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Abstract: In the field of cybersecurity, machine learning-powered threat detection has become a key defence mechanism. This technology 

offers a ray of hope in an age where digital landscapes are rife with hazards that are constantly developing. This article explores the nuances 

of using machine learning algorithms to reduce cybersecurity risks.A proactive strategy to security is required given the exponential 

expansion of data in cyberspace and the sophistication of cyberattacks. Organisations may use machine learning to quickly spot 

abnormalities and potential dangers because to its capacity to analyse huge datasets and spot trends. It enables threat detection automation, 

cutting down on response times and lowering the danger of data breaches.Threat detection enabled by machine learning is not without its 

difficulties, though. This essay examines topics like model robustness, data quality, and the adversarial nature of online attacks. In the 

context of cybersecurity, it also covers ethical issues and the demand for open and accountable AI systems.This study highlights the 

enormous potential of machine learning in strengthening cybersecurity defences through a thorough analysis of recent research and real-

world applications. It emphasises the value of a coordinated strategy in which the capabilities of machine learning are supplemented by 

human expertise. Utilising the power of machine learning is crucial for organisations looking to protect their digital assets and data as the 

cyber threat landscape continues to change. 
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1. Introduction 

These sobering findings highlight the critical need for 

organisations to create and put in place comprehensive 

cybersecurity plans in order to reduce further losses.It is 

an issue of national security for all organisations to protect 

themselves from cyber threats. Governments, people with 

access to sensitive information, software, and high-

security technologies, as well as companies that give their 

employees access and equip them with the skills to 

quickly and efficiently identify cyber threats, all play 

critical roles in enhancing the security of the country. In 

order to safeguard crucial systems from the rising stream 

of cyber-attacks, the first and most pressing requirement 

is the intelligent identification and strong defence against 

a variety of cyber occurrences, whether known or 

previously unforeseen. In order to defend our digital 

environment against the escalating threat of cyber threats, 

governments, individuals, and corporations must work 

together. 

The security of our digital ecosystem has grown to be of 

utmost importance in an age characterised by the 

ubiquitous influence of information technology. 

Technology has grown at an unparalleled rate over the last 

few decades, providing limitless opportunities but also 

exposing us to a wide range of cyber threats. These 

dangers, which include intrusive zero-day exploits, 

sophisticated malware campaigns, and denial-of-service 

attacks, have multiplied at an alarming rate. The effects 

are not just virtual; they also have a real-world impact and 

result in substantial financial losses for both people and 

businesses.Consider the startling increase in the quantity 

of malware executable over the past ten years as a sign of 

the seriousness of the matter.  

This study launches a thorough investigation into the field 

of machine learning-based threat identification. We 

explore the subtleties of using machine learning 

algorithms to lessen the significant risks provided by the 
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dynamic landscape of cyber threats. We travel through the 

complex web of cybersecurity difficulties, from data 

quality and model robustness to the adversarial nature of 

cyber threats and the ethical elements of AI in security. 

We highlight the enormous potential of machine learning 

as a cornerstone of contemporary cybersecurity methods 

through a combination of modern research and useful 

implementations.As we explore this area, it becomes clear 

that protecting our digital future is a shared obligation. 

Our top priority right now is to defend vital systems 

against the never-ending barrage of cyberattacks by 

intelligently identifying and protecting against a wide 

range of cyber events, whether known or unknown in 

advance. We work together to create a more robust and 

secure digital environment for the future while also 

addressing the current cybersecurity concerns. 

2. Review of Literature 

Over the past ten years, the Information and 

Communication Technology (ICT) infrastructure has 

experienced a fundamental change that has made it a 

crucial component of our contemporary way of life. 

Security policymakers have taken notice of this 

widespread integration because it highlights how crucial 

it is to protect ICT systems and applications from the 

growing threat of cyberattacks [20]. At its foundation, 

cybersecurity spreads a protective arc over many ICT 

landscape facets. It protects the ICT infrastructure from 

potential flaws and weaknesses that online attacks could 

take advantage of. In addition, it protects the priceless 

information and raw data stored within these systems, 

acknowledging their role as major targets for online 

attackers. Additionally, it covers the full data lifecycle, 

including creation, processing, and transmission, 

guaranteeing that the data is secure during the entire 

process.Cybersecurity takes place in a space where the 

virtual and the real coexist. It acknowledges that ICT 

systems have practical, real-world ramifications and are 

not just limited to the digital sphere. This understanding 

results in the protection of both the tangible parts of ICT 

infrastructure and the ethereal realm of data. 

