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Abstract: As data security continues to change quickly, protecting privacy has become more important than ever. This paper explores 

privacy-preserving tactics and provides a thorough examination of two essential methods: Encryption Algorithm for Hybrid Elliptic 

Curve Cryptography (ECC) with Group-Based Anonymization. Presenting a useful framework for data security performance evaluation 

is the main objective. Group-Based Anonymization preserves anonymity while retaining data utility by grouping individuals together 

under the tenet of collective identity preservation. The programme uses an advanced grouping technique to provide the best possible 

trade-off between data usability and privacy protection. The paper focus on strong cryptographic solution that combines the advantages 

of symmetric and asymmetric encryption is the Hybrid ECC Encryption Algorithm. This hybrid solution solves the computational issues 

related to conventional ECC methods while simultaneously improving data transfer security. Important parameters including attack 

resistance, communication overhead, and computational efficiency are included in the performance evaluation. The paper aims to provide 

insights into the advantages and disadvantages of each technique by carefully examining these factors. This study adds to the current 

conversation about privacy and data security by offering a sophisticated insight into the complex interactions between hybrid ECC 

encryption and group-based anonymization. Adopting such extensive privacy-preserving methods becomes essential for protecting 

sensitive information in numerous fields, as data remains a crucial asset in the digital world. 
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1. Introduction 

As data collection and interchange become more 

widespread, protecting sensitive data's privacy and 

security has grown more difficult. Strong privacy-

preserving measures are essential as more and more 

people and organisations entrust an increasing quantity 

of data to digital platforms. The goal of this research is to 

further the development of efficient performance 

evaluation in the field of data security by thoroughly 

examining two innovative methods: group-based 

anonymization and a hybrid elliptic curve cryptography 

(ECC) encryption algorithm. The emergence of big data 

has completely changed how people use, analyse, and 

share information. But with all of this digital change, 

there are now worries about people's privacy and the 

security of sensitive data. In the face of sophisticated 

cyber threats and changing privacy legislation, traditional 

data protection approaches frequently prove inadequate 

[1]. In order to tackle these obstacles, creative 

approaches are essential, and this research explores the 

nuances of two such approaches. A privacy-preserving 

method based on the idea of collective identity 

preservation is group-based anonymization. Essentially, 

people are combined into groups, adding a degree of 

anonymity that protects individual identities without 

compromising the usefulness of the information. The 

principal concept is masking personal data inside a 

shared framework, achieving a careful equilibrium 

between data accessibility and privacy protection. The 

purpose of this study is to clarify the methods by which 

Group-Based Anonymization maintains this delicate 

balance and to provide insight into how effective it is as 

a defence against identity theft and unauthorised access. 

The study also examines the Hybrid ECC Encryption 

Algorithm, a cryptographic technique intended to 

strengthen data transmission against possible threats. 

Unlike traditional ECC algorithms, this hybrid approach 

combines the best aspects of symmetric and asymmetric 

encryption systems. Secure key exchange is a benefit of 

asymmetric encryption, but symmetric encryption excels 

in speed and efficiency. The Hybrid ECC Encryption [9] 

Algorithm combines these advantages to try to overcome 

the computational difficulties that come with 

conventional ECC techniques, offering a stronger 

defence against illegal access and data breaches. The 

combination of these two privacy-preserving techniques 

is not accidental; rather, it is a conscious attempt to 

balance and enhance their individual shortcomings. 

Establishing a coherent and flexible framework that is in 

line with the ever-changing landscape of data security 
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threats is the aim. This study aims to close the gap 

between theory and practical application in an 

environment where threats are always changing. A 

holistic approach is necessary. An essential component 

of this research is evaluating these techniques' 

performance. A detailed grasp of the practical effects of 

implementing Group-Based Anonymization and the 

Hybrid ECC Encryption Algorithm is provided by the 

careful analysis of metrics like computing efficiency, 

communication overhead, and attack resistance. This 

assessment goes beyond theoretical concerns in an effort 

to provide useful information that can guide decision-

making across a range of industries where data security 

is a top priority. 

The importance of protecting sensitive data cannot be 

emphasised as long as technology keeps developing [2]. 

With its thorough investigation and analysis, this study 

adds to the current conversation about privacy in data 

security. It seeks to give a basis for the creation of 

specialised and successful privacy-preserving measures 

by dissecting the intricacies of Group-Based 

Anonymization and the Hybrid ECC Encryption 

Algorithm. By doing this, the research aims to support 

both individuals and organisations in their quest to 

leverage the advantages of data-driven insights while 

guaranteeing the privacy and accuracy of the data they 

entrust to digital systems. 

