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Abstract: Satellite images have extremely important applications in the domain of remote sensing, security, military, climate monitoring, 

disaster management etc. One of the key aspects of satellite image analysis happens to be object detection of satellite images which allows 

to access the context of the image and renders significant information. However, due to the enormous distance from which the image is 

captured, as well as noise and blurring effects, its is extremely difficult to attain high accuracy of object detection in case of satellite images. 

This paper presents a method to enhance the quality of satellite images through pre-processing prior to analysis using machine learning 

algorithms. Different noise categories affecting satellite images have been investigated and an iterative denoising approach has been 

developed for denoising. Further, a deep neural network model has been developed to identify objects from satellite images. It is shown 

that the proposed approach attains a classification accuracy of   92.243%, recall of 91.23%, specificity of 91.98%, precision of 90.943% 

and F-measure of 91.588% outperforming contemporary approaches in the domain. 
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1. Introduction 

Modern remote sensing relies heavily on satellite image 

transmission to link the vast reaches of Earth to global 

information hubs [1]. High-resolution satellite photos can be 

sent with ease thanks to these advanced technologies, which 

opens up a variety of uses for urban planning, disaster relief, 

and environmental monitoring. Satellite photography is sent 

to ground stations via a variety of communication channels, 

such as data transfer protocols and radio frequency signals, 

by orbiting satellites outfitted with cutting-edge sensors. 

These communication systems' dependability and efficiency 

are essential for prompt access to vital information, 

supporting decision-makers across a range of industries [2]. 

Whether tracking land cover changes, evaluating 

agricultural practices, or responding to natural disasters, the 

capacity to quickly and securely communicate satellite 

images expands our knowledge of the earth and facilitates 

well-informed global decision-making [3]. The satellite 

communication architecture is of fundamental importance 

in understanding the data transmission model of satellite 

images [4].  

The major blocks of the satellite communication 

architecture are discussed subsequently.  The architecture of 

satellite communication is made up of an intricate 

connection of parts and mechanisms intended to make it 

easier to send data across great distances using satellites in 

Earth's orbit. This architecture consists of a number of 

essential components, each of which is vital to maintaining 

effective and dependable communication [6]. 

Ground Stations: Strategically positioned on Earth's 

surface, ground stations form the cornerstone of satellite 

communication architecture. Large antennas are used by 

these stations to transmit and receive signals to and from 

satellites. Data transport is  

managed by ground stations, which act as an interface 

between satellite systems and terrestrial communication 

networks [7] 

Space Segment: The space segment consists of the actual 

satellites as well as any related subsystems including 

antennas, power systems, and transponders. Through the 

reception, amplification, and retransmission of signals from 

the ground stations back to Earth, the transponders are 

essential to the communication process. These components 

are made to endure the hostile environment of orbit and 

guarantee the satellite's continued operation [8]. 

Satellite: Satellites orbiting the Earth in various 

configurations such as geostationary or low Earth orbit. 

Geostationary satellites remain fixed over a specific point 

on the Earth's surface, enabling continuous communication 

with fixed ground stations. Low Earth orbit satellites, on the 

other hand, move rapidly but offer lower latency. Satellites 

are equipped with transponders, amplifiers, and antennas to 

receive, amplify, and retransmit signals [9] 

Control Segment: A control segment is necessary in the 

architecture of satellite communication in order to oversee 

and manage the satellite fleet. Ground-based control centres 

in charge of payload management, satellite trajectory 
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control, and overall system health monitoring are included 

in this section. To make sure the satellites stay in their 

assigned orbits and operate within predetermined bounds, 

operators utilise telemetry, tracking, and command (TT&C) 

systems to connect with the spacecraft [10]. 

User Terminal: User terminals are the endpoint devices 

that people, corporations, or organisations use to access 

satellite communication services. Satellite phones, VSAT 

(Very Small Aperture Terminal) systems, and other ground-

based devices are examples of these terminals. As the 

conduit between end users and the satellite communication 

network, user terminals send and receive signals to and from 

the satellites [11]. 

Satellite Uplink: As the transmission line from a ground-

based Earth station to the satellite in orbit, the uplink is an 

essential part of the architecture of satellite communication. 

During this process, the user's terminal sends data, audio, or 

other information, usually via the antenna of a ground 

station. The signal ascends through Earth's atmosphere until 

it reaches the transponder on the satellite, which picks it up, 

amplifies it, and sends it back to Earth. In order to establish 

communication links with satellites and deliver data for 

broadcast or relay, uplink transmissions are necessary [12]. 

