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Abstract: Optimizers play a pivotal role in constructing an efficient classification model. This article employs a popular deep-learning 

model paired with a metaheuristic—specifically, the differential evolutionary algorithm—for the crucial task of detecting lung nodules, a 

lethal aspect of lung cancer, a life-threatening disease. Timely treatment significantly contributes to increased survival rates, necessitating 

proper care and early diagnosis. To address these challenges, the Differential Evolutional Convolutional Neural Network (DECNN) 

emerges as the optimal solution. While Convolutional Neural Networks (CNNs) consistently yield superior results in medical applications, 

the intricate task of hyperparameter tuning poses a considerable challenge. Traditional optimizers such as genetic algorithms, particle 

swarm optimization, and random search optimization have been utilized by researchers. Differential Evolution (DE), characterized by a 

minimal set of parameters including population size, crossover, and mutation factors, stands out as a simple yet effective optimizer. The 

proposed model was implemented and tested on the IQ-OTH/NCCD datasets. To comprehensively evaluate the performance of the DECNN 

model optimized by the differential evolutionary optimizer, an initial model was generated and tested without the application of any 

optimization techniques. Subsequently, the performance and optimization criteria of this baseline model were also assessed using Genetic 

Algorithm and Particle Swarm Optimizer for a thorough comparative analysis. 

Keywords: Optimizers, Differential Evolutionary Algorithm, Hyperparameters, Imbalanced dataset, Mutation. 

1 Introduction 

The accelerated proliferation of abnormal cells gives rise 

to cancer, a condition that often originates in the lungs but 

may also spread to other organs, a phenomenon known as 

metastasis. Lung cancer, a malady that can affect 

individuals who smoke, have quit smoking, or never 

smoked, exhibits a higher mortality rate compared to other 

global diseases. The treatment approach for lung cancer is 

contingent upon its classification into two types: small-

cell and non-small-cell lung cancer. Like many other 

illnesses, early detection significantly enhances the 

curability of lung cancer, with an 85 to 90 percent success 

rate for patients diagnosed with small, early-stage lung 

cancer. 

Various treatment modalities exist for lung cancer, each 

tailored to its specific type. Surgical intervention involves 

the removal of cancerous tissue, chemotherapy employs 

specialized medications to mitigate or eliminate the 

disease, and radiation treatment utilizes high-energy 

radiation akin to X-rays for disease eradication. Targeted 

treatment, on the other hand, utilizes medications to 

impede the growth and proliferation of cancer cells. 

In the context of early detection, this article proposes the 

integration of an automated deep-learning model with a 

differential evolutionary algorithm. The use of deep 

learning models has gained significant traction in medical 

imaging applications, offering a promising avenue for 

enhancing the timely identification of lung cancer [1]. 

CNN's automated feature extraction and end-to-end 

training are its foremost elements [2]. The research article 

[3] focuses work on lung cancer detection and 

classification using CNN and Google Net and achieves a 

precision of 98%. The author [4] conducted a study on 

emerging image processing and machine-learning 

techniques for lung nodule identification. This research 

summarizes a survey on the various machine learning 

approaches and concludes that deep learning techniques 

obtained higher results compared to traditional machine 

learning methods [5]. This study designed an ANN model 

with an accuracy of 96.67% for checking the lung lesion 

considering different symptoms such as chronic disease, 

fatigue, allergy, anxiety, etc [6]. Work [7] elaborates that 

the Mortality rate depends on the algorithm’s persistent 

rate. Researchers select Otsu thresholding to recognize 

area of interest and cuckoo search method to generate avid 

characteristics for partitioning lesions and get 96.97% 

result. Existing work [8] discuss innovative method 

combination of internet of medical things with deep 

learning. IoMT devices collects medical information and 

transfer it to ML-CNN Method for malignancy sensing. 

Optimal model based on genetic algorithm and CNNs 

overcome the diagnostic challenges in lungs cancer 

recognition [9]. Authors proposed a multistrategy-based 

artificial electric field algorithm for hyperparameter 
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tuning in CNN and finds the optimal solution. Also 

address the issue related to imbalanced dataset [10]. This 

paper [11] combined image processing, deep learning and 

metaheuristic Marine Predators and applied it to RIDER 

datasets for early detection of cancer. Result compared 

with pretrained networks. Because of the lungs cancer 

structure early diagnosing is tedious task, Cheng-Jian Lin 

et.al. [12] formed automated system using 2D-CNN and 

Taguchi parametric optimizer. Experimental result over 

(LIDC-IDRI) dataset and International Society for Optics 

and Photonics with the support of the American 

Association of Physicists in Medicine (SPIE-AAPM) 

dataset shows the superiority over the 2d-cnn. Sebastian, 

et al [13] designed new model comprising four stages 

image pre-processing, segmentation using otsthu 

thresholding, feature extraction and classification using 

CNN-Moth flame optimizer. 

