how much the final map depends 
on the extracted 2D and depth saliency maps. In our experiments, 
we found that setting = 0.15 gives accurate predictions. 

4. Experiments

Performance of a saliency model is generally evaluated by 
comparing the resulting saliency map against the recorded eye 
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fixation data of human subjects collected for the given input 
image. In our study, we follow a similar strategy and test the 
performance of our models and the effect of including the depth 
information on the NUS-3D benchmark dataset [22]. In the 
following, we first describe this benchmark dataset and then 
review the metrics that are commonly used while evaluating the 
prediction of the human eye movements. After that, we analyze 
the outcome of our models on the NUS-3D dataset and present 
our qualitative and quantitative results.  

4.1. Dataset 

The NUS-3D dataset [22] is one of widely used datasets for 
depth-aware saliency estimation in the literature. It includes 600 
indoor and outdoor natural RGB and aligned depth images, each 
captured around the National University of Singapore (NUS) 
campus via Microsoft Kinect and each having a resolution of 640 
by 480 pixels. The eye fixation data were collected from 80 
participants by following two different settings in free-viewing 
conditions. In the first setting, each participant views 100 3D 
images randomly selected from the set of 600 images on a 3D 
display by using active shutter glasses. In the second setting, each 
participant this time views another randomly selected 100 images 
in 2D display mode with the active shutter display switched off. 
Hence, the 2D and 3D eye fixation data are available for each 
image. Moreover, the researchers provide the raw and the 
smoothed depth maps extracted by the Microsoft Kinect sensor. 
In our experiments, we use the smoothed depth maps and carry 
out our experiments by employing both 2D and 3D ground truth 
fixation data. 

4.2. Evaluation Metrics 

For performance evaluation, we use four different metrics which 
are commonly used in saliency prediction. These are area under 
the ROC curve (AUC) and its shuffled version (sAUC), Pearson's 
correlation coefficient (CC), and the Kullback–Leibler divergence 
(KL-div). For all these evaluation metrics, we use the codes that 
are available online on the MIT Saliency Benchmark webpage 
(http://saliency.mit.edu) [6]. We report the mean values of these 
metrics averaged over all the images in the NUS-3D data set. 
These metrics compare the generated saliency map with the 
provided groundtruth fixation density maps and return real scalar 
values.    
AUC and sAUC metrics treat the saliency estimation as a 
classification problem with th e aim of classifying pixels as 
fixated or not-fixated. This is achieved by thresholding the given 
saliency map at specific saliency values, and by labeling the 
pixels above the threshold as fixated, and the remaining ones as 
not-fixated. Accordingly, for each threshold value, a true positive 
rate and a false positive rate are estimated by comparing the 
results with the ground truth eye fixation data. Then, the area 
under the corresponding receiver operator characteristics is the 
used as a value reflecting the classification performance of a 
saliency model. While the ideal AUC score is 1, the performance 
of random classification is around 0.5. Since, AUC might suffer 
from the tendency of humans to focus on the center location of an 
image, we also report sAUC scores which accounts for this center 
bias by collecting the negative samples not from the given image, 
but from the fixation points of randomly selected other images 
[32].     
CC metric considers any saliency map of a given image and the 
corresponding ground truth fixation density map as two random 
variables and measures the strength of the linear association 
between them as a measure of similarity. A CC score of 1 
indicates a perfect correlation, i.e. the saliency map is identical to 