Satellite Downlink: On the other hand, the transmission 

path from the satellite to the Earth station located on Earth 

is referred to as the downlink. After receiving the uplink 

signal, the satellite uses its transponders to process and 

amplify the data before sending it back to Earth [13]. After 

being received by the antenna of a ground station, the 

downlink signal is disseminated to end users or incorporated 

into terrestrial communication networks for additional 

processing. In order to complete the two-way 

communication link and convey information from satellites 

to users on the ground, downlink broadcasts are essential 

[14]. 

Transponders: Important components of the uplink and 

downlink procedures are satellite transponders. During the 

downlink, these electronic equipment retransmit the signals 

they received from the uplink on a different frequency. 

Transponders allow numerous signals to be broadcast 

simultaneously without interference in addition to 

amplifying the signals. In order to prevent signal collisions 

and effectively handle communication traffic between the 

satellite and Earth stations, they are set up with designated 

frequency bands [15]. 

The satellite communication architecture is depicted in 

figure 1 

 

Fig.1 The satellite communication architecture  

The next section discusses the importance and salient 

features of satellite imagery. 

2. Satellite Imagery  

Innovations in satellite image transmission are helping us 

monitor and manage Earth's resources and ecosystems more 

effectively as technology develops. High-resolution 

imagery of a variety of landscapes, from populated areas to 

isolated areas, are captured by satellites circling the earth, 

yielding a plethora of geospatial data. In industries like 

urban planning, agriculture, disaster relief, and 

environmental monitoring, these photos play a vital role. 

Large datasets are sent efficiently and securely through 

complex technologies and protocols used in the 

communication infrastructure enabling satellite picture 

transmission. In addition to providing real-time 

surveillance, satellite imagery forms the basis for extensive 

regional studies. Our knowledge of the dynamic Earth 

system is greatly enhanced by satellite image transmission, 

which is used for anything from monitoring changes in land 

cover to evaluating the effects of natural disasters [16]. As 

communication protocols and satellite technology continue 

to evolve, the world community can obtain useful insights 

from these complex visual information more quickly. 

Typically, the complexity of the satellite images arises out 

of the capturing mechanism as well as the inherent noise and 

disturbance in capturing, which make accurate object or 

context detection challenging [17].. 
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Fig.2 Example of a satellite image  

There are many different kinds of satellite pictures, and each 

has a distinct function in Earth observation. Optical images, 

such as Shortwave Infrared (SWIR) and Visible and Near-

Infrared (VNIR), are useful for environmental monitoring 

and land cover categorization. For uses like terrain mapping, 

radar images—especially Synthetic Aperture Radar 

(SAR)—offer all-weather capability. Applications like 

urban heat island monitoring benefit from the measurement 

of temperature fluctuations provided by infrared pictures, 

such as Thermal Infrared (TIR). Hyperspectral and 

multispectral photos combine information from several 

spectral bands to present a full picture. While stereo photos 

help create 3D models, panchromatic images improve 

spatial resolution. Further insights into Earth's properties 

may be gained via topographic maps, views of the seas and 

atmosphere, and photos of evening lights. These photos 

support a variety of disciplines, such as urban planning, 

agriculture, disaster relief, and climate studies. Advances in 

satellite technology continue to broaden the range and 

quality of available imagery [18]. 

2.1 Salient features of Satellite Images 

A variety of characteristics come together to form satellite 

image communication, which makes it possible to transfer 

important visual data from orbiting satellites to Earth-based 

receivers in an effective and dependable manner. The 

capacity to send photos across great distances, getting over 

geographical restrictions and offering a worldwide view, is 

one important advantage. Large datasets may be exchanged 

securely and seamlessly thanks to the communication 

infrastructure enabling satellite picture transmission, which 

is outfitted with strong data transfer protocols. This is 

especially important for applications that need to monitor 

things in real time and share information quickly. 

Furthermore, satellite communication systems may adjust to 

different frequency bands, providing flexibility in data 

transfer according to the particulars of the pictures being 

transmitted [19]..  