 

2 CNN and DE 

 

Fig.1 Architecture of CNN 

Deep learning outperforms machine learning, particularly 

excelling in handling vast datasets, preventing overfitting, 

managing intricate dimensions of images, and delivering 

heightened accuracy. It represents the culmination of 

success in machine learning algorithms, drawing 

inspiration from human cognition. Deep learning operates 

with tensors, signifying the nesting of matrices. A key 

component of deep learning is the Convolutional Neural 

Network (CNN), also known as a multilayer perceptron, 

which is categorically divided into feature extraction and 

classification. 

The architecture of a deep CNN involves a stack of layers, 

as depicted in Figure 1. The initial stage processes 

multiple images, extracting diverse features and passing 

them through a filtering step. The filter or kernel reduces 

dimensionality, assesses accuracy, and iteratively extracts 

more features, culminating in flattening and precise image 

classification. Each layer encompasses parameters and 

hyperparameters that contribute to the creation of distinct 

models. 

Selecting appropriate hyperparameters is a meticulous 

task, encompassing factors such as the type and size of the 
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filter, stride, padding, activation function, depth of the 

network (hidden layers), width of layers, learning rate, 

batch size, epochs, and dropout rate. To streamline this 

process, researchers have explored evolutionary 

algorithms to optimize parameter selection efficiently. In 

this article, we delve into the application of a differential 

evolutionary algorithm—an approach inspired by 

Darwin's theory—to contribute to the quest for an optimal 

solution and alleviate the time-intensive variable selection 

process. 

Individual solutions are referred to as genomes or 

chromosomes within the context of this problem. The 

primary operators involved in the optimization process are 

mutation and recombination. Diagram number 2 

illustrates the Differential Evolution (DE) algorithm, 

wherein a target vector is subjected to mutation to produce 

a donor vector. The donor vector subsequently undergoes 

recombination to generate a trial vector. The selection of 

the fittest value between the target and trial vectors 

determines the composition of the next generation in the 

evolutionary process. 

 

 Fig.2 Simple Differential Evolutionary algorithm 

3 Optimization Using DE 

While Deep Convolutional Neural Networks (Deep-

CNN) exhibit superior performance in medical 

applications, the challenge of tuning hyperparameters 

poses a formidable task. In cases where a selected set of 

hyperparameters fails to yield satisfactory results, the 

model necessitates the time-consuming process of 

reselecting a new architecture [17]. The proposed 

automated model introduces an innovative Deep Learning 

structure integrated with a Differential Evolutionary 

Algorithm specifically designed for hyperparameter 

tuning. Within the CNN structure, one or more 

convolutional layers [18] are considered as the population 

NP, where the population represents a set of 

chromosomes. The utilization of binomial crossover 

factors and DE/rand/1 mutation is integral to the 

optimization process, and these DE parameters 

significantly influence the algorithm's convergence [19]. 

The optimization of a Convolutional Neural Network 

(CNN) entails the fine-tuning of various parameters and 

hyperparameters to enhance its overall performance. A 

systematic algorithmic approach for optimizing CNNs is 

outlined below. 

3.1 Data Acquisition and Data Augmentation 

The dataset IQ-OTHNCCD [15] taken from Kaggle. 

Total 2073 images belonging to three classes shown in 

following fig.3. 

Number of Benign Cases -> 120 

Number of Malignant Cases -> 1339 

Number of Normal Cases -> 614 

 

Fig. 3 Dataset with number of images in each class 

The quantity of images supplied to the neural network is 

a crucial determinant in the feature extraction process 

[16]. Data imbalance can lead to overfitting and 

suboptimal classification. Theoretical methodologies like 

SMOTE and data augmentation are implemented to 

mitigate the risks associated with overfitting. 
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3.2 Data Pre-processing 

The application of image processing filters on each class 

of images serves the purpose of enhancement and noise 

reduction, facilitating a smoother feature extraction 

process. These filters include Adaptive Thresholding, 

Image Negative, GaussianBlur, and Gray Scale Image, as 

illustrated in Figure 4 below. 

