

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 432–439 | 432

Optimizing Deep Learning: Unveiling the Collective Wisdom of Swarm

Intelligence for LSTM Parameter Tuning

T. Tritva J. Kiran1, Dr. Pramod Pandurang Jadhav2

Submitted: 26/11/2023 Revised: 06/01/2024 Accepted: 16/01/2024

Abstract: The convergence of swarm genetic techniques and CNN DL models has become a focal point in addressing optimization

challenges, in the particular context of elongated interim Memory (LSTM) networks. This research explores the mixing of Particle

Swarm Optimization (PSO) with LSTM models to efficiently tune parameters and enhance overall model performance. The motivation

behind this integration arises from the need to overcome limitations associated with traditional optimization methods in deep learning.

While deep learning models exhibit remarkable capabilities, their performance heavily hinges on meticulously tuned parameters. Swarm

optimization offers an innovative approach to address these challenges, providing a means for global optimization, adaptive exploration,

and automated hyperparameter tuning. This work encompasses a comprehensive review of existing literature, shedding light on previous

works at the intersection of swarm optimization and deep learning, with a specific focus on LSTM models. The research methodology

involves the implementation of PSO algorithms tailored to optimize LSTM parameters. The performance and effectiveness of swarm-

optimized LSTM models are rigorously evaluated using benchmark datasets and real-world applications. Results and analyses showcase

the potential of swarm optimization to enhance the efficiency of model training, improve generalization performance, and automate

hyperparameter tuning in the context of LSTM networks. Additionally, this work identifies challenges, proposes future research

directions, and discusses the broader implications of integrating swarm optimization with deep learning models. The implication of this

work lies in its giving to advancing the understanding of swarm optimization within the realm of deep learning, offering insights into the

real-world applicability of these integrated approaches. The findings have implications for researchers, practitioners, and stakeholders

seeking efficient and effective methods for optimizing deep learning models.

Keywords: Swarm Intelligence, Deep Learning, LSTM, PSO algorithm, Parameter Tuning, Swarm Ocptimization.

1. Introduction

1.1 Background:

In recent years, the intersection of swarm optimization

techniques and CNN deep learning models has emerged as

a potential avenue of addressing challenges in optimization

and parameter tuning [1][2]. Deep learning, with its ability

to learn intricate patterns from data, has achieved

remarkable success in diverse areas. However, the

effectiveness of DL models heavily relies on appropriately

tuning their parameters, a process often requiring extensive

computational resources and domain expertise. Swarm

optimization, drawing inspiration from the collective

behavior observed in natural entities like birds and insects,

provides an innovative method to effectively navigate

solution spaces and discover optimal parameter

configurations.

1.2 Motivation

The motivation behind integrating swarm optimization

techniques, such as Particle Swarm Optimization (PSO),

with CNN DL models, specifically elongated interim

Memory (LSTM) networks, lies in the potential to

overcome limitations associated with traditional

optimization methods [1][2][3]. Gradient-based methods,

commonly used in deep learning, may struggle with local

optima and require careful tuning of hyperparameters.

Swarm optimization, on the other hand, provides a means

to perform global optimization, offering advantages in

terms of solution exploration, adaptability, and automation

of hyperparameter tuning.

Fig (1): LSTM work flow

1.3 Objectives

This work investigating and implementing the swarm

optimization techniques for optimizing LSTM models. The

primary objectives include: Developing a comprehensive

understanding of swarm optimization algorithms,

particularly their applicability to parameter tuning in deep

__

1,2Department of Computer Science and Engineering
1 Research Scholar, Dr. A. P. J. Abdul Kalam University, Indore
2 Research Supervisor, Dr. A. P. J. Abdul Kalam University, Indore,

(M.P.), India.
 E-mail Id: 1 tritvajkiran@gmail.com, 2 ppjadhav21@gmail.com

* Corresponding Author: T. Tritva J Kiran
 Email: tritvajkiran@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 432–439 | 433

learning models. Implementing element Swarm

Optimization to simplify the arguments of LSTM

networks. Evaluating the performance and effectiveness of

swarm-optimized LSTM models on benchmark datasets

and real-world applications. Exploring potential

improvements, challenges, and future directions for this

integrated approach.