Another significant characteristic is the capacity to transmit 

through various weather conditions, including cloud cover, 

which guarantees uninterrupted data transmission even in 

the face of atmospheric disturbances. In addition, security 

issues are addressed by using encryption and authentication 

systems to protect the confidentiality and integrity of the 

pictures that are transferred. These characteristics together 

support the dependability and efficiency of satellite picture 

transmission in a variety of applications, including scientific 

research, environmental monitoring, and disaster response, 

as satellite communication technologies continue to 

progress [20].. 

2.2 Challenges Associated with Satellite Imagery 

Satellite image detection faces several challenges, reflecting 

the complexity of processing and interpreting vast amounts 

of diverse and high-dimensional spatial data. Some of the 

existing challenges include [21]: 

Data Quality and Availability: 

Limited Labelled Data: It might be difficult to find labelled 

datasets for deep learning model training, particularly for 

uncommon and specialised classes. Inadequate data could 

make it more difficult for the model to generalise. 

Data heterogeneity: The consistency and calibre of satellite 

images can be impacted by differences in picture resolution, 

sensor attributes, and atmospheric circumstances. 

Computational Resources: 

High Computational Demands: Significant computational 

resources are required for training deep neural networks, 

especially when working with huge datasets. For certain 

researchers and organisations, access to strong computer 

infrastructure could be a limitation. 

Interclass Variability: 

Difficult Land Cover Types: The surface of the Earth 

displays a variety of complex land cover types and 

complicated patterns. It has always been difficult to create 

models that can discriminate between complicated classes 

with minute spectral deviations [22]. 

Time and Space Variability: 

Dynamic Environments: Weather fluctuations, seasonal 

variations, and temporal dynamics all pose difficulties for 

monitoring and detection, particularly when using static 

models that could find it difficult to adjust to changing 

circumstances. 

Generalisation and Transferability: 

Transfer Learning Challenges: Because different land cover 

types exist in different geographic locations, it can be 

difficult to adapt models trained in one place to another. 

Generalizing models across diverse settings remains a 

challenge. 
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Semantic Gap: Semantic Understanding: It's still difficult 

to create models that comprehend situations more deeply 

than just pixel-by-pixel identification, including item 

connections and context. 

Interference and Noise: Atmospheric Conditions: The 

quality of data and the   effectiveness of detection algorithms 

can be negatively impacted by cloud cover and atmospheric 

interference, which can obfuscate satellite pictures. 

Sensor Noise: Differences in sensor properties can cause 

noise, which reduces the precision of image detection 

algorithms [23]. 

Real-Time Processing: 

Operational Latency: Algorithms that may have high 

computing demands and may not be appropriate for quick, 

on-the-spot analysis may have difficulties in some 

applications that call for real-time or almost real-time 

processing. 

To tackle these issues, multidisciplinary approaches are 

needed, including developments in machine learning 

algorithms, technology for remote sensing, data 

standardisation, and cooperative projects to provide 

extensive and varied datasets for training and assessment. 

Overcoming these obstacles will help satellite image 

detection applications become more widely used and more 

successful as technology and approaches advance [24]. 

3. Methodology 

The methodology developed in this paper focusses on 

addressing the inherent limitations in object detection of 

satellite images along with research gap present in existing 

literature. The major challenges inherent to satellite imagery 

are [25]-[26]: 

1) Extremely large distance of the satellite from the earth 

with the atmospheric envelope resulting in considerable 

refraction. 

2) Variation in material constants in the atmospheres such 

as the relative permittivity (𝜀𝑟), permeability (𝜇𝑟) and 

conductivity (𝜎) causing variations in EM wave 

characteristics resulting in image distortions.  

3) Blurring, noise and degradation effects resulting out of 

electronic noise (Gaussian), sudden spikes in equipment 

currents and voltages (salt and pepper), multiplicative 

additions to image pixels (Speckle) and inadequacy of 

captured pixels to recreate image (Poisson).  

4) Blurring effects in images limiting the process of 

segmentation and masking of captured images. 

The machine learning and deep learning limitations often 

emanate from potential overfitting of deep learning models 

to the vanishing gradient problem. Moreover, imbalanced 

datasets in certain categories of satellite images render 

inaccuracies in classification. The extreme variability in 

satellite image datasets in terms of capturing time, incident 

lighting, atmospheric characteristics and type of objects 

being captured  may lead to inaccuracies to deep learning 

models as the feature extraction mechanism of an 

architecture takes away the control of feature selection.  

To address the aforesaid issues, this paper proposes a two 

fold approach which entails image pre-processing prior to a 

machine learning based approach for identification/ 

classification. 

