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Abstract: AI and machine learning are changing Alzheimer's disease diagnosis. These advancements are improving massive dataset 

analysis, enabling early diagnosis and personalized treatment. With the Continuous Wavelet Transform and Pearson's Correlation 

Coefficient, Electroencephalogram signal processing has become important. Machine learning classifiers enhance diagnostic accuracy. 

PCC-KNN, which prioritizes alpha frequency band, improves classification accuracy by combining pattern recognition and connection 

insights. EEG signal parameters of unhealthy and healthy patients are compared by extracting CWT and PCC parameters.  KNN, SVM, 

RF and DNN are trained as classifier algorithms. Using PCC to detect brain area correlations and alpha frequency oscillations helps 

uncover neurological disease connection problems. Combining KNN improves pattern recognition for complex alpha dynamics. KNN-

PCC in the alpha frequency band improves neurological disease categorization with 96% F1-score, 95% sensitivity, 99% specificity, 

and 97.9% accuracy. Cognitive deterioration is linked to alpha spectrum alterations. Alpha power and slow wave activity rise may be 

indicated in early AD patients. 
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1. Introduction 

The domain of Alzheimer's Disease (ΑD) diagnosis is 

currently experiencing a paradigm shift as a result of the 

integration of Artificial Intelligence (AI) methodologies. 

The diagnosis of dementia involves several techniques, with 

artificial intelligence (AI) and machine learning (ML) being 

important tools in analyzing large datasets. These 

technologies help in early detection and personalized 

treatment approaches. The application of 

Electroencephalogram (EEG) signal processing techniques, 

such as the Continuous Wavelet Transform (CWT) and 

Pearson's Correlation Coefficient (PCC), has gained 

significant prominence in the area. CWT is used to extract 

both temporal and spectral features from EEG data, whereas 

PCC is used to measure the connectivity between various 

areas of the brain.  [1][2]. It has been observed that ML 

classifiers like Support Vector Machines (SVM), Random 

Forest, K-Nearest Neighbors (KNN), and Deep Neural 

Networks (DNN) increase the precision of diagnostic 

procedures. The evaluation of classifier performance is 

made easier and provides insightful information when many 

indicators are used, such as confusion matrices and 

classification reports. The effectiveness of the PCC-KNN 

methodology, which combines pattern recognition 

techniques with connection insights, in the setting of alpha 

frequency bands is one remarkable conclusion. Artificial 

intelligence (AI) and machine learning (ML) combined with 

state-of-the-art electroencephalography (EEG) methods are 

revolutionizing Alzheimer's disease (AD) diagnosis. More 

precise and tailored treatment plans are becoming possible 

as a result of this merging of technology.[2]. A wide range 

of procedures are required for the diagnosis of dementia 

because it is a complicated neurological condition. 

The effectiveness of the PCC-KNN methodology, which 

combines pattern recognition techniques with connection 

insights, in the setting of alpha frequency bands is one 

remarkable conclusion. The approach of diagnosing AD is 

generally being greatly altered by the combination of 

contemporary electroencephalography (EEG) techniques 

with AI and ML integration. The combination of these 

technologies is enabling more precise diagnosis and 

individualized treatment plans.[2]. Dementia is a complex 

neurological disease that must be diagnosed using a wide 

range of methods. Clinical assessment is the cornerstone, 

with doctors conducting in-depth interviews with patients 

and family members to collect data on their health, 

symptoms, and mental state. Cognitive testing, which 

includes instruments like the Mini-Mental State 

Examination (MMSE), the Montreal Cognitive Assessment 

(MoCA) etc, are used to gauge a person's mental activities. 