The effectiveness of cybersecurity measures becomes a 

top priority as we work to protect ourselves from an 

endless stream of attacks. It evaluates the robustness of the 

security measures and determines how well they can fend 

off advanced cyberattacks. These safeguards include a 

wide range of instruments, directives, and procedures that 

combine to form an all-encompassing defence plan 

[21].The protection of data, computer networks, and 

software from a myriad of potential hazards is a crucial 

component of cybersecurity. It depends on preventing 

unauthorised access, discouraging hostile attacks, and 

minimising potential harm [22]. This all-encompassing 

strategy highlights how diverse cybersecurity is. 

According to research, cybersecurity uses a wide range of 

procedures and cutting-edge tools to protect networks, 

programmes, computers, and data from a variety of 

dangers. It guards against assaults, unauthorised access, 

and the threat of data loss [12]. 

Table 1: Summary of related work 

Method Key Finding Advantage Limitation Scope 

Machine Learning 

Algorithms [21] 

- Machine learning is 

capable of detecting 

both established and 

emerging cyberthreats. 

- Response times are 

slashed via 

automation. 

- Limited protection 

from complex zero-

day assaults. 

- Constantly changing 

to counter new 

threats. 

Anomaly 

Detection [22] 

- Anomaly detection 

finds differences from 

expected behaviour, 

which is helpful for 

zero-day assaults. 

- The capacity to spot 

threats that had not 

been seen before. 

- High false positive 

rates in network 

situations that are 

sophisticated. 

- Increasing the scope 

of real-time anomaly 

detection in industrial 

and iot systems. 

Deep Learning 

[23] 

- Deep learning models 

have a high level of 

accuracy when 

recognising complex 

assault patterns. 

- Capable of handling 

massive amounts of 

data for pattern 

recognition. 

- Needs a lot of data 

and computational 

power. 

- Improving 

adversarial attack 

detection using 

generative models. 

Feature 

Engineering [24] 

- Accurate feature 

engineering enhances 

model performance. 

- Improves the 

interpretability and 

comprehension of the 

model. 

- Time-consuming 

and requiring 

subject-matter 

knowledge. 

- Examining 

automated feature 

extraction and 

selection methods. 
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Ensemble 

Methods [25] 

- Combining several 

models enhances the 

performance of 

detection as a whole. 

- Resistance to flaws 

in specific model 

elements. 

- A rise in resource 

consumption and 

computational 

complexity. 

- Integrating 

ensemble techniques 

into systems for 

quickly detecting 

threats. 

Explainable AI 

(XAI) [26] 

- XAI approaches offer 

insights into model 

choices, boosting 

transparency and 

confidence. 

- Makes it easier to 

comply with 

requirements and 

conduct audits. 

- Could add 

processing 

overhead. 

- XAI integration for 

cybersecurity auditing 

into regulatory 

compliance 

frameworks. 

Reinforcement 

Learning [27] 

- Based on changing 

threats, reinforcement 

learning can adjust 

security measures in 

real-time. 

- Enables an adaptive 

and dynamic threat 

response. 

- Necessitates 

extensive simulation 

and training data. 

- Investigating 

reinforcement 

learning for self-

sufficient 

cybersecurity agents. 

Cloud-based 

Solutions [28] 

- Scalability and cost-

effectiveness are 

provided by utilising 

cloud resources for 

threat detection. 

- Perfect for 

managing enormous 

datasets and scaling 

them when necessary. 

- Cloud 

environment 

security and privacy 

issues. 

- Implementing 

strong access 

restrictions and 

encryption for cloud-

based solutions. 

Threat 

Intelligence Feeds 

[29] 

- By utilising outside 

perspectives, 

incorporating threat 

intelligence improves 

threat detection. 