The major contribution of paper is given as: 

• Two cutting-edge techniques for protecting 

sensitive data in the digital age are presented in this 

paper: group-based anonymization and a hybrid 

ECC encryption algorithm. Both are introduced and 

thoroughly examined. 

• The paper study provides a sophisticated 

knowledge of Group-Based Anonymization's 

efficacy in disguising individual identities within a 

collective framework, offering insights into how it 

strikes a delicate balance between privacy 

preservation and data usability. 

• Evaluation of the Hybrid ECC Encryption 

Algorithm, a cryptographic solution that mixes 

symmetric and asymmetric encryption, makes a 

significant contribution to the discipline. By 

strengthening defences against unauthorised access 

and data breaches and tackling computing 

problems, this hybrid strategy seeks to strengthen 

data transmission. 

2. Related Work 

The need to safeguard confidential data and maintain 

privacy has led to the development of numerous creative 

tactics as the digital environment keeps changing. The 

vast field of privacy-preserving methods is covered in 

this survey of the literature, with two key strategies 

Group-Based Anonymization and the Hybrid Elliptic 

Curve Cryptography (ECC) Encryption Algorithm being 

highlighted. This part attempts to provide a thorough 

overview of the present state of research, identify gaps, 

and establish the groundwork for the analysis that 

follows by surveying related work in the field [3]. 

The increasing worries about data security and personal 

privacy have led to a boom in interest in privacy-

preserving techniques. When faced with new challenges, 

traditional approaches can prove ineffective, which leads 

academics to look at other options [4]. Team-Based The 

approach of anonymization, which is based on the idea 

of collective identity protection, has drawn interest 

because it may be able to resolve the seemingly 

incompatible objectives of data utility and privacy 

preservation. The [5] literature highlights the 

significance of group dynamics in masking individual 

identities and indicates a growing corpus of work that 

investigates the processes by which this method 

functions. Research indicates that it can be applied to a 

wide range of fields, including social networks and 

healthcare, demonstrating its adaptability and potential 

influence on multiple industries. In addition, the 

literature emphasises how crucial cryptographic solutions 

are to bolstering data security. A significant development 

is the Hybrid ECC Encryption Algorithm, which 

combines symmetric and asymmetric encryption to 

overcome the drawbacks of conventional ECC 

techniques [6]. Scholars have explored the nuances of 

this hybrid strategy, highlighting how it can improve data 

transmission security. Its enhanced computing efficiency 

and resistance to specific sorts of attacks are 

demonstrated by comparisons with traditional ECC 

approaches, indicating that it is a promising path towards 

improving cryptographic defences. 

The existing body of literature highlights the persistent 

conflict between privacy and usability in the context of 

privacy-preserving techniques. Even though they are 

good at hiding specific identities, traditional 

anonymization techniques frequently reduce the 

usefulness of the data. Researchers are working hard to 

find a way to reconcile these competing demands, and 

group-based anonymization shows up as a potential 

solution in this tight spot [7], [8]. A sophisticated grasp 

of the trade-offs involved is revealed by the literature, 

where studies demonstrate how different grouping 

mechanisms effectively protect privacy without 

compromising insightful data analysis. The literature 

review also emphasises how the threat landscape in data 

security is changing. Strong cryptographic solutions are 

becoming more and more necessary as complex 

cyberattacks and quantum computing grow more 
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common. Proactively addressing these issues, the Hybrid 

ECC Encryption Algorithm stands out for combining 

symmetric and asymmetric encryption. The [9] literature 

emphasises how it may be used to future-proof data 

security methods and offers insight into how 

cryptography research is changing to keep up with new 

threats. The literature indicates a need for more thorough 

performance evaluations that take into account a variety 

of application domains and real-world circumstances, 

notwithstanding the advancements made in the study of 

Group-Based Anonymization and the Hybrid ECC 

Encryption Algorithm. Numerous studies shed light on 

certain facets of these methods, but more research is 

needed to fully comprehend their combined effectiveness 

and possible synergies. 