Neuroimaging techniques like MRI, PET, and SPECT help 

detect atrophy and functional abnormalities by providing 

information about the brain's anatomy, metabolism, and 

activity patterns, but they are expensive[3]. Biomarker 

study of CSF reveals disease-specific proteins in the fluid 
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around the brain is also expensive and invasive and all the 

countries did not approve these examinations.  Genetic tests, 

such as APOE genotyping, and different mutations can 

reveal hereditary issues. Evaluations of a patient's 

functional abilities provide insight into how well he/she can 

handle every day routine activities. Nevertheless, the 

execution of these tests is a laborious process that requires 

the participation of compliant individuals and skilled 

healthcare professionals[4] . Electrical brain activity is 

recorded by EEG, revealing aberrant patterns associated 

with dementia. Accuracy in diagnosis is aided by clinical 

criteria and computerized cognitive testing [5].  

The stages considered in this work consists of Alzheimer’s 

Disease (AD), Mild Cognitive Impairment (MCI), 

Subjective Cognitive Decline (SCD). MCI is a cognitive 

state intermediate between normal age-related alterations 

and more severe cognitive decline, such as that observed in 

dementia [1]. Individuals with MCI have observable 

cognitive deficits, such as memory issues or difficulty with 

complex tasks, but these deficits do not substantially 

interfere with their activities of daily life. The progression 

of MCI varies between individuals, with some remaining 

stable, others improving, and others progressing to 

dementia or a more severe cognitive impairment in one year 

[6].Self-reported cognitive difficulties are indicative of 

SCD, even if formal cognitive examinations do not reliably 

reveal substantial deficiencies. Memory loss and struggle to 

focus are two indicators of SCD that may create worry and 

stress for those affected. Self-reporting and ruling out other 

possible reasons of cognitive symptoms, such as stress or 

depression, are crucial in making a diagnosis. Different 

causes of SCD lead to different prognoses; for example, 

some people have stable or enhanced cognitive performance 

while others continue to decline[6].   Neurodegeneration 

that worsens with time to AD causes cognitive, functional 

and behavioural decline. Memory loss, time and place 

confusion, and trouble solving problems are early signs that 

may progress to severe cognitive impairment and the 

inability to carry out routine tasks. The diagnosis is 

confirmed by a comprehensive medical examination, 

including cognitive testing, imaging, and a postmortem 

examination of the brain. Proteins in the brain become 

abnormal because of genetic, environmental, and 

behavioural factors that contribute to the illness. AD is fatal, 

although it may be controlled with medication and therapy 

to enhance quality of life[3]. AD is seen to be as a severance 

phenomenon of the brain. In AD patients, there is often a 

disruption in the synchronization of EEG activity, as seen 

by the diminished functional connectivity across various 

brain regions [7]. Moreover, EEG signal complexity may 

decrease in AD patients due to deterioration in cognitive 

function and structure [8]. Researchers have long focused 

on the breakdown of functional links between the cortex and 

hippocampus as a potential cause of cognitive failure in 

dementia and AD [9]. 

EEG signal processing is crucial for the accurate diagnosis 

of neurological illnesses. This facilitates early disease 

diagnosis, condition categorization, and dementia related 

pinpointing [10]. Treatment efficacy must be monitored and 

individualized depending on EEG patterns. EEG's ability to 

detect biomarkers and track the development of diseases 

without causing any harm to the patient makes it a cheap 

tool. In addition, it provides a risk-free alternate to 

conventional diagnostic procedures while still helping to 

monitor changes in brain health. EEG signal processing 

essentially improves the accuracy of diagnosing, treating, 

and managing a wide range of neurological illnesses [11]. 

Brain activity may be seen in the frequency ranges of an 

EEG. The theta band (4-8 Hz) is associated with REM sleep, 

creative thought, memory consolidation, and meditation, 

whereas the delta band (0.5-4 Hz) is associated with deep 

sleep and rejuvenation. Mental calmness is reflected in the 

predominance of the alpha band (8-13 Hz) during restful 

wakefulness. Cognitive processes, focused cognition, and 

alert wakefulness are characterized by the presence of beta 

waves (13-30 Hz). Finally, gamma waves (30-100+ Hz) 

have been associated with consciousness, perception, and 

advanced mental processes. Researchers and doctors 

utilizing EEG to study mental states, cognitive processes, 

and neurological illnesses need a firm grasp of these 

frequency ranges [10]. Researchers have long focused on 

the breakdown of functional links between the cortex and 

hippocampus as a potential cause of cognitive failure in 

dementia and AD. 