- Access to current 

threat trends and 

information. 

- Reliance on threat 

inputs' timeliness 

and accuracy. 

- Creating systems to 

verify and rank threat 

intelligence sources. 

User and Entity 

Behavior 

Analytics (UEBA) 

[30] 

- The goal of UEBA is 

to monitor user and 

entity activity to find 

anomalies. 

- Capable of spotting 

anomalous behaviour 

and insider threats. 

- Demands thorough 

entity and user 

profiling and 

monitoring. 

- UEBA's integration 

with identity and 

access management 

systems being 

improved. 

Quantum 

Computing 

Preparedness [19] 

- Future-proofing 

security requires 

planning for potential 

dangers posed by 

quantum computing. 

- Takes into account 

the potential risk of 

quantum assaults on 

encryption. 

- The research of 

quantum-resistant 

algorithms is 

ongoing. 

- Looking into and 

putting into practise 

post-quantum 

cryptography 

solutions. 

 

3. Dataset Descritption 

A) Datasaet 1: NSL-KDD Dataset (updated KDD Cup 

1999 dataset) 

The original KDD Cup 1999 dataset was updated to create 

the NSL-KDD dataset. In the subject of network security, 

it is frequently used to assess intrusion detection systems 

(IDS) and evaluate machine learning techniques. The 

dataset is labelled, with examples falling into 4 different 
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type of category.. This dataset is used by researchers to 

create and assess intrusion detection models [31]. 

B) Dataset 2: Dataset for DARPA's intrusion 

detection: 

The Defence Advanced Research Projects Agency 

(DARPA) sponsored a number of Intrusion Detection 

System (IDS) evaluation competitions in the late 1990s 

and early 2000s, and these datasets were utilised in those 

competitions. These files include information about 

network traffic from military networks, including both 

legitimate and hostile actions. These datasets have been 

used by researchers and cybersecurity experts to assess 

and test the efficacy of intrusion detection algorithms and 

systems. Although there are several datasets included in 

this category, they are always referred to as DARPA 

datasets [32]. 

C) Dataset 3: UNSW-NB15: 

The University of New South Wales (UNSW) collected 

the network intrusion detection dataset known as UNSW-

NB15. It was developed to aid in network security and 

intrusion detection studies. The collection includes both 

typical network traffic data as well as information about 

various attacks, including DoS, Probe, R2L, and U2R. 

UNSW-NB15 is labelled, making it appropriate for 

developing and testing machine learning models and 

intrusion detection systems [33]. 

D) Dataset 4: Australian Defence Force Academy IDS 

Datasets (ADFA IDS Datasets): 

The network traffic data gathered at the Australian 

Defence Force Academy is included in the ADFA IDS 

Datasets. These datasets are employed in research on 

network security and intrusion detection. The ADFA IDS 

Datasets include both regular network traffic and various 

sorts of attacks, just as the other datasets listed. These 

datasets are used by researchers and cybersecurity experts 

to create and evaluate intrusion detection systems and 

machine learning algorithms [34].

Table 2: Dataset Description 

Dataset Name 
Number of 

Records 

Number of 

Attributes 
Area 

NSL-KDD Dataset (KDD Cup 1999 

revised) 
275486 41 

Network Security/Intrusion 

Detection 

DARPA Intrusion Detection 

Evaluation Datasets 
23562 22 

Network Security/Intrusion 

Detection 

UNSW-NB15 175,341 45 
Network Security/Intrusion 

Detection 

ADFA IDS Datasets 28545 18 
Network Security/Intrusion 

Detection 

 

4. Proposed Methodology 

This approach is particularly good at spotting complicated 

and changing cyber threats since it excels at collecting 

intricate patterns within the data. In the field of 

cybersecurity, its capacity to manage high-dimensional 

data and reduce overfitting is a crucial tool. On the other 

hand, Naive Bayes makes use of Bayes' theorem-based 

probabilistic reasoning. Its operation is based on the idea 

that features are conditionally independent of one another, 

which makes it computationally quick and perfect for real-

time threat detection. Naive Bayes performs well when 

there is little available data, and because it is probabilistic, 

it can respond quickly to changing threats. This method is 

very useful for locating abnormalities and categorising 

them as potential hazards. 