3.1 Contrast Enhancement 

Contrast enhancement plays a key role in the subsequent 

segmentation process and final classification. Typically, the 

background enhancement is based on the improvement of 

image contrast as one of the most important statistical 

features of the image. The contrast of an image 𝐼(𝑖, 𝑗) is 

computed as [27]: 

𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕 = √
𝟏

𝒎𝒏
∑ [𝑿(𝒊, 𝒋) − 𝑴𝒆𝒂𝒏(𝒊, 𝒋)]𝟐𝒎,𝒏

𝒊,𝒋                        

(1) 

Here, 

𝑋 denotes the original image. 

(𝑖, 𝑗) denote the pixels. 

𝑀𝑒𝑎𝑛 denotes the average value of the pixels 

The contrast enhancement process, the statistical 

dissimilarity between the actual Region of Interest (ROI) 

and the background is maximized, thereby increasing the 

contrast of the image. This is done by maximizing the 

standard deviation of the mean pixel values through a cost 

function defined as: 

Algorithm: 

{ 

𝒇𝒐𝒓 (𝒊 = 𝟏: 𝒎) & (𝒋 = 𝟏: 𝒏) 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 (𝑪𝝈 = √
𝟏

𝑵
∑ (𝑿𝒊 − 𝝁)𝟐𝑵

𝒊  )     

And  

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 (𝑪𝒄𝒐𝒓𝒓 = ∑
(𝒊−𝒖𝒙)(𝒋−𝝁𝒋)𝑷𝒋𝒙,𝒚

𝝈𝒙𝝈𝒚

𝒎,𝒏
𝒊,𝒋  ) 

} 

Here, 

Cσ denotes the standard deviation of based Cost Function. 

Ccorr  denotes the correlation among pixel patches. 

The idea here is to simultaneously enhance the contrast 

difference by maximizing the standard deviation among 

the ROI and background and minimizing the cross-

correlation among the ROI and background. 
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The subsequent step is the illumination correction applied to 

satellite images based on a Gaussian Kernel function. The 

illumination correction reduces the probability of false 

contour identification due to variability in captured pixel 

intensity.  In this approach, a Gaussian Kernel Function is 

used for illumination correction as it is effective in 

normalizing the dynamic range of the image intensities, and 

is mathematically expressed as [28]: 

 𝑮(𝒙, 𝒚) = 𝒌𝒆
−(𝒙𝟐+𝒚𝟐)

𝒔𝟐                                                  (2) 

Here, 

𝑮(𝒙, 𝒚)is the Gaussian Kernel. 

𝒌represents the normalizing co-efficient. 

𝒔represents the scaling co-efficient of the kernel. 

(𝒙, 𝒚)represent the spatial co-ordinates. 

The reflection co-efficient value 𝐼𝑅(𝑥, 𝑦) is estimated by 

convolving the input image and the Gaussian function in the 

periphery bound the contour ′𝐶′. The weight co-efficient 𝒘is 

updated throughout the contour for the number of scales 𝒊 =

𝟏: 𝒏. Further a linear transform to adjust the objectively 

captured image 𝐼 and the corrected image 𝐼𝐶  is expressed as: 

𝑰𝑪 = 𝜷𝟏𝒍𝒐𝒈𝒆𝑰 + 𝜷𝟐                                              (3) 

Here, 

𝐼 and 𝐼𝐶  corresponds to the physically captured and 

illumination corrected images respectively.  

𝜷𝟏 𝒂𝒏𝒅 𝜷𝟐are correction constants]. 

The next process is the computation of the two-dimensional 

spatial correlation given by: 

𝑪(𝒙, 𝒚) =
𝑰(𝒙,𝒚)−𝑰𝑪(𝒙,𝒚)

𝑰(𝒙,𝒚)−𝑰𝑩(𝒙,𝒚)
. 𝒌                                      (4) 

Here, 

𝐶 represents the correlation. 

𝑘 denotes the normalizing co-efficient. 

𝐼 denotes the original image 

𝐼𝐶  denotes image correlation 

𝐼𝐵 denotes image background 

The histogram normalization is computed based on the 

difference in the Eigen values of the original and corrected 

image given by: 

|𝒌𝑰 − 𝑰𝑪|                                                  (6) 

The covariance of the image can be computed using: 

𝑪𝑽 =
𝒎𝒆𝒂𝒏 [𝑰(𝒙,𝒚)−𝑰𝑪(𝒙,𝒚)]

|𝒌𝑰−𝑰𝑪|
                                     (7) 

Here,  

𝑚𝑒𝑎𝑛 denotes the average operation. 