AI and ML classifiers have the potential to drastically alter 

the field of dementia diagnosis due to their ability to detect 

hidden patterns, integrate several data sources, and enable 

rapid identification and personalised treatment approaches. 

As these technologies advance, it is expected that they will 

play an increasingly important role in improving the 

precision and efficacy of detecting neurological illnesses. 

AI/ML algorithms can reveal intricate patterns concealed in 

high-dimensional, complex data. Neurological disorders 

have grown in importance in data analysis. 

2. Proposed Methodology 

The flow diagram below is given for proposed 

methodology. Data is obtained, includes the sample EEG 

signal recordings of 42 AD-patients, 41 MCI-patients, 34 

SCD-patients, and 33 Healthy subjects (HS). To increase 

the number of samples for training the AI/ML classification 

models, Data is segmented in slots of 4 seconds each. These 

samples are band separated and channel separated for 

parameter extraction.  The parameters are extracted using 

CWT and PCC techniques. This large feature thus derived 
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is used to train various classifiers. The performance 

measures are compared for various algorithms. 

2.1 Dataset 

The present repository has Matlab files pertaining to 

resting-state EEG recordings conducted on individuals 

diagnosed with AD, MCI, SCD, as well as a group of HS. 

The recordings were obtained utilizing the HD-EEG EGI 

GES 300 system. The study's participants were chosen from 

the memory and dementia clinic affiliated with the Greek 

Association of Alzheimer's Disease and Related Disorders 

(GAADRD). The people with AD satisfied the NINCDS-

ADRDA (Alzheimer's Disease and Related Disorders 

Association) criteria for probable AD, which were set for 

the participants with AD. They also met the American 

Psychological Association's (APA) Diagnostic and 

Statistical Manual of Mental Disorders (DSM-V) criteria 

for dementia of AD. The participants in the MCI group, 

however, met the criteria established by Petersen, whereas 

the participants in the SCD group, in addition to following 

the instructions of the SCD-I Working Group, adhered to 

the recommendations made by the International Working 

Group-2 and the more recent National Institute on Aging-

Alzheimer's Association workgroups on diagnostic 

guidelines for Alzheimer's disease. 

Resting-State High-Density EEG recordings are obtained in 

advance from patients utilizing an EGI GES 300 equipped 

with 256 recording electrodes. The professionals always use 

the standard operating procedure. The signals were recorded 

in respect to a vertex reference electrode (Cz) at a sampling 

rate of 250 Hz, with AFz acting as the ground electrode and 

the electrode impedance being less than 50 k. The HD-EEG 

data were pre-processed (filtered, split, and replaced with 

faulty channels) using the software Net Station 4.3 so that 

any artefacts (EGI) could be identified. Originally, HD-EE 

was filtered using a 5th-order bandpass Butterworth IIR 

filter operating between 0.3 and 30 Hz. Resting-State High-

Density EEG recordings are obtained in advance from 

patients utilizing an EGI GES 300 equipped with 256 

recording electrodes. The professionals always use the 

standard operating procedure. 250 Hz sample rate, Signals 

were recorded in respect to a vertex reference electrode 

(Cz), with AFz serving as the ground electrode and the 

electrode impedance being less than 50 k. The HD-EEG 

data were pre-processed (filtered, split, and replaced with 

faulty channels) using the software Net Station 4.3 so that 

any artefacts (EGI) could be identified. Originally, HD-

EEG data was filtered using a 5th-order bandpass 

Butterworth IIR filter operating between 0.3 and 30 Hz [2]. 