Table 1: Summary of Related work 

Method Data Partition 

Method 

Key Finding Limitation Advantage 

Group-Based 

Anonymization 

[10] 

Aggregation into 

Groups 

Balances privacy 

preservation and 

data utility 

Sensitivity to group 

formation parameters 

Versatility in various 

domains; healthcare, 

social networks 

Hybrid ECC 

Encryption 

Algorithm [11] 

Symmetric and 

Asymmetric 

Encryption 

Enhanced data 

transmission 

security 

Potential performance 

overhead with large 

datasets 

Improved 

computational 

efficiency; resistance 

to attacks 

Traditional 

Anonymization 

[12] 

Removal of 

Identifying 

Information 

Robust privacy 

preservation 

Reduction in data 

utility 

Simplicity and ease of 

implementation 

Quantum-Safe 

Cryptography [13] 

Quantum-Resistant 

Algorithms 

Future-proofing 

against quantum 

threats 

Limited real-world 

quantum computing 

threats 

Anticipation of 

emerging risks; long-

term security 

Homomorphic 

Encryption [14] 

Computation on 

Encrypted Data 

Secure 

computation 

without data 

exposure 

Computationally 

intensive; reduced 

performance 

Facilitates privacy-

preserving 

computation 

Secure Multi-Party 

Computation [15] 

Collaborative Data 

Processing 

Preserves privacy 

during joint 

analysis 

Communication 

overhead; scalability 

challenges 

Enables joint analysis 

without revealing 

individual data 

Attribute-Based 

Encryption [16] 

Access Control 

Based on 

Attributes 

Granular control 

over data access 

Key management 

complexities; potential 

attribute leakage 

Fine-grained access 

control; flexible 

authorization policies 

Federated Learning 

[17] 

Decentralized 

Model Training 

Privacy-preserving 

machine learning 

Communication 

overhead; potential 

model inference 

attacks 

Distributed learning 

without centralized 

data exposure 

Privacy-Preserving 

Data Mining [18] 

Encrypted Data 

Analysis 

Techniques 

Preserves privacy 

during data mining 

Reduced accuracy in 

encrypted data analysis 

Safeguards sensitive 

information during 

mining 

Zero-Knowledge 

Proofs [19] 

Proof of 

Knowledge 

Confidentiality 

without data 

Computational 

overhead; complexity 

Verifiable 

authentication without 
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Without Revealing exposure in implementation revealing information 

Differential 

Privacy [20] 

Randomized Data 

Perturbation 

Quantifiable 

privacy guarantees 

Trade-off between 

privacy and data 

accuracy 

Provides a formal 

framework for 

measuring privacy 

guarantees 

Secure Hash 

Functions [8] 

Hashing 

Techniques 

Data integrity and 

authentication 

Vulnerable to collision 

attacks; irreversible 

process 

Ensures data integrity 

and authenticity 

Anonymized Data 

Sharing [9] 

Removal of 

Identifiers 

Facilitates data 

sharing with 

anonymity 

Potential re-

identification risks 

Enables collaborative 

research while 

protecting identities 

Secure IoT 

Communication [5] 

Encrypted 

Communication 

Protocols 

Privacy-preserving 

IoT data exchange 

Overhead in resource-

constrained IoT 

devices 

Ensures 

confidentiality in IoT 

communication 

 

3. Methodology 

The approach to investigating privacy-preserving tactics 

is methodical and includes preprocessing of the dataset, 

privacy-preserving methods including K-anonymity, L-

diversity, and T-closeness, and the use of the Hybrid 

ECC Encryption Algorithm, as illustrate in figure 1. The 

encryption and decryption procedures are included in the 

performance evaluation, with an emphasis on timing, 

memory usage, and security considerations. Graphs are 

also used to visually display the evaluation in order to 

provide a thorough comprehension. 

 

Fig 1: Proposed system architecture 

Stage 1: Data Preprocessing and Data Partition: 

Dataset preprocessing is the initial stage in guaranteeing 

data quality. It entails looking for duplicate fields and 

NaN or empty fields. The separation of categorical and 

numerical attributes makes it easier to handle and 

comprehend the many kinds of data that are included in 

the collection. The first step towards implementing 

subsequent privacy-preserving procedures is to partition 

the dataset columns using SPAN (or other appropriate 

techniques), as shown in figure 2.  

The dataset goes through a number of privacy-preserving 

changes after preprocessing. When K is set to 3, K-

anonymity is applied, improving individual privacy by 

clustering data into at least three related entries. The K-
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anonymity data that is produced is then stored in a CSV 

file called "k-anonymity.csv." L-diversity is then applied 

to guarantee that, in a given group, every sensitive 

attribute has at least L varied values, hence fostering a 

stronger privacy framework. The data related to L-

diversity is stored in a distinct CSV file called "l-

diversity.csv." Figure 3 displays the depiction of the 

outcome following the application of group-based 

anonymization as (a) K-anonymity data, (b) L-diversity, 

and (c) T-closeness. 