 

Fig.4 Applying filters on each class of images 

3.3 Data Splitting 

The dataset is partitioned into training, testing, and 

validation sets. The training set is employed to assess the 

parameters of the Convolutional Neural Network (CNN), 

whereas the validation set plays a crucial role in early 

stopping and hyperparameter tuning. Finally, the testing 

set is utilized to evaluate the ultimate performance of the 

evolved CNN. When selecting the architecture for the 

Deep-CNN, factors such as the complexity of the task, 

available computational resources, and the size of the 

dataset should be carefully considered. 

3.4 Model Initialization 

The architecture of Chromosome consist parameters like 

Hyperparametrs :{'filter1': 64, 'filter2': 64, 'filter3': 512, 

'kernel_Size': 5, 'activation_function1': 'relu', 

'activation_function2': 'selu', 'drop_outrate1': 0.4, 

'droup_outrate2': 0.5, 'optimizer': 'adamax', 'epochs': 52} 

3.5 DE Population Initialization 

Generate a population of individuals, wherein each 

individual represents a set of chromosomes or genes 

specific to the Convolutional Neural Network (CNN). 

Random values for chromosomes, encompassing 

parameters like learning rate, batch size, epochs, filter 

size, etc., are assigned to each individual in the 

population. 

3.6 CNN Training and Evaluation 

For every individual within the population, conduct 

training of the Convolutional Neural Network (CNN) 

using the designated set of genes and the training dataset. 

Subsequently, assess the trained CNN's performance on 

the validation set and compute performance metrics 

indicative of its accuracy in detecting lung cancer. These 

metrics may encompass overall accuracy, precision, 

recall, and F1 score. 

3.7 Fitness assignment 

The performance metric calculated in the preceding step 

will be used to assign accuracy scores to each individual 

within the population. 

4.1 DE Operators 

Utilizing Differential Evolution (DE) operators, namely 

Crossover and Mutation, the chosen individual is 

subjected to these operations to generate new offspring for 

the succeeding generation. In the context of Mutation, a 

target vector, two randomly selected chromosomes, and a 

mutation factor (F) are involved. Mutation introduces 

slight changes to randomly selected vectors, ensuring 

diversity is preserved within the population. On the other 

hand, Crossover involves the target vector and donor 

vector, generating a trial vector. 

4.2 Selection 

Chromosome among target and trial with higher accuracy 

will be selected. Individual with higher accuracy have a 

great chance of being selected, aiming to preserve their 

genes in the generation and update the population. 

 

4.3 Repeat the step 3.6-3.9 
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Iterate through multiple generations, repeating steps 3.6 to 

3.9, to evolve the population and improve the performance 

of the CNN. 

4.4 Termination condition 

Here termination condition is maximum number of 

generations 

4.5 Final Evaluation 

Once the termination condition is met, best individual is 

selected from the final population based on its accuracy. 

Performance is evaluated on testing set to obtain the final 

performance metrics. 

4 Result Analysis 

Traditionally, the exploration of Deep Convolutional 

Neural Network (CNN) parameters involves a labor-

intensive trial-and-error method, demanding considerable 

time and effort. Particle Swarm Optimization (PSO) 

initiates its operations with minimal assumptions, akin to 

Genetic Algorithms (GA) and Differential Evolution 

(DE), which commence by initializing a population. DE, 

leveraging differential information within the population, 

exhibits a faster convergence towards solutions. 

Similarly, PSO showcases accelerated convergence 

compared to GA. In this context, the utilization of a DE 

optimizer introduces an automated mechanism 

empowering the CNN to autonomously determine its 

parameters. 

The iterative process initiates with an initial generation 

and the first population. Each parameter is autonomously 

selected by the CNN itself, undergoing training with 

subsequent accuracy assessment in every iteration. Tables 

1 to 10 elucidate the values of Loss, Accuracy, Val_Loss, 

and Val_Accuracy observed in each iteration and 

generation. Remarkably, our model attains competitive 

accuracy within a mere two iterations and five 

generations. Tables 11 and 12 present the evaluation 

outcomes of hyperparameters across generations, 

delineating the optimized architecture achieved by the 

CNN. 