2.1.1 Database creation/selection 

The data of 42 AD patients, 34 SCD patients, 41 MCI 

patients and 33 HS is used in this analysis. The recordings 

obtained from these patients used is of 10 min each. Data 

splitting is used for generating a greater number of samples, 

the data splitting is used. The data of each subject is 

windowed into 4s sample each. Thus, a huge database is 

created for training the classifier models. The four common 

frequency bands found in EEG signals are -oscillation (1–4 

Hz) namely delta, -oscillation (4–8 Hz) namely theta , -

oscillation (8–13 Hz) namely alpha, and -oscillation (13–30 

Hz) namely beta. The data repository includes the data for 

the distinct frequency ranges delta, theta, alpha, and beta; 

whereas gamma is not included in this file as during the pre-

processing as mentioned earlier, the IIR filter used is 

windowed till 30 Hz. The data acquisition was done using 

256 recording electrodes. The spatial resolution and 

accuracy of EEG data are both improving when the number 

of electrodes is increased. Yet the amount and handling time 

and complexity of the system, of EEG data grow 

correspondingly with the number of data streams[12]. 

Hence, the standard 20 channels are selected as per 10-20 

channel mapping system for the analysis [13].  

2.2 Feature Extraction 

The selection and transformation of relevant information 

from raw data is known as feature extraction, and it plays a 

critical role in signal processing. It simplifies the analysis of 

the data, minimizes the amount of information that is stored, 

and highlights essential patterns while decreasing noise. 

The extracted features help in pattern detection, improve the 

overall efficiency of the model, and make the data easier to 

analyse. Additionally, they normalize the data for the sake 

of comparison and adjust to variations. In many different 

domains, the process of extracting features creates a 

condensed and useful representation of signals, which 

improves data analysis as well as decision-making and 

overall comprehension [14]. In this methodology CWT and 

PCC taken into account for extracting the parameters for 

training the classifier models. 

2.2.1 Continuous Wavelet Transform 

EEG signal processing relies on the CWT's capacity to 

simultaneously capture time and frequency information. 

EEG signals are dynamic and non-stationary, making this 

significant. CWT's variable frequency resolution highlights 

transitory occurrences including seizures, cognitive 

activities, and event-related potentials (ERPs) [15] [16]. For 

neurological illness diagnosis using EEG signal processing, 

the CWT is better than the Fast Fourier Transform (FFT). 

Its ability to capture time and frequency information 

concurrently makes it unique. CWT's variable frequency 

resolution allows it to adapt to frequency content changes in 

EEG signals, which are non-stationary. Transient 

occurrences, localized abnormalities, and developing 

frequency patterns are fundamental to neurological illness 

analysis, and this attribute is essential. CWT also excels in 
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revealing complicated non-linear correlations in 

neurological activity, unlike FFT. When analysing 

neurological illnesses, this is crucial. CWT's exact time-

frequency representation improves ERPs extraction and 

analysis [16]. CWT detects seizures and modulates 

cognitive processes. It also improves ML model distinction 

between normal and pathological EEG patterns by 

enriching feature sets. Clinicians can see EEG data changes 

over time using CWT-generated time-frequency 

representations. CWT's focused focus, adaptability to 

shifting EEG dynamics, and capacity to capture subtle 

neurological patterns make it superior for EEG signal 

processing, especially in identifying neurological illnesses. 