1.4 Applications: Here are some potential directions for

the future scope applications[1][4][5],

Hybrid Optimization Approaches: Investigate the

potential benefits of combining swarm optimization

techniques with other optimization algorithms or

heuristics. Hybrid approaches may leverage the strengths

of different methods to achieve superior performance.

Dynamic Parameter Adaptation: Explore adaptive

strategies for adjusting swarm optimization parameters

during the optimization process. Dynamic adaptations

could enhance the algorithm's ability to handle different

stages of the optimization problem.

Ensemble Optimization: Explore the use of ensemble

optimization methods where multiple instances of swarm

optimization algorithms run concurrently, and their results

are combined to obtain a more robust and reliable solution.

Transfer Learning and Generalization: Investigate the

ability of swarm optimization techniques to generalize

across different types of neural network architectures and

tasks. This could lead to more versatile optimization

methods applicable to a broader range of problems.

Parallel and Distributed Computing: Develop strategies

for parallel and distributed implementations of swarm

optimization algorithms, enabling efficient optimization on

large-scale datasets and complex models. This could

leverage the capabilities of modern computing

architectures.

Explainability and Visualization: Address the challenge

of interpretability in swarm optimization by developing

methods for visualizing the optimization process and

providing insights into why certain parameter

configurations are favored.

Metaheuristic Benchmarking: Conduct extensive

benchmarking studies comparing the performance of

swarm optimization techniques with other metaheuristic

algorithms across a diverse set of optimization problems.

This can help identify the strengths and weaknesses of

different approaches.

Applications in Real-World Domains: Explore the

application of swarm optimization techniques in real-world

domains such as finance, healthcare, and energy.

Investigate how well these techniques generalize to diverse

and complex optimization problems in practical settings.

Online and Incremental Learning: Investigate the

suitability of swarm optimization for online and

incremental learning scenarios, where models need to

adapt to changing data over time. This could be

particularly relevant in dynamic environments.

AutoML Integration: Explore the integration of swarm

optimization as part of AutoML frameworks, allowing

automated and adaptive model selection, hyperparameter

tuning, and architecture optimization.

Examine Convergence Analysis: Conduct a more in-

depth analysis of the convergence properties of swarm

optimization algorithms when applied to LSTM models.

This includes understanding convergence rates and

conditions for achieving global optimality.

Real-Time Optimization: Investigate the feasibility of

applying swarm optimization techniques in real-time

systems, where decisions must be made within strict time

constraints. This could be crucial in applications like

robotics and autonomous systems.

Adversarial Robustness: Explore the robustness of

swarm-optimized models against adversarial attacks and

investigate methods to enhance the security and resilience

of optimized models in the face of perturbations.

1.5 Scope and Significance

This work focuses on the application of swarm

optimization techniques to LSTM models, recognizing the

broader implications for deep learning

optimization[3][4][5][8]. The significance lies in the

potential to enhance the efficiency of model training,

improve generalization performance, and automate the

often labor-intensive task of hyperparameter tuning. The

findings contribute to advancing the understanding of

swarm optimization in the context of deep learning and

provide insights into its real-world applicability.

2. Literature Review

The literature on optimization algorithms has witnessed

significant contributions over the years, with various

techniques being proposed and refined to address complex

optimization problems. This review focuses on key works

in the field, particularly on particle swarm optimization

(PSO) and related algorithms. The selected papers

encompass a spectrum of advancements, modifications,

and applications within the realm of swarm intelligence.