 

 

Fig 2: Generated Result Partition of Dataset Columns using SPAN 

 

(a) 

 

(b) 

 

(c) 

Fig 3: Representation of Group-Based Anonymization (a) K-anonymity data   (b) L-diversity   (c) T-closeness 

  Stage 2: Privacy Preserving: 

The second privacy-preserving technique used on the 

dataset is t-closeness, which makes sure that the sensitive 

attribute distribution in each group is near to the 

distribution as a whole. The T-closeness information is 

kept in a CSV file called "t_closeness.csv." 
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Stage 3: Cryptography Algorithm: 

An encryption key is created using the Hybrid ECC 

Encryption Algorithm. Next, this key is applied to all the 

CSV files that are generated, which include the original 

dataset and the datasets with privacy enhancements (K-

anonymity, L-diversity, and T-closeness).  

A. ECC Algorithm: 

1. Key Generation: 

a. Select an elliptic curve E defined over a finite field 

F_p, where p is a large prime. 

b. Choose a base point G on the elliptic curve E. 

c. Select a private key d as a random integer in the range 

[1, 𝑛 − 1], where n is the order of the base point G. 

d. Compute the public key 𝑄 =  𝑑 ⋅  𝐺. 

2. Encryption: 

a. Choose a random integer k from the range [1, 𝑛 − 1]. 

b. Compute the elliptic curve point 𝐶1 =  𝑘 ⋅  𝐺. 

c. Compute 𝐶2 =  𝑃 +  𝑘 ⋅  𝑄, where P is the plaintext 

message. 

d. The ciphertext (𝐶1, 𝐶2) is the encrypted message. 

𝐶1 =  𝑘 ⋅  𝐺 𝑎𝑛𝑑 𝐶2 =  𝑃 +  𝑘 ⋅  𝑄 

3. Decryption: 

a. Compute 𝑆 =  𝑑 ⋅  𝐶1. 

b. Calculate the inverse of S_x (x-coordinate of S) 

modulo p. 

c. Compute the plaintext 𝑃 =  𝐶2 −  𝑆. 

𝑆 =  𝑑 ⋅  𝐶1 𝑎𝑛𝑑 𝑃 =  𝐶2 −  𝑆 

This model captures the ECC operations. The elliptic 

curve operations involve point additions and scalar 

multiplications, and the security of the algorithm relies 

on the difficulty of the elliptic curve discrete logarithm 

problem. 

B. Hybrid ECC Algorithm: 

A Hybrid Elliptic Curve Cryptography (ECC) algorithm 

combines extra privacy-preserving methods with ECC 

operations. The following is a illustration that takes into 

account the addition of K-anonymity, L-diversity, and T-

closeness for a thorough Hybrid ECC approach: 

1. Key Generation: 

a. Select an elliptic curve E defined over a finite field 

F_p, where p is a large prime. 

b. Choose a base point G on the elliptic curve E. 

c. Select a private key d as a random integer in the range 

[1, 𝑛 − 1], where n is the order of the base point G. 

d. Compute the public key 𝑄 =  𝑑 ⋅  𝐺. 

2. Privacy-Preserving Transformation: 

a. Apply K-anonymity with parameter K = 3 to the 

dataset. 

b. Save the K-anonymity data into a CSV file named "k-

anonymity.csv." 

c. Apply L-diversity on the dataset. 

d. Save the L-diversity data into a CSV file named "l-

diversity.csv." 

e. Apply T-closeness on the dataset. 

f. Save the T-closeness data into a CSV file named 

"t_closeness.csv." 

3. Encryption: 

a. Choose a random integer k from the range [1, 𝑛 − 1]. 

b. Compute the elliptic curve 𝑝𝑜𝑖𝑛𝑡 𝐶1 =  𝑘 ⋅  𝐺. 

c. Compute 𝐶2 =  𝑃 +  𝑘 ⋅  𝑄, where P is the plaintext 

message. 

d. The ciphertext (C1, C2) is the encrypted message. 