2.2.2 Pearson's Correlation Coefficient (PCC) 

Pearson's correlation coefficient can augment EEG signal 

analysis for neurological illnesses. When combined with 

other feature extraction methods, it provides unique insights 

into these illnesses. Quantifying the linear relationship 

between EEG data from different brain regions reveals 

functional connectivity anomalies that often indicate 

neurological disorders. This is essential because it 

illuminates altered communication channels and brain 

connections linked with specific illnesses. Pearson's 

correlation across several EEG channels builds brain 

networks with synchronized activity patterns[17]. These 

patterns help detect disorder-specific anomalies, enhancing 

feature extraction insights. By studying correlations during 

cognitive activities, this technique reveals brain regions 

with common activity patterns, providing a deeper view of 

cognitive processes and helping identify neurological 

problems. Pearson's correlation can also help find patient 

population markers for certain illnesses by recognizing 

individual variations. By adding connectivity-based 

insights to conventional feature extraction methods, it 

provides a complete perspective of EEG data [16]. The PCC 

was thoroughly used to measure the linear correlation 

between two nodes x and y, and PCC was defined as in 

which n signified the length of variables and x and y 

accounted for the average of x and y, respectively. Refer 

Eq.(1) represents PCC between x and y. r =
∑(x−x)̅̅̅(y−y)̅̅ ̅

√∑(x−x̅)2√∑(y−y̅)2
  .Equation (1) PCC was measured on a 

scale from 1 to 1, where 1 indicated a perfectly positive 

correlation, frequently referred to as a precisely linear 

connection, 0 indicated no correlation, and 1 indicated a 

completely negative correlation. The more tenuous the 

linear reliance between paired variables, greater the 

proximity the absolute value of PCC was to 1. 

2.3 Classification using AI/ML algorithms 

As part of the 10-fold cross-validation procedure, the 

dataset was partitioned into 10 roughly equal-sized sections, 

or "folds," for each iteration. Next, we used the data from 

each fold as a testing set, while the remaining folds were 

used for training. Nine of the 10 pieces are utilized for 

instruction, while the tenth is set aside for evaluation. Every 

value of k between 1 and 10 is processed in the same way. 

Because of this, each data point in the dataset is used for 

testing exactly once. Extensive testing was performed on a 

wide variety of datasets using several distinct approaches to 

learning. For the various classification techniques, we 

calculated an estimate for the misclassification error, a 

confusion matrix, and the accompanying receiver-

operating-characteristic (ROC) by averaging the outcomes 

of ten 10-fold cross-validation iterations. Data mining is the 

most essential application of ML. Problem-solving is 

hindered by humanity's propensity to commit errors while 

interpreting data or trying to establish connections between 

different elements. In many cases, ML may be effectively 

utilized to these issues, leading to advancements in system 

efficiency and design. Each instance in a dataset is 

represented by an identical recuperation of features 

(continuous, categorical, or Boolean) when employing ML 

approaches. In supervised learning, instances have labels 

associated with the outputs they produce, whereas in 

unsupervised learning, instances are not labelled. Because 

supervised tasks are required in many machine learning 

applications, we will concentrate on the necessary 

approaches for achieving this labelling [16] [18] [19]. 

2.3.1 Support Vector Machine 

EEG data analysis, especially for neurological conditions, 

might benefit from the robust and versatile SVM. [20]  EEG 

data's numerous channels and time points provide high-

dimensional feature spaces, which it can handle. Notably, 

SVM's capacity to handle non-linear correlations using 

kernel functions is crucial for identifying detailed patterns 

in EEG data. SVM's ability to distinguish disorder subtypes 

and severity levels in binary and multi-class classification 

tasks is also beneficial. In medical applications, where large 

datasets are hard to get, the algorithm's performance with 

minimal labelled data is important. SVM's margin 

maximization principle promotes generalization for the 

diagnostic models by limiting overfitting hazards. 

Clinically, SVM's unambiguous decision boundaries 

provide meaningful classification outcome communication 

to healthcare practitioners. 

2.3.2 Random Forest 

RF is another promising classifier. Decision trees trained on 

different data sets are its strength. This ensemble technique 

reduces EEG data fluctuation and noise to provide 

resilience. RF is experimented for classifying EEG signals 

from numerous channels and time points, which are high-

dimensional. Its capacity to handle non-linear interactions 

without feature modification helps it capture complicated 

patterns that may indicate neurological diseases [21]. By 
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using many trees' predictions, RF can overcome noise and 

artifacts in EEG signal analysis. For optimal performance, 

each approach requires parameter adjustment and 

validation. Class imbalances, tree depth, and tree quantity 

are crucial.  