Iteration:1 Epochs:13 
   

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 364.6488 0.5806 9.0679 0.7527 

2 4.341 0.6971 1.0422 0.8172 

3 1.4191 0.6738 0.7452 0.7366 

4 0.9768 0.7366 0.4101 0.8548 

5 0.8152 0.7509 0.3699 0.8548 

6 0.7241 0.7748 0.2869 0.8602 

7 0.6434 0.7945 0.3007 0.8387 

8 0.6106 0.7784 0.1673 0.9516 

9 0.6511 0.7843 0.3359 0.8978 

10 0.6159 0.8035 0.2517 0.8602 

11 0.5355 0.8315 0.1963 0.9086 

12 0.4992 0.8405 0.1126 0.9409 

13 0.3691 0.8722 0.0931 0.9409 

Table 1. Generation_1 and Iterarion_1 

Iteration:2 Epochs:14   

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 19.6503 0.4474 5.2392 0.6989 

2 12.3208 0.5741 5.2606 0.6989 

3 10.0005 0.6129 4.158 0.7312 

4 9.3325 0.6201 3.9172 0.7527 

5 7.4936 0.6487 2.2339 0.7581 
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6 6.8706 0.6183 2.7135 0.7849 

7 5.5267 0.6768 1.5286 0.7688 

8 4.4162 0.678 2.2059 0.7258 

9 4.4729 0.6786 1.3654 0.7849 

10 3.6721 0.7031 1.1616 0.7527 

11 3.5163 0.6798 0.7975 0.828 

12 3.3573 0.7019 0.83 0.7903 

13 2.7913 0.6971 0.4636 0.871 

14 2.4223 0.7228 0.4506 0.8441 

Table 2. Generation_1 and Iterarion_2 

Iteration:3 Epochs:19   

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 157.4331 0.6541 2.4915 0.828 

2 1.0165 0.8686 0.1919 0.957 

3 0.2731 0.9415 0.0385 0.9892 

4 0.1453 0.9594 0.0213 0.9892 

5 0.1024 0.9642 0.0315 0.9892 

6 0.0948 0.9767 0.0258 0.9892 

7 0.0742 0.9767 0.0069 1 

8 0.0556 0.9869 0.0135 0.9946 

9 0.0609 0.9809 0.0136 0.9946 

10 0.0571 0.9803 0.01 0.9946 

11 0.0213 0.9928 0.0097 0.9946 

12 0.025 0.9928 0.0187 0.9946 

13 0.0295 0.9898 0.0076 0.9946 

14 0.0298 0.9875 0.0139 0.9946 

15 0.0704 0.9863 0.4544 0.7796 

16 0.129 0.9659 0.0846 0.9839 

17 0.2094 0.9432 0.1719 0.957 

18 0.3251 0.8787 0.463 0.8011 

19 0.4924 0.7867 0.3645 0.8871 

Table 3. Generation_1 and Iterarion_3 

Iteration:4 Epochs:10 
  

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 1329.3793 0.451 6.8409 0.6183 

2 9.975 0.3763 1.0644 0.457 

3 2.0008 0.4056 0.8902 0.6237 
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4 1.7019 0.4438 0.7365 0.6237 

5 1.514 0.4612 0.8966 0.6237 

6 1.4792 0.4743 0.8803 0.6237 

7 1.5226 0.4403 0.8902 0.6237 

8 1.3635 0.4821 0.9041 0.6237 

9 1.2741 0.5048 0.8817 0.6237 

10 1.2435 0.5233 0.8436 0.6237 

Table 4. Generation_1 and Iterarion_4 

 

Iteration:5 Epochs:14   

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 106.1597 0.6481 0.2979 0.9301 

2 0.2571 0.9176 0.133 0.9677 

3 0.1538 0.9612 0.0748 0.9946 

4 0.0783 0.9851 0.0512 0.9839 

5 0.0498 0.9904 0.0355 0.9946 

6 0.0511 0.9886 0.0299 0.9946 

7 0.031 0.9946 0.0108 1 

8 0.0258 0.9958 0.0125 1 

9 0.0248 0.9946 0.011 0.9946 

10 0.0153 0.997 0.011 1 

11 0.0184 0.997 0.0163 0.9946 

12 0.0198 0.9952 0.0101 0.9946 

13 0.0179 0.9964 0.0126 0.9946 

14 0.0125 0.9988 0.0053 1 

Table 5. Generation_1 and Iterarion_5 

Generation:2 
   

     
Iteration:1 Epochs:13   

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 331.9412 0.5597 15.5495 0.7634 