the ground truth map. On the other hand, a score of 0 denotes that 
the generated saliency map and the ground truth are completely 
uncorrelated.    
KL-Div metric is another distribution-based metric, which treats 
the generated saliency map and the ground truth fixation map as 
probability distributions, and measures the dissimilarity between 
these distributions. Hence, a KL-div value of 0 states that he 
generated saliency map and the ground truth fixation map are 
statistically the same, and the larger values of KL-Div indicate 
that they are significantly different from each other. 
 Results 
We analyze the effectiveness of the proposed depth-aware 
saliency models on the NUS-3D dataset, which includes ground 
truth eye fixation data for both 2D and 3D images. Table 1 and 
Table 2 present the results of this quantitative analysis where we 
compared the generated saliency maps against the provided 
human fixation density maps. They show the evaluation scores of 
the generated saliency models, with and without depth 
information, along with another recently proposed depth-aware 
saliency model proposed by Hu et al. [15]. In particular, in Table 
1, we use the 2D fixations collected by considering 2D viewing 
conditions, and in Table 2 we employ the 3D fixations data while 
evaluating the models. As mentioned above, the difference 
between these collected data lies in whether the active shutter 
glasses are switched off or on when participants explore a given 
image. While they are switched on, they view a 3D image and 
directly perceive the depth. On the hand, in the second case when 
they are switched off, they observe traditional 2D images.   
As can be seen from Table 1 and Table 2, for both the 2D and 3D 
viewing settings employing additional depth information to 
predict saliency of an image in general improves the scores of all 
of the evaluation metrics except AUC. For the AUC metric, we 
observe a very slight decrease in the performance for the saliency 
models with depth information. As discussed in the previous 
section, AUC is a highly criticized evaluation metric for saliency 
for its inability to deal with the center bias [7], and we only report 
it due to its historical importance. For the CC and KL-div 
metrics, our first model which is the extension of the first CovSal 
model that considers only second order feature statistics gives 
better than our second model which additionally considers the 
first order statistics. On the other hand, for the sAUC metric, the 
relation is the opposite that our second model gives the better 
results. This clearly demonstrates the complementary nature of 
these evaluation metrics [7].     
Moreover, the improvements obtained by the saliency models 
with the additional depth information can be regarded as 
relatively small, we also perform some statistical tests to 
determine whether the results with and without the additional 
depth information change in a statistically significant manner or 
not. For this, for each evaluation metric we carry out a two-tailed, 
paired Student t-test with a significance level of =0.05 by 
employing the Benjamini-Hochberg correction [1] which is for 
multiple comparisons. For all the metrics, we report the adjusted 
p-values obtained by these tests in Table 1 and Table 2. It is
important to note that the scores of the evaluation metrics with
and without the additional depth information differ in a
statistically significant manner. Only exception is the AUC
metric that it does not pass the test for our first model when the
3D viewing condition is used. In our experiments, we also
compare our results with that of the depth-aware proto-object
based saliency model proposed by Hu et al. [15] As the results
given in Table 1 and Table 2 indicate, the proposed saliency
models gives more accurate predictions in terms of AUC and CC.
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In Figure 3, we present sample images from the NUS-3D dataset 
(2D color and depth images) along with the ground truth fixation 
density maps and the saliency maps with and without the depth 
information generated by our first model. For the provided 
images, it is clearly visible that combining the standard 2D 
saliency maps with the generated depth saliency maps produces 
perceptually better maps against the ground truth fixations. For 
instance, in the first row, adding the depth saliency makes the 
tennis ball on the left visually more salient as compared to the 
original saliency map without depth information.  

5. Conclusion

In this paper, we propose two new visual saliency models which 
employ additional depth information to predict where humans 
look at images. Our depth-aware models depend on the 

previously suggested CovSal models [8] which consider first and 
second order feature statistics to estimate the saliency. 
Specifically, we extend these models to process RGB-D images 
by extracting and combining 2D image saliency and depth 
saliency maps from color and depth images, respectively. Our 
analysis on the NUS-3D dataset with both 2D and 3D fixations 
indicate that including the depth information into these models 
gives more accurate saliency maps as compared to the saliency 
maps produced by the models that lack the depth information. 
These results point out that any saliency model can benefit from 
monocular depth cues, agreeing with the previous findings 
reported in [15,27]. As a final remark, it is important to note that 
how to integrate depth information into saliency prediction is an 
open problem that needs further work. 

Table 1. Quantitative analysis of the proposed depth-aware saliency model on the NUS-3D datasets by considering the 2D fixations data.  
Employing depth information in general improves the accuracy of the saliency predictions in a statistically significant way  

(verified by a paired t-test with a significance level of =0.05 and with Benjamini-Hochberg correction). 

Evaluation metrics 

Saliency Model AUC sAUC CC KL-Div 

Model1 0.8267 0.6308 0.4249 1.4992 

Model1 + depth 0.8260 0.6341 0.4280 1.4789 

p-value 4.27 10-2 7.73 10-24 2.07 10-5 1.54 10-14 

Model2 0.8039 0.6566 0.3958 1.5065 

Model2 + depth 0.8023 0.6586 0.3924 1.5136 

p-value 1.98 10-92 1.76 10-32 3.14 10-31 3.85 10-30 

Hu et al., 2016 0.7740 - 0.3590 1.485 

Table 2. Quantitative analysis of the proposed depth-aware saliency model on the NUS-3D datasets by considering the 3D fixations data.  
Employing depth information in general improves the accuracy of the saliency predictions in a statistically significant way 

(verified by a paired t-test with a significance level of =0.05 and with Benjamini-Hochberg correction). 

Evaluation metrics 

Saliency Model AUC sAUC CC KL-Div 

Model1 0.8286 0.6361 0.4019 1.5481 

Model1 + depth 0.8283 0.6398 0.4045 1.5249 

p-value 0.3630 5.78 10-25 1.89 10-4 5.55 10-17 

Model2 0.8044 0.6595 0.3664 1.5776 

Model2 + depth 0.8029 0.6615 0.3629 1.5853 

p-value 2.42 10-99 3.43 10-33 2.74 10-29 1.90 10-31 

Hu et al., 2016 0.7770 - 0.3470 1.559 
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Color image Depth image Fixations 2D saliency map 3D saliency map 

Figure 3. Sample qualitative results. Columns (left to right) show the color image along with the corresponding depth image, the ground truth fixations, 

and the generated 2D saliency map (without extra depth information) and the 3D saliency map (with extra depth information). 
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