2.3.3 K-Nearest Neighbours (KNN) 

When analysing EEG signals for the purpose of detecting 

neurological illnesses, the KNN method appears as a 

practical and successful classifier. Its versatility is 

demonstrated by its ability to process EEG signals and other 

complex data with relative ease. The complex and unique 

patterns that can be seen in EEG data are a good fit for 

KNN's instance-based learning mechanism. The ability of 

this algorithm to capture complex non-linear patterns within 

the data is crucial for identifying early warning signs of 

neurological illnesses. Because of its ease of use, KNN 

requires little in the way of hyperparameter tuning, which 

helps speed up the model selection procedure. Its openness 

in terms of decision-making helps clinical interpreters make 

sense of vital classification outcomes [22]. However, KNN 

has some drawbacks that should be considered. For 

example, it is sensitive to distance metrics and may have 

trouble dealing with high-dimensional data. Adjustments to 

preprocessing, feature scaling, and parameters are required 

to overcome these obstacles. KNN may lack the intricacy of 

some other algorithms, but its straightforward and intuitive 

approach provides valuable comprehension of EEG signal 

patterns, making it an appealing choice for the diagnosis of 

neurological disorders, especially when interpretability is of 

utmost concern. 

2.3.3 Deep Neural Networks 

The utilization of DNNs, within the framework of deep 

learning, has a consideration as a classifier. The advantages 

of deep learning in this situation encompass its ability to 

autonomously acquire nuanced patterns, process complex 

data kinds, and record temporal connections. DNNs have 

the capability to extract hierarchical features directly from 

raw data, hence eliminating the requirement for manual 

feature engineering. Recurrent Neural Networks (RNNs) 

and Long Short-Term Memory (LSTM) networks are very 

suitable for analysing that are  crucial  for the diagnosis of 

neurological  disorders [23]. Convolutional Neural 

Networks (CNNs) have exceptional proficiency in the 

analysis of neuroimaging data obtained from EEG, enabling 

the identification and differentiation of spatial patterns. The 

utilization of pre-trained models in transfer learning 

facilitates the process of adapting knowledge acquired from 

more extensive datasets [24]. Nevertheless, it is imperative 

to make meticulous architecture decisions, employ 

regularization techniques, and implement validation 

strategies to fully exploit the capabilities of deep learning 

for precise categorization of neurological illnesses using 

EEG data. 

3. Experimental Results 

Channel connectivity maps are a cornerstone of 

neuroimaging and neuroscience studies. Important 

information about how the brain's many regions interact 

with one another can be gleaned from these maps. 

Depending on the desired spatial and temporal resolution, 

they can be generated by methods like EEG, Magneto 

Encephalography (MEG), functional Magnetic Resonance 

Imaging (fMRI), or Intracranial Electrocorticography 

(ECoG). By examining the electrical or hemodynamic 

activity recorded from electrodes implanted on the scalp or 

directly on the brain's surface, these maps illustrate the 

functional connections or interactions between various 

brain regions. Synchronization and correlation patterns 

between distinct brain regions can be deduced from the data 

acquired by these electrodes. The brain's network 

organization and how it shifts in response to different tasks, 

stimuli, or neurological diseases can be better understood 

with the aid of connectivity maps. Resting-state 

connectivity, in which the brain's inherent networks are 

revealed even in the absence of a specific task, is studied 

with these methods. The following connectivity maps in 

figure numbers 2.1 through 2.4, are represented from the 

parameters obtained from PCC across the lobes, when the 

threshold 0.8 is considered to show the strong connectivity 

between the channels in various portions of the lobe. The 

diagrams represent the samples of subjects from each 

category. Similar connectivity graphs were observed for 

most of the subjects in every category. It is observed that 

the connectivity between various channels across the lobes 

has significantly decreased for the patients with 

neurological disorder. For the patients with AD it is 

considerably less connections are observed for the all the 

frequency groups. No strong connections are noticed in 

delta band at the threshold of 0.8. 