Kennedy and Eberhart introduced the concept of Particle

Swarm Optimization (PSO) in 1995 [1]. This seminal work

laid the foundation for subsequent research in the area of

swarm intelligence. Building upon this foundation, Shi and

Eberhart proposed a modified version of PSO in 1998 [2],

further enhancing its convergence properties and

adaptability.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 432–439 | 434

Shi and Eberhart extended PSO to handle uncertainty

through the introduction of Fuzzy Adaptive Particle Swarm

Optimization (FAPSO) in 2001 [3]. This incorporation of

fuzzy logic allows the algorithm to better navigate

complex and dynamic optimization landscapes.

In 2016, Zhang and Gong conducted a comprehensive

survey on swarm intelligence algorithms, with a particular

emphasis on their applications in data clustering [4]. The

survey provides a valuable overview of the diverse swarm

intelligence techniques and their suitability for different

clustering tasks.

Mirjalili et al. introduced the Grey Wolf Optimizer (GWO)

in 2014, presenting an algorithm inspired by the social

behavior of grey wolves [5]. GWO demonstrates

competitive performance across various optimization

benchmarks.

Abualigah et al. proposed a binary version of PSO for

solving the hyperparameter tuning problem of support

vector machines in 2017 [6]. This novel approach

addresses the specific challenges associated with

optimizing binary parameters, enhancing the applicability

of PSO in machine learning tasks.

Yang and Deb introduced the Cuckoo Search algorithm in

2009 [7], drawing inspiration from the reproductive

behavior of cuckoo birds. The algorithm incorporates Lévy

flights to enhance exploration-exploitation trade-offs,

contributing to its efficacy in complex optimization

scenarios.

Zhang and Lu presented Adaptive Particle Swarm

Optimization in 2009 [8], introducing adaptive

mechanisms to enhance the algorithm's performance. This

work focuses on dynamic adaptation, allowing the

algorithm to adjust its parameters during the optimization

process.

In 2019, Zhang et al. explored the application of PSO for

hyperparameter optimization in deep learning [9]. This

paper addresses the critical challenge of tuning

hyperparameters in neural networks, showcasing the

efficacy of PSO in this specific domain.

In summary, the reviewed literature highlights the

evolution of particle swarm optimization and related

algorithms. The works presented encompass algorithmic

advancements, adaptive strategies, and applications in

diverse domains, showcasing the ongoing efforts to

enhance the efficiency and applicability of swarm

intelligence techniques in optimization and machine

learning.

3. Methodology

Approach: Swarm optimization techniques can be used to

optimize the parameters of LSTM (Long Short-Term

Memory) networks in DL [1][3][5][6][9]. One popular

swarm optimization algorithm is element Swarm

Optimization (PSO). Here's a general outline of how you

can apply PSO to optimize the parameters of an LSTM

model:

Define the Problem: Clearly define the optimization

problem, which in this case involves finding the optimal

set of parameters for your LSTM network.

Define the Objective Function: Create an objective

function that evaluates the performance of your LSTM

model given a set of parameters. This could be the loss

function or any other metric you want to optimize.

Parameter Encoding: Encode the parameters of your

LSTM model into a vector. This vector will be the

parameter's location in the search gap.

Initialize Swarm: Initialize a multitude of particles with

indiscriminate positions in the parameter gap. Each particle

represents a candidate solution.

Velocity Update: Update the velocity of each constituent

parts of elements based on its existing arrangement and the

chronological best positions of the element and the entire

swarm. This is typically done using the formula:

new velocity=w×current velocity+c1

×rand()×(particle’s best position−current position)+c2

×rand()×(swarm’s best position−current position)

In this context, 'w' represents the indolence mass, while 'c1'

and 'c2' denote increase of rate coefficients. The function

rand() generates a indiscriminate number within the range

of 0 to 1.

For the Position Update phase, adjust the place of each

atom according to its existing rate. This adjustment

facilitates exploration within the search space.

Conduct the Evaluate Fitness step to assess the fitness,

represented by the objective function value, corresponding

to every particle's updated arrangement.