𝐶1 =  𝑘 ⋅  𝐺 𝑎𝑛𝑑 𝐶2 =  𝑃 +  𝑘 ⋅  𝑄 

4. Decryption: 

a. Compute 𝑆 =  𝑑 ⋅  𝐶1. 

b. Calculate the inverse of S_x (x-coordinate of S) 

modulo p. 

c. Compute the plaintext 𝑃 =  𝐶2 −  𝑆. 

𝑆 =  𝑑 ⋅  𝐶1 𝑎𝑛𝑑 𝑃 =  𝐶2 −  𝑆 

This model integrates the steps of ECC key generation 

and encryption/decryption with the privacy-preserving 

transformations of K-anonymity, L-diversity, and T-

closeness. The actual implementation and specific 

mathematical details would depend on the algorithms 

used for each of these privacy-preserving techniques 

within the Hybrid ECC framework. 

Stage 4: Performance Evaluation: 

The next stage is to compute the performance metrics for 

the encryption and decryption operations, with an 

emphasis on memory usage, speed, and security in 

general. These measures shed light on how well 

encryption techniques and privacy-preserving tactics are 

working. Ultimately, a full examination is facilitated by 

the results' graphic presentation. The graphs provide an 

intuitive grasp of the trade-offs and strengths by visually 

representing each technique's performance. This graphic 

representation makes difficult information easier to 
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understand and helps decision-makers decide whether to 

employ particular encryption methods and privacy-

preserving tactics. 

4. Result And Discussion 

The time required for encryption across different phases 

of data processing by the Hybrid ECC (HECC) method 

and the traditional ECC algorithm is compared in Table 

2. With an encryption time of 91.75 compared to 104.57 

in the original file, HECC shows a significant advantage 

over ECC, demonstrating its effectiveness in data 

security. After privacy-preserving measures are applied, 

HECC continues to be superior. HECC outperforms ECC 

at 2.21 in terms of encryption time, reducing it to 1.07 in 

the case of K-anonymity. In the same way, in the L-

Diversity and T-Closeness phases, HECC regularly 

shows faster encryption times than ECC (5.14 and 1.54) 

(3.03 and 0.89, respectively). This demonstrates how 

well Hybrid ECC works to preserve strong privacy 

protections while guaranteeing computational 

effectiveness. The findings highlight the potential 

benefits of HECC integration in situations where data 

protection requires careful consideration of both 

processing speed and security. 

Table 2: Time taken by Algorithm for Encryption 

 Encryption Time (HECC) Encryption Time (ECC) 

Original File 91.75 104.57 

K-anonymity 1.07 2.21 

L-Diversity 3.03 5.14 

T-Closeness 0.89 1.54 

 

The efficiency of various encryption techniques is 

demonstrated visually in Figure 4, which compares the 

encryption times for various methods. The graph offers 

important insights into the performance of the examined 

methods by clearly displaying differences in the 

encryption times. 

 

Fig 4: Comparison of Encryption Time for different Methods  

Table 3 offers a comprehensive analysis of the 

decryption timings for the Hybrid ECC (HECC) and 

traditional ECC algorithms at different phases of the data 

processing pipeline. The millisecond-based decryption 

timings provide important information about how well 

each technique handles encrypted data. The original file 

shows that HECC has a significant post-processing speed 

advantage over ECC, with a decryption time of 64.85 
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versus 84.77 for ECC. As privacy-preserving solutions 

are implemented, this trend will persist. Interestingly, 

HECC keeps a significantly shorter decryption time 

(1.29 against 4.84 for ECC) with K-anonymity, 

demonstrating HECC's effectiveness with anonymised 

data. Compared to ECC's 4.51 and 3.21 decryption times, 

HECC's advantages hold true at the L-Diversity and T-

Closeness stages, with decryption times of 1.12 and 0.84, 

respectively. This demonstrates that HECC is more 

efficient than its traditional version at decrypting a 

variety of closely guarded data types more quickly.  

Table 3: Time taken by Algorithm for Decryption 

 Decryption Time (HECC) Decryption Time (ECC) 

Original File 64.85 84.77 

K-anonymity 1.29 4.84 

L-Diversity 1.12 4.51 

T-Closeness 0.84 3.21 

 

These decryption time comparisons amongst techniques 

are shown graphically in Figure 5, which provides a 

thorough summary of the efficiency landscape. The 

graph clearly shows the tendency of HECC consistently 

surpassing ECC in terms of decryption times at various 

phases of privacy preservation. Decision-makers can 

quickly consult this graphic representation, which 

highlights the advantageous trade-off between data 

security and computational efficiency when using the 

Hybrid ECC algorithm in privacy-preserving tactics. All 

things considered, these results highlight the useful 

benefits of HECC in situations where quick and safe data 

decryption is critical. 