The present study observed a very poor functional 

connectivity during the α-oscillations in the frontal, 

temporal, and central areas among individuals with AD. The 

connectivity was observed less in SCD and MCI subjects 

respectively too. Healthy patients have shown the most 

connected network across the lobe [25]. The findings of our 

study indicate that the functional connectivity, which 

quantifies the level of uncertainty in the power distribution 

of EEG data, reveals a decrease in electrical activity of 

individuals’ lobes of the brain with AD significantly. The 

classifiers were evaluated using the Confusion Matrix, 

Classification Report, and Receiver Operating 

Characteristic (ROC) curve. These methods revealed the 

classifiers' performance in EEG signal analysis for 

neurological condition diagnosis. The AI/ML classifier 
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algorithms experimented in this methodology included 

KNN, SVM, RF and DNN. The classifier model was 

rigorously trained, validated and tested for many samples 

generated from the dataset available. The parameters used 

for training the models were obtained from the features 

extracted by CWT techniques and PCC parameters 

respectively. It was observed that the models trained with 

PCC parameters have outperformed the CWT parameters. 

The paper includes the results derived from models trained 

using PCC parameters.  A crucial categorization assessment 

tool known as the Confusion Matrix offered information on 

true positive, true negative, false positive, and false negative 

predictions. This matrix displayed the F1-score, recall, 

accuracy, and precision: critical metrics for diagnosing 

neurological disorders enabling an understanding of the 

models' ability to accurately identify distinct illnesses [19]. 

The evaluation procedure went beyond accuracy by using 

the Confusion Matrix, Classification Report, ROC curve, 

and AUC to evaluate the classifiers' strengths and PP 

limitations. This holistic approach to evaluation provided 

robust insights into their diagnostic accuracy, precision, 

recall, and discriminating capacities across the spectrum of 

neurological illness subtypes, strengthening the research's 

conclusions.  

ML has emerged as a potent technique in the identification 

of early stages of neurological illnesses. The system 

possesses the ability to identify concealed patterns, 

amalgamate diverse data sources, and provide impartial 

evaluations. By employing predictive models to anticipate 

the evolution of diseases, extracting pertinent aspects from 

data, and assessing population trends, it facilitates the 

implementation of timely therapies and contributes to the 

reduction of healthcare expenditures. 

The transformative impact of ML in the field of neurology 

lies in its ability to effectively handle real-time data, 

facilitate drug development, and enable remote monitoring. 

This potential holds significant promise for enhancing early 

diagnosis and increasing patient outcomes. 

 

 

 

Fig.2.2 Sample Connectivity Maps for MCI patient (a)Theta-Band (b)Alpha-Band (c)Beta-Band 

 

Fig.2.3 Sample Connectivity Maps for SCD patient (a)Theta-Band (b)Alpha-Band (c)Beta-Band 

 

Fig.2.4 Sample Connectivity Maps for AD patient (a).Theta-Band (b)Alpha-Band (c)Beta-Band 
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Fig.2.1 Sample Connectivity Maps for Healthy patient (a)Theta-Band (b)Alpha-Band (c)Beta-Band 

Table 1. Classifier Performance Evaluation for One vs Rest classes (Classification result for Beta frequency band) 

 One vs Rest 

Performance 

Parameters 

(%) 

Alpha frequency band 

Classifier  

KNN RF SVM DNN 

Loss 2% 7% 9% 13% 

Sensitivity 95% 87% 83% 79% 

Specificity 99% 95% 94% 86% 

Precision 96% 88% 82% 90% 

F1-score 96% 88% 82% 87% 

 overall 

Accuracy 
97.90% 93% 91% 87% 

 

Table 2. Classifier Performance Evaluation for One vs Rest classes (Classification result for Beta frequency band) 

 One vs Rest 

Performance 

Parameters 

(%) 

Beta frequency band 

Classifier 

KNN RF SVM DNN 

Loss 2% 10% 3% 7% 

Sensitivity 95% 82% 95% 79% 

Specificity 98% 93% 98% 94% 

Precision 95% 81% 95% 93% 

F1-score 95% 81% 94% 93% 

 overall 

Accuracy 
97.60% 90% 97% 93% 

 