By providing a clear and straightforward explanation of 

the threat detection process, Logistic Regression, a 

fundamental and interpretable algorithm, plays a crucial 

role in the technique. It is skilled at categorising data into 

threat and non-threat categories because it models the 

probability of a binary result. In the context of 

cybersecurity, its interpretability is essential since it 

enables security experts to understand the variables 

influencing threat forecasts.In actuality, these algorithms 

are used in a layered approach, with Logistic Regression 

bringing transparency and insights into the threat 

identification process, Random Forest enabling a reliable 

and flexible initial screening, and Naive Bayes providing 

effective real-time monitoring.
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Fig 1: Proposed method for threat detection 

The combination of these approaches takes advantage of 

the advantages of each algorithm and provides an all-

encompassing defence against a variety of cyberthreats 

while enabling ongoingadaptability to the threat 

environment's changing dynamics. This multidimensional 

strategy emphasises the significance of utilising several 

machine learning approaches to properly secure digital 

environments. 

1. Random Forest 

A potent ensemble learning method called Random Forest 

is frequently employed in threat detection powered by 

machine learning. Because it integrates numerous 

decision trees to increase forecast accuracy and resilience, 

it is particularly useful. By utilising the collective 

judgement of numerous trees, Random Forest can 

categorise data occurrences in the context of threat 

detection as either dangers or non-threats. Let's talk about 

the Random Forest algorithm and show an abridged 

mathematical representation. 

Algorithm for Random Forests: 

• Data preparation: Prepare the training data by 

processing it. This involves cleaning up the data, 

extracting the features, and dividing the dataset into 

training and validation/testing sets. 

• Bootstrapping: Choose random subsets of the 

training data for each tree (with replacement). These 

selections are referred to as "bootstrapped datasets." 

• Building Decision Trees: Create a decision tree for 

each bootstrapped dataset. A random subset of 

features is taken into account for splitting at each 

node of the tree. The plants' diversity is ensured by 

this randomness. 

• Voting: Each tree in the forest forecasts the class 

(danger or non-threat) when a new data point needs 

to be categorised. A majority vote among the trees 

(for classification issues) determines the final 

prediction. 

For simplicity, let's consider a binary classification 

problem where we want to classify network traffic as 

either a threat (T) or non-threat (NT). 

• Data: Let's represent our training data as a set of 

feature vectors X and their corresponding labels Y, 

where  𝑋 =  {𝑥_1, 𝑥_2, . . . , 𝑥_𝑛} 𝑎𝑛𝑑 𝑌 =

 {𝑦_1, 𝑦_2, . . . , 𝑦_𝑛}, where n is the number of data 

instances. 

• Bootstrapping: In each iteration (t) of bootstrapping, 

we randomly select a subset of the training data (with 

replacement) to create a bootstrapped dataset𝐷_𝑡. 

• Decision Tree Building: For each bootstrapped 

dataset𝐷_𝑡 , we construct a decision tree 𝑇_𝑡 . The 

construction of the tree involves recursively splitting 

the data based on selected features to maximize 

information gain or minimize impurity. Each tree 

T_t can be represented as a set of rules. 

• Voting: To classify a new data instance𝑥_𝑖, we pass 

it through each tree 𝑇_𝑡 , resulting in a set of 
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predictions {y_t}. The final prediction is determined 

by majority voting: 

^𝑦_𝑖 =  𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝑡 = 1^𝑇 𝐼(𝑦_𝑡 =  𝑦) 

Where: 

• ^y_i is the final predicted class for instance x_i. 

• T is the total number of trees in the forest. 

• I is the indicator function (returns 1 if the 

condition is true and 0 otherwise). 

This simplified mathematical model illustrates how 

Random Forest combines multiple decision trees to make 

predictions. 

2. Naïve Bayes 

Due to its simplicity and effectiveness, Naive Bayes is a 

well-known machine learning method used in threat 

identification. It can also be used for network traffic 

analysis to spot hazards. It works particularly well for text 

categorization jobs like email spam detection. Based on 

the Bayes theorem, which determines an event's 

probability based on previously known conditions, naive 

Bayes estimates an event's likelihood. By assessing the 

likelihood of a specific traffic pattern given its 

characteristics, Naive Bayes can be used in threat 

detection to categorise network traffic as hostile or benign. 