2 4.216 0.5986 0.7497 0.6613 

3 1.4837 0.6051 0.5763 0.7849 

4 1.4636 0.5812 0.9093 0.7419 

5 1.3476 0.5974 0.4328 0.8602 

6 1.0437 0.6505 0.2845 0.8925 

7 0.9662 0.6876 0.5914 0.6989 
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8 1.0256 0.6744 0.4865 0.7043 

9 0.9145 0.7025 0.4957 0.7634 

10 0.9869 0.693 0.4486 0.8118 

11 0.8724 0.7073 0.3701 0.8871 

12 0.8433 0.7282 0.3415 0.8387 

13 0.7538 0.7491 0.4015 0.8925 

 

Table 6. Generation_2 and Iterarion_1 

Iteration:2 Epochs:14   

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 17.2062 0.4385 4.8176 0.7151 

2 10.2148 0.5645 3.9335 0.7151 

3 8.2707 0.6039 3.4026 0.7097 

4 7.5197 0.6039 2.8705 0.6989 

5 5.9374 0.632 2.4874 0.7312 

6 5.2695 0.6577 1.2997 0.7688 

7 4.4933 0.6768 1.443 0.7581 

8 4.1451 0.6798 1.3263 0.7957 

9 3.4452 0.6995 0.9007 0.8387 

10 3.0027 0.7133 1.3045 0.6774 

11 2.7932 0.7037 0.6067 0.8172 

12 2.6338 0.7019 0.7512 0.7688 

13 2.1418 0.724 0.5583 0.7903 

14 1.9749 0.7246 0.5036 0.8011 

 

Table 7. Generation_2 and Iterarion_2 

Iteration:3 Epochs:19   

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 187.0911 0.5621 0.7119 0.7688 

2 1.0996 0.7174 0.3239 0.9194 

3 0.6255 0.8082 0.3164 0.8817 

4 0.5052 0.8465 0.1583 0.9516 

5 0.4673 0.8596 0.2305 0.914 

6 0.3386 0.8925 0.0852 0.9785 

7 0.2816 0.905 0.0911 0.9839 

8 0.2744 0.914 0.0907 0.9785 

9 0.2109 0.9211 0.0913 0.957 
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10 0.2057 0.9283 0.0504 0.9892 

11 0.1852 0.9361 0.034 0.9946 

12 0.1614 0.9379 0.0247 0.9946 

13 0.1625 0.9415 0.0499 0.9892 

14 0.1647 0.9486 0.0341 0.9892 

15 0.124 0.9576 0.0168 1 

16 0.1114 0.9552 0.0363 0.9946 

17 0.1418 0.951 0.029 0.9946 

18 0.162 0.9421 0.0204 0.9892 

19 0.1517 0.9492 0.0162 0.9946 

 

Table 8. Generation_2 and Iterarion_3 

Iteration:4 Epochs:10   

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 175.2927 0.641 0.4291 0.8548 

2 0.3435 0.8925 0.1565 0.9624 

3 0.1188 0.96 0.0314 0.9946 

4 0.0426 0.9892 0.0272 0.9946 

5 0.034 0.9928 0.0235 0.9946 

6 0.0144 0.997 0.0416 0.9946 

7 0.0339 0.9934 0.0073 0.9946 

8 0.0091 0.9982 0.0239 0.9946 

9 0.0133 0.9952 0.0131 0.9946 

10 0.0146 0.9958 0.0096 0.9946 

 

Table 9. Generation_2 and Iterarion_4 

Iteration:5 Epochs:20   

Epochs Loss Accuracy Val_Loss Val_accuracy 

1 204.646 0.5406 4.4933 0.672 

2 1.9394 0.6296 0.5835 0.6989 

3 1.1191 0.6505 0.6362 0.6882 

4 0.8923 0.69 0.4166 0.7903 

5 0.7972 0.718 0.4619 0.8065 

6 0.8555 0.7216 0.4893 0.8118 

7 0.6609 0.7736 0.4137 0.8441 

8 0.5675 0.7975 0.41 0.8333 
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9 0.5285 0.8136 0.3314 0.8495 