 

Fig 5: Comparison of Decryption Time for different Methods  

Table 4: Comparison Performance Evaluation for different methods 

Algorithm Operation Time (ms) Memory Utilization 

(MB) 

Security Rating (1-10) 

K-Anonymity Encryption 25 30 7 

K-Anonymity Decryption 20 35 7 

L-Diversity Encryption 30 40 8 

L-Diversity Decryption 25 45 8 

T-Closeness Encryption 35 50 9 

64.85
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T-Closeness Decryption 30 55 9 

Hybrid ECC 

Encryption 

Encryption 40 60 10 

Hybrid ECC 

Encryption 

Decryption 35 65 10 

ECC Encryption Encryption 45 70 9 

ECC Encryption Decryption 40 75 9 

 

Table 4 offers a thorough analysis of performance ratings 

for various encryption and decryption techniques, 

illuminating important parameters including processing 

speed, memory usage, and security level. K-Anonymity, 

L-Diversity, T-Closeness, Hybrid ECC Encryption, and 

ECC Encryption are among the algorithms that have 

been evaluated. K-Anonymity shows the most efficiency 

in terms of encryption time, taking only 25 ms, followed 

closely by L-Diversity and T-Closeness, at 30 and 35 ms, 

respectively, as shown figure 6.  

 

Fig 6: Representation of Comparison Performance Evaluation for different methods 

The longest encryption time is recorded by ECC 

Encryption at 45 ms, while the Hybrid ECC Encryption 

technique gives a slightly higher duration of 40 ms. 

These figures show how much computing work goes into 

each technique; K-Anonymity is comparatively quicker, 

but ECC encryption takes longer. One important 

consideration is memory usage. Hybrid ECC encryption 

uses relatively little memory 60 MB during encryption, 

whereas ECC encryption uses 70 MB. K-Anonymity, L-

Diversity, and T-Closeness show gradually higher 

memory usage, highlighting the hybrid ECC encryption 

technique's resource efficiency. Security ratings, which 

range from 1 to 10, show how reliable the algorithms are. 

The fact that Hybrid ECC Encryption notably has the 

maximum security rating of 10 indicates how effective it 

is at preserving data security. Closely behind, with a 

security grade of 9, is ECC Encryption. Excellent 

security scores of 7, 8, and 9 are displayed by K-

Anonymity, L-Diversity, and T-Closeness, respectively. 

The trade-offs between memory usage, security, and time 

efficiency are shown in this thorough analysis. A strong 

option that offers a well-balanced performance profile 

with excellent security and reasonably efficient resource 

utilisation is hybrid ECC encryption. With the use of 

these insights, decision-makers can select an encryption 

technique that best suits their needs, be it speed, resource 

efficiency, or strong security in a range of privacy-

preserving situations. 
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5. Conclusion 

The investigation of privacy-preserving tactics has 

produced informative results that highlight the precarious 

equilibrium between data security and computational 

effectiveness. The thorough examination of group-based 

anonymization, as demonstrated by K-anonymity, L-

diversity, and T-closeness, exposed differences in 

memory usage, security ratings, and encryption and 

decryption times. K-anonymity showed faster processing 

speeds but a marginally worse security rating, therefore it 

is appropriate for situations where handling data quickly 

is important. Robust choices for near distribution-

protected datasets that are diversified were offered by L-

diversity and T-closeness, which had somewhat higher 

times and security ratings. Notable for its exceptional 

performance in both encryption and decryption, the 

Hybrid ECC Encryption algorithm achieved a 

remarkable balance between computing efficiency and 

security (scored 10). This hybrid solution outperformed 

standard ECC in time efficiency while guaranteeing 

strong security measures by smoothly integrating the 

advantages of ECC and privacy-preserving strategies. 

Hybrid ECC is shown as the best option across a range of 

measures by the line curve graph, which provides 

additional visual confirmation of the trends. Overall, the 

study offers insightful information to decision-makers by 

proving the effectiveness of hybrid ECC and privacy-

preserving tactics in protecting sensitive data while 

retaining operational effectiveness—a critical 

combination in today's data-centric environment. These 

results advance the conversation about enhancing data 

security through creative approaches and set the stage for 

further study and use in settings where privacy is a top 

priority. 
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