To illustrate the concept, let's consider a binary 

classification problem where we aim to classify network 

traffic as either a threat (T) or non-threat (NT). 

• Data: We represent our training data as feature 

vectors X and their corresponding binary labels Y, 

where 𝑋 =  {𝑥_1, 𝑥_2, . . . , 𝑥_𝑛} 𝑎𝑛𝑑 𝑌 =

 {𝑦_1, 𝑦_2, . . . , 𝑦_𝑛}, where n is the number of data 

instances. 

• Training: The Naive Bayes algorithm begins by 

calculating the prior probabilities of each class 

(threat or non-threat) based on the training data: 

𝑃(𝑇)  =  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠) 

/ (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠) 

𝑃(𝑁𝑇)  =  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛

− 𝑡ℎ𝑟𝑒𝑎𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠) 

/ (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠) 

• Feature Probabilities: For each feature, Naive 

Bayes calculates the conditional probabilities of 

observing that feature given each class. The 

"naive" assumption here is that features are 

conditionally independent, which simplifies the 

calculations: 

𝑃(𝑥_𝑖|𝑇) 

𝑃(𝑥_𝑖|𝑁𝑇) 

• These probabilities can be estimated using 

techniques like maximum likelihood estimation 

(MLE) or Laplace smoothing to handle cases 

where a particular feature value hasn't been 

observed before. 

𝜃^_𝑀𝐿𝐸 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝜃 𝐿(𝜃 | 𝑑𝑎𝑡𝑎) 

 

Where: 

▪ 𝜃^_𝑀𝐿𝐸 represents the maximum likelihood 

estimate of the parameter θ. 

▪ 𝐿(𝜃 | 𝑑𝑎𝑡𝑎) is the likelihood function, which 

quantifies the probability of observing the given data 

under the parameter 𝜃. 

• Prediction: When classifying a new instance with 

feature vector x, the algorithm calculates the 

probability of it belonging to each class and selects 

the class with the highest probability as the 

prediction: 

𝑃(𝑇|𝑥)  ∝  𝑃(𝑇)  ∗  ∏(𝑃(𝑥_𝑖|𝑇)) 

𝑃(𝑁𝑇|𝑥)  ∝  𝑃(𝑁𝑇)  ∗  ∏(𝑃(𝑥_𝑖|𝑁𝑇)) 

• The proportional sign (∝) indicates that we don't 

need to calculate the exact probabilities, only their 

relative values. 

• The prediction is then: 

𝐼𝑓 𝑃(𝑇|𝑥)  >  𝑃(𝑁𝑇|𝑥), 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑇ℎ𝑟𝑒𝑎𝑡 (𝑇). 

𝐼𝑓 𝑃(𝑇|𝑥)  <  𝑃(𝑁𝑇|𝑥), 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑁𝑜𝑛

− 𝑇ℎ𝑟𝑒𝑎𝑡 (𝑁𝑇). 

3. Logistic Regression 

A fundamental machine learning approach called logistic 

regression is employed in cybersecurity and threat 

identification. It works particularly effectively for tasks 

requiring binary classification, such as categorising data 

into threat (T) or non-threat (NT) categories. The logistic 

function is used in logistic regression to represent the 

connection between the independent variables (features) 

and the likelihood of a binary outcome. 

In the context of threat detection, let's consider a binary 

classification problem where we aim to classify network 

traffic as either a threat (T) or non-threat (NT). 

Data: We represent our training data as feature vectors X 

and their corresponding binary labels Y, where 𝑋 =

 {𝑥_1, 𝑥_2, . . . , 𝑥_𝑛} 𝑎𝑛𝑑 𝑌 =  {𝑦_1, 𝑦_2, . . . , 𝑦_𝑛} , where 

n is the number of data instances. 

Hypothesis: Logistic Regression models the probability of 

an instance belonging to class T using the logistic 

function: 

𝑃(𝑇 | 𝑥)  =  1 / (1 +  𝑒^(−𝑧)) 

Where: 
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- P(T | x) is the probability of instance x belonging to class 

T. 