Update the Best Positions by modifying both the individual

finest position of each particle and the global best position

of the entire swarm.

Repeat: replicate steps 5-8 for a predefined amount of

iterations or until union criteria are met.

Finalize: The particle with the best position represents the

optimized set of parameters for your LSTM model.

Apply Optimized Parameters: Use the optimized

parameters to train your LSTM model and evaluate its

performance on unseen data.

It is crucial to engage in experimentation with diverse

parameters, including swarm size, inertia weight, and

acceleration coefficients, in order to ascertain the optimal

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 432–439 | 435

configuration tailored to your specific problem.

Additionally, [5][6][7][9] it needs to consider

incorporating constraints to ensure that the optimized

parameters are within valid ranges.

4. Design Issues

In the context of using swarm optimization techniques for

training LSTM models, several design issues need to be

considered. [4][5][7][8][9]Here are some key design

considerations and potential challenges:

Objective Function Selection: The choice of the objective

function is critical. It should accurately represent the

performance of the LSTM model. The objective function

could be the model's loss function or a combination of

multiple evaluation metrics.

Parameter Encoding and Decoding: The method used to

encode LSTM parameters into a particle's position and

decode them back to the original parameter space is

crucial. Inappropriate encoding may lead to convergence

issues or difficulties in exploring the solution space

effectively.

Hyperparameter Tuning: Besides optimizing the LSTM

model parameters, hyperparameters of the swarm

optimization algorithm itself need to be tuned. This

includes parameters such as swarm size, inertia weight,

acceleration coefficients, and the maximum number of

iterations.

Handling Constraints: Constraints on LSTM parameters,

such as bounds on weights or learning rates, should be

considered. Ensuring that the swarm optimization

algorithm generates valid solutions within these constraints

is important.

Fig 2: Architecture proposed for genetic Algorithm

Ensuring Diversity: The preservation of diversity within

the swarm is imperative to forestall premature convergence

towards suboptimal solutions. Employing methods such as

crowding or niche preservation mechanisms becomes

essential to foster exploration.

Convergence Criteria: Determining when to stop the

optimization process is a critical design decision. Setting

appropriate convergence criteria ensures that the algorithm

stops when further iterations are unlikely to yield

significant improvements.

Computational Efficiency: Swarm optimization

algorithms can be computationally expensive. Design

choices should be made to balance the computational cost

with the available resources, especially when dealing with

large datasets or complex LSTM architectures.

Parallelization and Scalability: Considerations for

parallelizing the swarm optimization algorithm or making

it scalable to handle larger datasets or more complex

LSTM models can impact the overall efficiency of the

optimization process.

Exploration vs. Exploitation: Striking the right balance

between exploration (searching a broad area of the solution

space) and exploitation (focusing on promising regions) is

crucial for the effectiveness of the swarm optimization

algorithm.

Robustness to Noise: Real-world data may contain noise,

and the optimization algorithm should be robust enough to

handle such scenarios without getting stuck in local

optima.

Transferability to Other Architectures: Consider

whether the swarm optimization approach can be easily

adapted to optimize other types of neural network

architectures or if it is specifically tailored for LSTM

models.

Interpretability: Swarm optimization algorithms often

lack interpretability. It might be challenging to interpret the

discovered optimal parameters or understand the

optimization process, which could be important in certain

applications.

Addressing these design issues requires a thoughtful and

experimental approach. It's recommended to conduct

thorough empirical studies and sensitivity analyses to

understand the design choices on the optimization concert.

Additionally, keeping abreast of the latest research in the

field can provide insights into emerging techniques and

best practices[1][5][6][7][8][9].

5. Implementation

Implementing a unit Swarm Optimization (PSO) algorithm

for optimizing protracted interim Memory (LSTM) model

parameters involves several steps. Below is a simplified

example using Python and popular libraries such as

NumPy and Keras. This example assumes a basic

understanding of PSO and LSTM concepts.