The subsequent process is to add the product of the weight 

matrix and normalized co-variance co-efficient to the 

originally corrected image: 

𝑵𝑰 = 𝑰(𝒙, 𝒚) − 𝑰𝑪{(𝒙, 𝒚)} + 𝒎𝒆𝒂𝒏(𝒘 ∗ 𝑪𝑽)]    (8) 

Here, 

𝑁𝐼 denotes the normalized image. 

𝑤 denotes the correlation weights. 

3.2 Segmentation and Masking 

Contrary to the segmentation process for relatively regular 

shapes exhibiting smooth changes in pixel boundaries, 

satellite images often exhibit extremely variability in pixel 

boundaries making the computation of the conventional 

radial gradient infeasible. This paper presents a hybrid 

entropy based Ostu segmentation process. Primarily, the 

gradient maximizing function is computed as: 

𝒈 = 𝑴𝒂𝒙[𝑬(
𝝏

𝝏𝒓
∮

𝑰(𝒙,𝒚)

𝝁(𝒊,𝒋)
𝒅𝒔|)]

𝒙𝒇

𝒙𝒊
                                 (9) 

Here, 

E denotes the entropy of the closed region given by: 

𝑬 = −𝑷(𝑰𝒊,𝒋)𝒍𝒐𝒈𝟐𝑰𝒊,𝒋                                             (10) 

𝑀𝑎𝑥 denotes the maximizing operation. 

𝜕

𝜕𝑟
 denotes the radial gradient over the closed contour ‘S’ 

𝑑𝑠 denotes the differential area. 

𝜇(𝑖, 𝑗) denotes the mean pixel value. 

The idea here is to maximize the average information 

(Entropy) of the segmented region within the closed contour 

for segmentation ‘R’. This hybrid approach combines both 

the adaptive Ostu thresholding as well as an entropy based 

segmentation (probabilistic segmentation) so as to 

effectively separate out the region of interest not only based 

on pixel statistics but also based on region wise information 

statistics [29].   

The masking is done to the ROI of effected patches, for 

which the pixel correlation is computed for a patch of 

images wherein the segmentation is to be applied and is 

expressed as: 

𝑪𝒑𝒂𝒕𝒄𝒉 = ‖𝑷𝑻 − 𝑷𝑪‖𝟐                                                  (11) 

Here, 

𝑪𝒑𝒂𝒕𝒄𝒉denotes the squared Euclidean norm for the patch. 

𝑷𝑻denotes the target patch. 

𝑷𝑻denotes the candidate patch. 

Next, the pixels are weighed averages of the existing pixels 

satisfying the interpolation condition given by: 
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𝒁 = 𝒂𝒓𝒈𝒎𝒊𝒏(𝑷𝑻 − 𝑷𝑪) ≪ 𝒎𝒆𝒂𝒏|𝑷𝑺|                         (12) 

Here, 

𝑍 is the minimum interpolated difference co-efficient. 

𝒎𝒆𝒂𝒏|𝑷𝑺|is the average pixel magnitude of the patch. 

Thus the pest infested patch for segmentation and remaining 

part to be fused can be done using the consecutive standard 

deviations given by: 

𝝁 +
𝝈𝟐

(𝝈+𝟏)𝟐                                              (13) 

Here, 

𝜇 is the average pixel values. 

𝜎 is the standard deviation. 

3.3 Object Identification: 

The final step is to design a neural network model for 

identification of the particular object or context from the 

composite image. While there are several machine learning 

and deep learning based approaches for object detection, 

most of the approaches in the context of satellite image 

identification face the challenge of imbalanced datasets and 

high variability among pixel characteristics. This approach 

presents a deep neural network based approach employing 

the Baye’s probabilistic optimization. In case the training 

vector contains 𝐾 samples, (𝑓1 … . . 𝑓𝐾) and corresponding 

weights to them, (𝑊1 … . 𝑊𝐾), the weighted centres of the 

positive and negative samples in the complete feature space 

can be computed as: 