- e is the base of the natural logarithm (Euler's number). 

- z is the linear combination of features and model 

parameters: 

𝑧 =  𝛽_0 +  𝛽_1 ∗  𝑥_1 +  𝛽_2 ∗  𝑥_2 + . . . + 𝛽_𝑛 

∗  𝑥_𝑛 

Where: 

- 𝛽_0 is the intercept (bias) term. 

- 𝛽_1, 𝛽_2, . . . , 𝛽_𝑛 are the coefficients associated with 

each feature. 

Training: The goal in training is to find the optimal values 

of 𝛽_0, 𝛽_1, 𝛽_2, . . . , 𝛽_𝑛 that maximize the likelihood of 

the observed data. This is typically done by minimizing a 

cost function, such as the cross-entropy loss: 

J(β) = -1/n * Σ [y_i * log(P(T | x_i)) + (1 - y_i) * log(1 - 

P(T | x_i))] 

Where: 

- J(β) is the cost function to be minimized. 

- y_i is the actual label for instance x_i. 

- P(T | x_i) is the predicted probability of instance x_i 

belonging to class T. 

Prediction: Given a new instance with feature vector x, we 

calculate 𝑃(𝑇 | 𝑥)  using the learned coefficients and 

logistic function. 𝐼𝑓 𝑃(𝑇 | 𝑥)  >  0.5, we classify it as 

Threat (T); otherwise, it's classified as Non-Threat (NT). 

This mathematical model demonstrates how Logistic 

Regression models the probability of an instance being a 

threat based on its features. The model parameters (β) are 

learned through training to maximize the likelihood of the 

observed data. 

5. Result and Discussion 

Three well-known algorithms, Nave Bayes, Random 

Forest, and Logistic Regression, were examined for how 

well they performed on a particular dataset in the context 

of Machine Learning-powered Threat Detection 1. These 

algorithms showed varied degrees of accuracy when 

identifying dangers or non-threats in network traffic. With 

the greatest accuracy of 95% and a noteworthy ROC AUC 

score of 0.98, Random Forest surpassed the competition 

and demonstrated its robustness in differentiating between 

threats and non-threats. These outcomes show how these 

algorithms can be used in threat detecting applications.

Table 3: Summary of result for Dataset 1 

Algorithm Accuracy Precision Specificity F1 Score ROC AUC Score 

Naïve Bayes 0.92 0.88 0.94 0.90 0.96 

Random Forest 0.95 0.92 0.96 0.94 0.98 

Logistic Reg. 0.91 0.87 0.93 0.89 0.95 

We compared the effectiveness of Nave Bayes, Random 

Forest, and Linear Regression in the context of Dataset 2 

for Machine Learning-powered Threat Detection. Several 

important performance measures were used to evaluate 

these algorithms. Nave Bayes showed a respectable 85% 

accuracy with a noteworthy 88% precision, demonstrating 

its capacity to accurately identify risks with few false 

positives. Its significantly lower specificity of 82%, 

however, shows that there is space for improvement in 

identifying non-threats. The ROC AUC Score was 0.91, 

suggesting a reasonable overall performance, and the F1 

Score, which balances recall and precision, was a 

respectable 0.85. 
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Fig 2: Representation performance metrics using different ML method for dataset 1 

With an accuracy of 92% and an amazing precision of 

93%, Random Forest came out on top, demonstrating its 

robustness in accurately categorising threats while 

minimising false positives. Its balanced performance was 

highlighted by its 90% specificity and 0.92 F1 Score. An 

outstanding 0.96 was recorded for the ROC AUC Score, 

which measures the system's ability to distinguish 

between threat and non-threat situations. 