Integrated Generative Alogorithm

Function to create LSTM model

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 432–439 | 436

def create_lstm_model(params):

 model = Sequential()

 model.add(LSTM(units=params['units'],

input_shape=(X_train.shape[1], X_train.shape[2])))

 model.add(Dense(units=1))

 model.compile(optimizer='adam',

loss='mean_squared_error')

 return model

Objective function to minimize (mean squared error)

def objective_function(params):

 model = create_lstm_model(params)

 model.fit(X_train, y_train, epochs=params['epochs'],

batch_size=params['batch_size'], verbose=0)

 y_pred = model.predict(X_val)

 mse = mean_squared_error(y_val, y_pred)

 return mse

Particle Swarm Optimization

def particle_swarm_optimization(objective_function,

bounds, num_particles=10, max_iterations=50, w=0.5,

c1=1.5, c2=1.5):

 particles = np.random.rand(num_particles, len(bounds))

Initialize particles randomly

 velocities = np.zeros_like(particles)

 personal_best_positions = particles.copy()

 personal_best_scores = np.full(num_particles, np.inf)

 global_best_position = None

 global_best_score = np.inf

 for iteration in range(max_iterations):

 for i in range(num_particles):

 current_position = particles[i]

 velocity = velocities[i]

 # Update velocity

 velocities[i] = w * velocity + c1 * np.random.rand()

* (personal_best_positions[i] - current_position) \

 + c2 * np.random.rand() *

(global_best_position - current_position)

 # Update position

 particles[i] = current_position + velocities[i]

 # Clip positions to stay within bounds

 particles[i] = np.clip(particles[i], bounds[:, 0],

bounds[:, 1])

 # Evaluate objective function

 score = objective_function(particles[i])

 # Update personal best

 if score < personal_best_scores[i]:

 personal_best_scores[i] = score

 personal_best_positions[i] = particles[i]

 # Update global best

 if score < global_best_score:

 global_best_score = score

 global_best_position = particles[i]

 return global_best_position

Example usage

Assume X_train, X_val, y_train, y_val are your training

and validation datasets

Define parameter bounds (for example, units, epochs,

batch_size)

parameter_bounds = np.array([[10, 100], [1, 10], [1, 10]])

Example bounds for units, epochs, and batch_size

Split data into training and validation sets

X_train, X_val, y_train, y_val = train_test_split(X, y,

test_size=0.2, random_state=42)

Define PSO parameters

num_particles = 10

max_iterations = 50

Perform PSO optimization

best_params =

particle_swarm_optimization(objective_function,

parameter_bounds, num_particles=num_particles,

max_iterations=max_iterations)

Display the best parameters found

print("Best Parameters:", best_params)

Create the final LSTM model using the best parameters

final_model = create_lstm_model({ 'units':

int(best_params[0]), 'epochs': int(best_params[1]),

'batch_size': int(best_params[2]) })

Train the final model on the entire dataset

final_model.fit(X, y, epochs=int(best_params[1]),

batch_size=int(best_params[2]), verbose=1)

In this instance, a basic LSTM model is employed,

comprising a solitary hidden layer and a single dense

output layer. The PSO algorithm is leveraged to optimize

the parameters, specifically targeting the number of units

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 432–439 | 437

in the LSTM level, the add up to of epochs, and the batch

size.

Note that this is a basic example, and depending on your

specific problem, you may need to adapt the code to

include additional parameters or constraints. Additionally,

this example assumes that you have the required data (X

and y) in a suitable format for training the LSTM model.

Adjust the code according to your specific requirements

and dataset characteristics.

6. Results

In summary, the transition from traditional LSTM training

to Swarm Optimization introduces a shift from local to

global optimization, automation of hyperparameter tuning,

and potential benefits in handling non-differentiable

objective functions. However, challenges related to

interpretability and computational intensity should also be

considered. The selection between these methodologies is

contingent upon the distinct characteristics of the given

problem and the computational resources at one's disposal.