𝑪𝒆𝒏𝒕𝒆𝒓𝑾
𝑷 =

𝟏

|𝑷|
∑ 𝑾(𝒇). 𝒇𝑭𝝐𝑷                                       (14) 

𝑪𝒆𝒏𝒕𝒆𝒓𝑾
𝑵 =

𝟏

|𝑵|
∑ 𝑾(𝒇). 𝒇𝑭𝝐𝑵                                            (15) 

The in class and within class scatter variance metrics can be 

computed as: 

𝑉𝐼 = (𝑪𝒆𝒏𝒕𝒆𝒓𝑾
𝑷 − 𝑪𝒆𝒏𝒕𝒆𝒓𝑾

𝑵 ). (𝑪𝒆𝒏𝒕𝒆𝒓𝑾
𝑷 − 𝑪𝒆𝒏𝒕𝒆𝒓𝑾

𝑵 )𝑻       

(16) 

𝑽𝑾 =  ∑ 𝑾(𝒇). (𝑭 − 𝑪𝒆𝒏𝒕𝒆𝒓𝑾
𝑷

𝑭𝝐𝑷 )(𝑭 − 𝑪𝒆𝒏𝒕𝒆𝒓𝑾
𝑷 )𝑻 +

 ∑ 𝑾(𝒇). (𝑭 − 𝑪𝒆𝒏𝒕𝒆𝒓𝑾
𝑵

𝑭𝝐𝑵 )(𝑭 − 𝑪𝒆𝒏𝒕𝒆𝒓𝑾
𝑵 )𝑻                         

(17) 

 The projection vector 𝒑 can be iteratively updated to 

generated feature combinations (which can discriminate 

among classes) based on the condition given as 

𝒑 = 𝒂𝒓𝒈 𝒎𝒂𝒙 (𝑱(𝒘) = 𝒂𝒈𝒓 𝒎𝒂𝒙 
𝒘𝑻𝑽𝑾.𝒘

𝒘𝑻𝑽𝑰.𝒘
                                   

(18) 

Optimizing equation (18) generates the best feature 

combinations employing the penalty factor given by: 

The penalty factor is defined as 𝝆 =
𝝁

𝒗
  and is used to update 

the weights of the networks such that the modified 

regularized cost function: 

𝑭(𝒘) = 𝝁𝒘𝑻𝒘 + 𝒗[
𝟏

𝒏
∑ (𝒑𝒊 − 𝒂𝒊)

𝟐𝒏
𝒊=𝟏 ]  attains a minima,    

(19) 

If (𝜇 ≪ 𝑣): Network error are generally low.  

else if (𝜇 ≥ 𝑣): Network errors tend to increase, in which 

case the weight magnitude should be reduced so as to limit 

errors (Penalty) [31]. 

The proposed algorithm is presented next. 

Proposed Algorithm: 

Start 

{ 

Step.1 Split data into training and testing samples in the 

ratio of 70:30. 

Step.2: Apply Contrast Enhancement based on: 

𝒇𝒐𝒓 (𝒊 = 𝟏: 𝒎) & (𝒋 = 𝟏: 𝒏) 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 (𝑪𝝈 = √
𝟏

𝑵
∑ (𝑿𝒊 − 𝝁)𝟐𝑵

𝒊  )     

𝒂𝒏𝒅  

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 (𝑪𝒄𝒐𝒓𝒓 = ∑
(𝒊−𝒖𝒙)(𝒋−𝝁𝒋)𝑷𝒋𝒙,𝒚

𝝈𝒙𝝈𝒚

𝒎,𝒏
𝒊,𝒋  ) 

} 

Step.3: Based on the Gaussian Kernel function, compute 

the 2-D pixel correlation as: 

𝑪(𝒙, 𝒚) =
𝑰(𝒙,𝒚)−𝑰𝑪(𝒙,𝒚)

𝑰(𝒙,𝒚)−𝑰𝑩(𝒙,𝒚)
. 𝒌          

Step.4 Obtain normalized image as: 

𝑵𝑰 = 𝑰(𝒙, 𝒚) − 𝑰𝑪{(𝒙, 𝒚)} + 𝒎𝒆𝒂𝒏(𝒘 ∗ 𝑪𝑽)]                 

Step.5: Apply segmentation based on the Entropy-Ostu 

hybrid approach as: 

𝒈 = 𝑴𝒂𝒙[𝑬(
𝝏

𝝏𝒓
∮

𝑰(𝒙,𝒚)