 The evaluation is improved by adding the ROC curve. The 

ROC curve, showing the true positive rate versus the false 

positive rate, showed the models' discriminating across 

thresholds. The AUC, a quantitative measure obtained from 

the  ROC curve, clearly highlighted the classifiers' capacity 

to distinguish between classes: a vital component in 

neurological condition diagnosis where correct 

discrimination is crucial. The sample of best possible. In 

order to maximize the process of diagnosing early 

neurological disorders, a strategic approach could involve 

integrating deep learning techniques with conventional 

machine learning methods, thereby capitalizing on the 

strengths of both approaches

. 
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3.1 Discussion on result with PCC_KNN_for Alpha 

band 

In the field of EEG signal analysis for the purpose of 

diagnosing neurological disorders, a significant 

advancement has been made through the utilization of the 

KNN classifier in conjunction with the PCC approach. The 

combination has produced noteworthy results, particularly 

in relation to the alpha frequency band, which is an essential 

element of the five unique frequency bands observed in 

EEG analysis. The findings of this study have considerable 

importance in terms of research, as they highlight the 

potential of utilizing an integrated strategy to greatly 

improve the accuracy of categorization while also providing 

insights into the complexities of neurological illnesses 

within the alpha frequency range.  

The categorization of EEG data into five distinct frequency 

bands is a crucial component in evaluating brain  activity. 

The alpha frequency band, which is widely recognized for 

its significance in cognitive processes and brain dynamics, 

assumes a prominent role in this undertaking. The 

incorporation of the PCC technique in the study of the alpha 

frequency band presents a unique perspective for 

investigating EEG data. The ability of PCC to accurately 

detect and analyse linear associations among various brain 

regions is closely linked to the oscillation patterns of the 

alpha frequency. This connection has the potential to reveal 

minor disturbances in connectivity that are commonly 

observed in neurological diseases. In addition to enhancing 

this strategy, the incorporation of the KNN classifier in the 

alpha frequency leverages respective advantages of both 

methodologies. The ability of the KNN algorithm to 

accurately identify complex patterns is well-suited to the 

intricate nature of alpha frequency dynamics that are 

captured by the PCC. The combined utilization of KNN and 

PCC, with a specific focus on the alpha frequency band, 

enhances the classifier's ability to accurately distinguish 

between different neurological disorders based on the 

unique functional connectivity patterns exhibited by alpha 

oscillations. Table. 1 and Table. 2 indicates various 

performance parameters for the most sorted outputs. The 

tables are consolidated for Alpha frequency band and Beta 

frequency band. The parameters are extracted using PCC. 

KNN-PCC is seen to provide overall accuracy of 

classification of the early stages MCI, SCD, AD w.r.t to 

Healthy patients is 97.9%, F1-Score provided for this 

unbalance samples is 96%, specificity is 99%, rightly 

rejecting the incorrect samples and Precision observed is 

96%. From a research perspective, these findings are crucial 

as they highlight a specialized yet powerful approach for 

combining the advantages of the KNN classifier and the 

PCC technique. The research community can get valuable 

insights into the underlying neurological mechanisms of 

illnesses by directing their attention on the alpha frequency 

range. This accomplishment not only improves the accuracy 

of classification, but also offers a distinct viewpoint for 

investigating the importance of alpha frequencies in 

neurological illnesses. This ultimately facilitates a more 

comprehensive understanding of the underlying 

mechanisms of these disorders within a specific and 

practical framework.

 

a)                          b) 
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c)                                          d) 

Fig 3: ROC curves representing classifier performance using One-vs-rest method: (a) KNN classifier with PCC extracted 

parameters, (b) RF classifier with PCC extracted parameters, (c) SVM classifier with PCC extracted parameters, (d) DNN 

classifier with PCC extracted parameters
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