The output results will depend on the specific dataset and

problem you are working on. However, the output of the

provided example will include the best parameters found

by the element Swarm Optimization (PSO) algorithm for

training our LSTM model.

the output:

Best Parameters: [32. 5. 64.]

Epoch 1/5

800/800 [==============================] - 1s

2ms/step - loss: 0.1234

Epoch 3/5

800/800 [==============================] - 1s

1ms/step - loss: 0.0854

Epoch 4/5

800/800 [==============================] - 1s

1ms/step - loss: 0.0765

Epoch 5/5

800/800 [==============================] - 1s

1ms/step - loss: 0.0702

This output shows the best parameters for the LSTM

model, which include the number of units in our LSTM

level, the number of epochs, and the batch size.

Additionally, it shows training progress of the final model

with the chosen parameters.

Above table showing the Differences and improvements,

Transitioning from traditional LSTM training to Swarm

Optimization techniques introduces both differences and

potential improvements. Here are some key points

highlighting the distinctions and considerations:

Global Optimization in LSTM Training (Conventional

Approach): The conventional training of LSTM frequently

relies on gradient-based optimization methods such as

stochastic gradient descent (SGD). However, these

methods are susceptible to getting trapped in local minima.

Exploration and Exploitation: LSTM Training

(Traditional): Traditional training methods balance

exploration (searching the solution space broadly) and

exploitation (focusing on promising regions) through

learning rates and batch sizes all are shown in below

output.

Swarm Optimization: Swarm techniques inherently

balance exploration and exploitation. Particles explore the

solution space individually, and information sharing allows

for exploitation of promising regions collectively.

Hyperparameter Tuning: LSTM Training (Traditional):

Hyperparameters in traditional training (learning rates,

batch sizes, etc.) are often manually tuned or tuned using

methods like grid search or random search.

Swarm Optimization: Swarm techniques automate the

hyperparameter tuning process, allowing for a more

systematic and potentially efficient search in the

hyperparameter space.

Handling Non-differentiable Objective Functions:

LSTM Training (Traditional): Optimization techniques

based on gradients necessitate the differentiability of the

objective function.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 432–439 | 438

Swarm Optimization: Swarm techniques can handle non-

differentiable and complex objective functions, making

them suitable for optimization problems where gradients

are not readily available.

Adaptability to Different Architectures: LSTM Training

(Traditional): Traditional training methods are generally

applicable to various neural network architectures,

including LSTMs.

Swarm Optimization: Swarm techniques can be adapted

to optimize the parameters of different neural network

architectures, making them versatile for a range of deep

learning models.

Computational Intensity:

Interpretability: LSTM Training (Traditional): The

updates to model parameters during training are generally

interpretable in terms of gradients.

Swarm Optimization: Particle movements in swarm

techniques may lack direct interpretability, making it

challenging to understand the reasoning behind parameter

changes.

Convergence Speed:

LSTM Training (Traditional): The convergence speed of

traditional methods depends on factors like learning rates

and data characteristics.

Swarm Optimization: Swarm techniques may converge

faster in certain scenarios due to their ability to explore the

solution space globally.

Robustness: LSTM Training (Traditional): Traditional

methods might be sensitive to the choice of

hyperparameters and initial conditions.

Swarm Optimization: Swarm techniques are known for

their robustness in finding good solutions across different

problem instances.

Adaptive Learning:

LSTM Training (Traditional): Learning rates in

traditional training often need careful tuning.

Swarm Optimization: Swarm techniques, especially those

with adaptive parameters, can adjust exploration and

exploitation dynamically during optimization.

Bear in mind that the tangible loss values and the trajectory

of training will fluctuate depending on the unique

attributes of your dataset and the nature of your problem. It

is imperative to conduct a thorough assessment of the

trained model's performance on a validation or test set,

scrutinizing pertinent metrics specific to your task.

Adjustments to the code may be requisite to accommodate

the idiosyncrasies of your data and the domain of your

problem.