𝝁(𝒊,𝒋)
𝒅𝒔|)]

𝒙𝒇

𝒙𝒊
                                  

Step.6: Mask image based on the condition: 

𝒁 = 𝒂𝒓𝒈𝒎𝒊𝒏(𝑷𝑻 − 𝑷𝑪) ≪ 𝒎𝒆𝒂𝒏|𝑷𝑺|                          

Step.7: Defined cost function and set tolerance as: 

𝑪 =
𝟏

𝒏
∑ (𝒑𝒓𝒆𝒅𝟏 − 𝒚𝒊)

𝟐𝒏
𝒊=𝟏    

𝑪𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆 = 𝟏𝒆−𝟔   

Step.8 (𝒇𝒐𝒓 𝟏: 𝒎𝒂𝒙 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔), 

Optimze: 
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𝒑 = 𝒂𝒓𝒈 𝒎𝒂𝒙 (𝑱(𝒘) = 𝒂𝒈𝒓 𝒎𝒂𝒙 
𝒘𝑻𝑽𝑾. 𝒘

𝒘𝑻𝑽𝑰. 𝒘
 

And 

𝑭(𝒘) = 𝝁𝒘𝑻𝒘 + 𝒗[
𝟏

𝒏
∑(𝒑𝒊 − 𝒂𝒊)

𝟐

𝒏

𝒊=𝟏

 

𝒊𝒇 𝒊 =

= 𝒎𝒂𝒙 𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 𝒐𝒓 𝑪 𝒔𝒕𝒂𝒕𝒃𝒊𝒍𝒊𝒛𝒆𝒔 𝒊𝒏 𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆 

Stop training 

𝒆𝒍𝒔𝒆 (𝒊𝒕𝒆𝒓𝒂𝒕𝒆 𝒐𝒗𝒆𝒓 𝒔𝒕𝒆𝒑𝒔 𝟕 𝒂𝒏𝒅 𝟗 

𝒆𝒏𝒅 𝒊𝒇. 

} 

Stop. 

4. Experimental Results 

The experiment is conducted on the benchmark TGRS-

HRRSD, DOTA-v1.5 and RSOD datasets. The data is split 

randomly in the ratio of 70:30. The number of image for 

testing for the 3 datasets are 900, 700 and 1000 for the 3 

datasets respectively.The simulation has been conducted on 

Matlab 2022a on a PC with an Intel i5-9300H CPU with 

NVIDIA GeForce GTX 1650 GPU. The simulation results 

are presented next: 

 

Fig.3 Original Image 

 

 

Fig.4 Illumination Correction 

 

Fig.5 Grayscale Image 

 

Fig.6 Background Estimation 
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Fig.7 Contrast Enhanced Image 

 

Fig.8 Thresholding at 30% 

 

 

Fig.9 Thresholding at 60% 

 

Fig.10 Hybrid Ostu-Entropy Segmentation  

 

 

Fig.11 Segmentation Inversion 

 

Fig.12 Masking 
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Fig,13 Confusion Matrix for Dataset-1 

 

 

Fig,14 Confusion Matrix for Dataset-2 

 

Fig,15 Confusion Matrix for Dataset-3 

 

 

Fig.16 Detection of Water Body 

 

 

Fig.17 Detection of Forest 

 

 

Fig.18  Detection of Buildings 

Discussions: 
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This paper presents a rigorous image-pre processing 

mechanism based on contrast enhancement, illumination 

equalization and Entropy-Ostu segmentation and masking. 

Figure 3 presents the original RGB image and figure 4 

presents its illumination corrected counterpart. Figure 5 

presents the grayscale version of the image. Figure 6 

presents the contrast enhanced image.  

Figure 7 and 8 depict the thresholding process prior 

segmentation at 30% and 60% threshold values. It can be 

observed from the images that while 30% threshold 

incorporates more background objects, 60% threshold 

eliminates several details of the boundary. Hence, a need for 

an optimal segmentation approach is needed which is 

presented in figure 9, in terms of the Entropy-Ostu hybrid 

proposed in this paper. An invertible segmentation of the 

method is presented in figure 10, which can alternatively 

used in case the background is to be identified instead of the 

conventional ROI in the image. Figure 12 depicts the 

masking of the image.  