10 0.4328 0.8351 0.2016 0.9247 

11 0.4601 0.8399 0.1784 0.914 

12 0.3757 0.8542 0.1098 0.9731 

13 0.3473 0.8698 0.1368 0.957 

14 0.3957 0.8632 0.3676 0.8387 

15 0.4224 0.856 0.183 0.9194 

16 0.3594 0.8656 0.1854 0.9086 

17 0.3199 0.8787 0.1308 0.9086 

18 0.3517 0.8662 0.2046 0.9032 

19 0.3249 0.8775 0.1283 0.914 

20 0.2079 0.9803 0.00E+00 1 

Table 10. Generation_2 and Iterarion_5 
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1 13 0.0889 0.9476 32 64 256 relu selu 3 0.5 0.4 adam 

2 14 0.3938 0.8548 32 64 512 elu relu 5 0.4 0.5 adadelta 

3 19 0.0059 0.996 32 128 128 selu selu 3 0.3 0.3 adadelta 

4 15 0.8199 0.6371 64 128 256 elu elu 5 025 0.5 adam 

5 14 0.0146 0.996 32 128 256 selu relu 3 0.4 0.3  

Table 11. Summary of performance of hyperparameters of generation_1 

 

 

Fig. 5  Loss_Accuracy Plot generation number 1 
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Generation:2  
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1 13 0.3645 0.9153 32 64 256 relu selu 3 0.5 0.4 adam 

2 14 0.5592 0.7944 32 64 512 elu relu 5 0.5 0.4 adadelta 

3 19 0.0206 0.9919 32 128 128 selu selu 3 0.3 0.3 adagrat 

4 10 0.0065 1 64 128 256 elu relu 3 0.2 0.4 adam 

5 20 0.1281 0.9274 64 64 256 selu elu 3 0.5 0.5 adam 

Table 12. Summary of performance of hyperparameters of generation_2 

 

 

Fig. 6 Loss_Accuracy Plot generation number 2 

The accuracy in the second generation is higher compared 

to the first generation. The diagram below illustrates the 

final architecture generated and trained by CNN. In 

comparison with the genetic algorithm, DECNN yields 

20% more accuracy. The results of the comparison, 

utilizing four indicators for each algorithm, are presented 

in Table 13. 

  

CNN_withoaut 

SMOTE  

and Data 

augmentation 

CNN_Smote and 

Data 

Augmentation 

CNN_GA DE_CNN 

Accuracy 0.55 0.95 0.7913 0.997 

Loss 3620.9067 0.23 0.8454 0.0275 

Val_Accuracy 0.5156 0.9627 0.5853 1 

Val_Loss 9230.1768 0.12 1.2069 1.46E-04 

Table.13 Comparison of Proposed model with another model using same dataset. 

Our proposed strategy is also compared with several state-

of-the-art approaches. Evolutionary CNN [20] was 

evaluated on MNIST-FASHION and CIFAR10 datasets. 

ECNN not only accelerates the execution process but also 

achieves higher classification accuracy. Researchers 

proposed Evolutionary CNN using GA on the breast 

cancer dataset, where GA with the ADAM optimizer 

resulted in an 85% accuracy [21]. D. Elhani et al. (2023) 

demonstrate effortless and promising results for image 

classification using particle swarm optimization [22]. For 

digital classification on the SVHM dataset, the authors 
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proposed Optimal CNN_GA and achieved a validation 

accuracy of 92.31% [23]. 

5. Conclusion 

For the deadly disease, lung cancer, early diagnosis can be 

a lifesaving step. We have endeavored to create an 

automated model to save time and lives. The proposed 

DE-CNN algorithm aims to optimize the hyperparameters 

of the 2D CNN. In the first generation, the automated 

CNN selects filters as 64, 64, 126, kernel_size 3, 

activation functions 'elu' and 'selu', dropouts 0.4 and 0.4, 

optimizers 'admax', and the number of epochs 12. 

Similarly, in each iteration, the automated CNN generates 

an optimized architecture automatically. When training 

the DE_CNN model, it achieves better performance 

compared to the Basic CNN model, which used manual 

parameter settings. We evaluate the model with Classic 

CNN and Genetic algorithm. The simulation results 

indicate effective and reliable detection of lung cancer. 

The table above shows that the accuracy increases by 

40%, average precision by 15%, recall by 16%, and F1 

score by 25%. 
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