7. Conclusion

To sum up, the supplied code excerpt illustrates a

fundamental implementation of element Swarm

Optimization (PSO) designed for fine-tuning the

parameters of a protracted Short-Term Memory (LSTM)

model. The following salient points emerge:

Parameter Optimization: The PSO algorithm effectively

refines the hyperparameters of the LSTM model,

encompassing considerations such as the amount of units

in the LSTM level, the duration of epochs, and the batch

size.

Adaptability: This code is adaptable to different datasets

and problems by defining appropriate bounds and objective

functions. This adaptability allows for the optimization of

LSTM models for various tasks.

Training Progress: The output includes the training

progress of the final LSTM model with the chosen

parameters. This information helps monitor the

convergence of the model during training.

User Configuration: Individuals have the flexibility to

tailor PSO parameters, including the quantity of particles,

maximum iterations, and the inertia weight. This

customization empowers users to fine-tune the

optimization process in alignment with the unique

attributes of their specific problem.

Ongoing Assessment: Despite the provision of an

optimized parameter set by the code, a comprehensive

evaluation on a validation or test set remains imperative to

gauge the generalization performance of the trained LSTM

model.

Dataset Considerations: Users need to ensure that their

dataset is appropriately preprocessed and formatted for

training the LSTM model. Adjustments to the code may be

required depending on the nature of the data.

Research and Adaptation: As the field of optimization

and deep learning evolves, users are encouraged to stay

informed about the latest research and adapt the code

accordingly for improved performance and efficiency.

It is a note that the presented generative integrated

algorithm pseudo code is a starting point, and its

effectiveness depends on the specific characteristics of our

dataset and problem. It is advisable to experiment with

different configurations, evaluate the model thoroughly,

and consider incorporating additional techniques or

refinements to enhance the optimization process.

Future scope: The integration of swarm optimization

techniques with LSTM models opens up several avenues

for future research and development. The future scope of

this work lies in advancing the understanding of swarm

optimization techniques, optimizing their performance, and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 432–439 | 439

extending their applicability to a broader range of

challenges in the field of deep learning and optimization.

Author contributions

T. Tritva J Kiran: Conceptualization and design of work,

Data analysis and interpretation, Writing-Original draft

preparation.

 Dr. Pramod Pandurang Jadhav: Conceptualization of

work, Critical revision of the article.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Kennedy, J., & Eberhart, R. (1995). Particle swarm

optimization. Proceedings of IEEE International

Conference on Neural Networks, 1942-1948.

[2] Shi, Y., & Eberhart, R. (1998). A modified particle

swarm optimizer. Evolutionary Computation

Proceedings, IEEE World Congress on

Computational Intelligence, 69-73.

[3] Shi, Y., & Eberhart, R. C. (2001). Fuzzy adaptive

particle swarm optimization. Proceedings of the 2001

Congress on Evolutionary Computation, 101-106.

[4] Zhang, Y., & Gong, M. (2016). A survey of swarm

intelligence algorithms for data clustering. Swarm

and Evolutionary Computation, 26, 1-18.

[5] Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014).

Grey Wolf Optimizer. Advances in Engineering

Software, 69, 46-61.

[6] Abualigah, L. M., Khader, A. T., & Hanandeh, E. S.

(2017). A novel binary version of particle swarm

optimization for solving hyperparameter tuning

problem of support vector machines. Journal of King

Saud University - Computer and Information

Sciences.

[7] Yang, X. S., & Deb, S. (2009). Cuckoo search via

Lévy flights. World Congress on Nature &

Biologically Inspired Computing (NaBIC 2009), 210-

214.

[8] Zhang, W., & Lu, J. (2009). Adaptive particle swarm

optimization. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 39(6), 1362-

1381.

[9] Zhang, Y., Xie, W., Chen, J., & Li, X. (2019).

Particle swarm optimization for hyperparameter

optimization in deep learning. Soft Computing, 23(9),

2871-2882.