Figures 13, 14 and 15 depicts the confusion matrix for the 3 

datasets respectively. The confusion matrix gives us the 

values of true positive (TP), true negative (TN), false 

positive (FP) and false negative (FN) respectively. These 

metrics allow us to compute the following performance 

metrics: 

Accuracy: 

𝑨𝒄 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
                                                  (20) 

Sensitivity/Recall: 

𝑺𝒆 𝒐𝒓 𝑹𝒆 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
                                                  (21)   

Precision: 

𝑷𝒓 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
                                                           (22) 

Specificity: 

𝑺𝒑 =
𝑻𝑵

𝑻𝑵+𝑭𝑷
                                                          (23) 

The F-measure is computed as: 

𝑭 − 𝑴𝒆𝒂𝒔𝒖𝒓𝒆 = 𝟐.
𝑷𝒓.𝑹𝒆

𝑷𝒓+𝑹𝒆
                                       (24) 

Here, 

(TP): True Positive 

(TN): True Negative 

(FP): False Positive 

(FN): False Negative 

 

 

 

Table.1 Summary of Obtained Results 

Para

meter 

Accur

acy% 

Sensit

ivity 

Or 

Recall

% 

Specific

ity% 

Precisi

on% 

F-

Meas

ure 

Datas

et-1 

92.22 92.4 91.12 88.75 91.75

5 

Datas

et-2 

91.71 90.00 93.1 93.42 91.52 

Datas

et-3 

92.8 91.29 91.72 90.66 91.49 

Overa

ll 

92.243 91.23 91.98 90.943 91.58

8 

 

The proposed approach attains a classification accuracy of 

92.243%, recall of 91.23%, specificity of 91.98%, precision 

of 90.943% and F-measure of 91.588% and an average 

measure across all the 3 datasets. As an illustration, the 

simple classification for prototype testing is presented in 

figures 16, 17 and 18 respectively which shows that model 

classifying new images into categories of waterbody, forest 

and buildings. 

Table.2 Comparison with Previous Work 

Authors Source Approach Mean 

Accuracy

% 

Yan et al. MDPI, 

2021 

Faster R-

CNN 

75.86 

Yang et al. MDPI, 

2022 

RS-YOLOX 91.52% 

Haryono et 

al. 

Wiley, 

2023 

ResNeXT 89.41 

Laiyay et al. Springer

, 2023 

CNN-SVM 

CNN-RF 

LinkNet-

ResNet 

81% 

82% 

87.4% 

Miroszewsk

i et al 

IEEE, 

2023 

Quantum-

Kernel 

Support 

Vector 

Machines 

91.9% 

Proposed Approach Ostu-

Entropy 

Segmentatio

n with Deep 

Net with 

Bayes 

Optimization 

92.243% 

 

A comparative analysis with contemporary approaches has 

been presented w.r.t. noteworthy contribution in the field 

and is cited in table 2. It can be observed that the 

conventional approaches typically adopted for satellite 
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object identification are the variants of the convolutional 

neural network (CNN) such as YOLO, ResNet, variants of 

the SVM,  and hybrid models such as CNN-SVM, CNN-RF 

etc. However, the proposed approach outperforms the 

baseline contemporary approaches in terms of classification 

accuracy. 

5. Conclusion 

This paper focusses on developing a technique which can 

address the challenges inherently associated with satellite 

object detection. The various types of noise and 

disturbances along with their causes has been discussed in 

this paper. The paper focusses on developing a technique 

which can effectively perform illumination correction and 

contrast enhancement prior to the segmentation and 

masking processes. A hybrid entropy-Ostu segmentation 

technique has been developed in this paper. Contrary to the 

conventional segmentation processes, this approach 

combines an entropy based approach along with maximum 

gradient to separate the image ROI (object) from the 

background, allowing a more refined separation of the 

actual ROI compared to the conventional maximal gradient 

or entropy based segmentation applied alone. The 

classification is done employing a deep neural network 

based on Bayes optimization combining optimal features for 

training, with a reward/penalty for the gradient moving 

towards/away from convergence in each iteration. This 

allows for a faster convergence compared to conventional 

CNN variants such as AlexNet, VGGNet, YOLO etc. by 

targeting the movement of the maximal gradient along 

convergence. The overall accuracy of the proposed 

classification has been shown to be better compared to 

previously existing contemporary approaches thereby 

proving the efficacy of the proposed approach. 

The future directions of this research may be focused on a 

separate noise removal mechanism for the satellite images 

combined with DeepNets. 
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