 

Table 4: Summary of result for Dataset 2 

Algorithm Accuracy Precision Specificity F1 Score 

ROC 

AUC 

Score 

Naïve Bayes 0.85 0.88 0.82 0.85 0.91 

Random Forest 0.92 0.93 0.9 0.92 0.96 

Linear Regression 0.78 0.79 0.75 0.77 0.84 

 

Although it still had a respectable accuracy of 78%, linear regression had lower precision and specificity, at 79% and 75%, 

respectively.  
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Its ROC AUC Score of 0.84 and F1 Score of 0.77 indicate 

a reasonable level of efficacy in threat detection. In 

conclusion, Random Forest and Naive Bayes both 

performed best overall, with Linear Regression, though 

competent, showing room for improvement in separating 

threats from non-threats in Dataset 2. 

Table 4: Summary of result for Dataset 3 

Algorithm Accuracy Precision Specificity F1 Score 

ROC 

AUC 

Score 

Naïve Bayes 0.89 0.92 0.86 0.89 0.95 

Random Forest 0.96 0.97 0.94 0.96 0.97 

Linear Regression 0.82 0.83 0.79 0.81 0.88 

Nave Bayes demonstrated strong performance in Dataset 

3 for Machine Learning-powered Threat Detection, 

achieving an F1 Score of 0.89, an accuracy of 89%, a 

reliable 92% precision for recognising threats, and a 

precision of 92%. However, it might improve specificity 

for identifying non-threats. Random Forest outperformed, 

achieving a high F1 Score of 0.96 and an exceptional ROC 

AUC Score of 0.97 thanks to its impressive 96% accuracy, 

strong 97% precision, and superb 94% specificity.  

 

Fig 4: Representation performance metrics using different ML method for dataset 3 
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differentiating threats, but Linear Regression, while 
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Random Forest 0.94 0.95 0.92 0.94 0.95 

Linear Regression 0.8 0.81 0.77 0.79 0.86 

 

We compared the effectiveness of Nave Bayes, Random Forest, and Linear Regression in Dataset 4 for Machine Learning-

powered Threat Detection.  

 

Fig 5: Representation performance metrics using different ML method for dataset 4 

With an87% accuracy, a strong 90% precision, and an F1 

Score of 0.87, Nave Bayes demonstrated decent 

performance, demonstrating its capacity to accurately 

identify dangers. Although it achieved 84% in specificity, 

it could have done better.  

 

Fig 6: Accuracy comparison for different methods on all datasets 
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though it had an accuracy of 80%, linear regression 

showed lesser precision (81%) and specificity (77%), 

resulting in an F1 Score of 0.79 and a ROC AUC Score of 

0.86. Overall, Linear Regression showed promise for 

improvement, while Random Forest and Naive Bayes had 

the best performance. 
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6. Conclusion 

A key element in reducing the ever-increasing 

cybersecurity difficulties that our connected world faces 

today is machine learning-powered threat detection. The 

quick development of information technology has resulted 

in an alarming growth in numerous cyber dangers, ranging 

from malware, zero-day exploits, data breaches, and 

sophisticated social engineering methods to unauthorised 

access and denial of service attacks. The exponential 

growth in the variety of unique malware executable serves 

as an example of this escalation and emphasises the urgent 

need to strengthen our cybersecurity defences.Cybercrime 

has major financial repercussions, with data breaches 

alone costing millions of dollars and having a significant 

effect on the world economy. Furthermore, effective 

cybersecurity measures that cover both public and private 

sector networks are now essential for maintaining national 

security. As a result, it is crucial to be able to recognise 

and react to cyber threats intelligently.Machine learning 

has become a game-changing force in cybersecurity 

thanks to its ability to examine enormous datasets and 

identify complex patterns. It gives companies and 

organisations the tools to recognise both known and 

undiscovered cyberthreats, effectively securing vital 

systems. Machine learning models continuously adapt and 

improve using cutting-edge algorithms and approaches, 

keeping up with the changing threat 

landscape.Fundamentally, Machine Learning-powered 

Threat Detection provides a promising future in our on-

going conflict with cyber threats. It's important to 

recognise that the cybersecurity landscape is always 

changing and necessitates constant innovation and agility. 

Our defences can be greatly improved by incorporating 

machine learning into our cybersecurity plans, as well as 

interdisciplinary cooperation and the integration of threat 

intelligence. By doing this, we can prevent cyber risks 

from happening in the first place, protect important assets, 

and make sure that our increasingly interconnected digital 

world is secure and resilient. 
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