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Abstract: In the sphere of neurooncology, precise diagnosis and intervention for Glioma brain tumors are of utmost importance. While 

the past three years have witnessed over 50 pivotal studies targeting MRI image classification of brain tumors, there remains an 

imperative need to develop advanced segmentation techniques. These techniques must effectively address challenges such as imaging 

artifacts, intricate tumor boundary demarcation, tumor heterogeneity, ambiguous classifications, and class disparities. In this study, we 

unveil an innovative deep learning strategy, synergizing the U-Net architecture with self-attention mechanisms. Drawing upon U-Net's 

proficiency in extracting both localized and holistic features from 3D cerebral scans, our integrated attention mechanisms spotlight key 

tumor regions. Evaluations on the BraTS 2020 dataset revealed a remarkable accuracy rate of 99.34% and a Dice coefficient of 95%, 

underscoring our model's exceptional segmentation capabilities. Additionally, the model demonstrated unparalleled precision (99.36%), 

sensitivity (99.19%), and specificity (99.78%), reiterating its robustness in discerning tumorous regions from healthy brain tissue. This 

study accentuates the revolutionizing capacity of melding U-Net with attention mechanisms for MRI-based brain tumor segmentation. 

The breakthroughs delineated herald an era of optimized clinical neurooncology procedures, fortifying the diagnostic and therapeutic 

landscape to the immense benefit of patients and healthcare professionals. 

Index Terms: U-Net architecture, attention mechanisms, BraTS 2020 dataset, brain tumor MRI images. 

1. Introduction 

Background Brain tumors emerge from anomalous 

proliferation of brain cells and a malfunction in the brain's 

regulatory mechanisms. As per recent statistics, there are 

approximately 700,000 individuals globally afflicted with 

brain tumors, with a staggering 86,000 new cases reported 

in 2019 and approximately 16,380 fatalities resulting from 

this condition [1]. Gliomas dominate the category of 

malignant tumors, accounting for a massive 80% of such 

malignancies [2]. The paramount importance of early 

detection in brain tumors cannot be understated, especially 

in determining optimal therapeutic strategies. 

Glioma, a particularly challenging tumor to detect, 

constitutes approximately 33% of all brain tumors and 

boasts a dishearteningly low survival rate of 22% [1–3]. 

Tumors can be delineated as benign, which are non-

cancerous with high survival rates, or malignant, 

characterized by cancerous properties and diminished 

survival rates. Based on the point of origin, tumors can be 

classified as primary, arising from mutational events within 

brain cells, resulting in uncontrolled growth and 

subsequent tumor formation. These primary tumors rank 

highly among mortality causes. Conversely, secondary 

brain tumors or brain metastases result from the spread of 

tumors from other body parts to the brain [4]. 

A 2019 report jointly published by the London Institute of 

Cancer and the World Health Organization (WHO) cites 

approximately 18 million documented cancer cases 

globally, with brain tumors accounting for 286,000 cases. 

Of these, Asia reported the highest number at 156,000 

cases [1 & 35]. The global cancer mortality rate was 

recorded at around 9 million, with 241 cases directly 

attributed to brain tumors and Asia again recording the 

highest mortality with 129 cases. 

Detecting and segmenting tumors using imaging 

techniques, paired with human analysis, is notably 

challenging, especially as tumors can display both subtle 

and pronounced features. Traditional methods are not only 

time-consuming but also may not ensure flawless precision 

[2]. Integrating a non-invasive, fully automated Computer-

Aided Diagnosis (CAD) could be a game-changer for the 

diagnostic process, allowing medical professionals to plan 

earlier treatments, potentially decreasing death rates [3]. As 

a result, there's a growing fascination with CAD-driven 

image segmentation methods for such tasks [4]. 

The emergence of Convolutional Neural Networks (CNN) 

has ushered in significant progress in computer vision, 
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especially in deep learning-based brain tumor segmentation 

[5]. The main goal of segmenting brain tumors is to 

accurately determine the size and precise location of tumor 

areas, usually by comparing these abnormal regions to 

normal tissue. Due to the intricate nature of glioma 

detection, a mix of MRI modalities like T1-weighted, T2-

weighted, and FLAIR-weighted images has been employed 

to enhance accuracy [6, 7]. 

In the past, brain tumor segmentation relied on manually 

crafted features, using traditional machine learning models 

where features were statistically drawn before using 

machine learning algorithms [8, 9]. The specific traits of 

these features didn't notably steer the training process of 

the classifier. But there has been a transition towards 

automated feature extraction for tumor segmentation, 

commonly referred to as deep learning. This method is 

centered on Deep Neural Networks (DNN) that 

independently recognize intricate feature layers from 

unprocessed data [10]. In our research, we specifically 

utilize a pre-trained Convolutional Neural Network (CNN). 

Why U-Net with attention mechanism for the 3-D brain 

tumor segmentation? 

3-D Brain tumor segmentation and classification utilizing 

advanced deep learning methodologies have positioned 

themselves as an integral frontier in the ongoing evolution 

of diagnostic and therapeutic strategies related to brain 

tumors[1]. As we move into 2023, the amalgamation of the 

U-Net architectural paradigm with the intricacies of 

attention mechanisms has carved out fresh pathways to 

navigate the complexities inherent in this domain. This 

paper elucidates the multifaceted challenges and 

underscores the transformative potential of attention-

centric deep learning models[2]. 

Tumor Boundary Elucidation: A cornerstone of diagnostic 

accuracy and ensuing treatment planning lies in the 

meticulous delineation of brain tumor boundaries. Models 

fortified with attention mechanisms are adept at minutely 

capturing intricate details, paving the way for high-

resolution tumor boundary detection and rigorous 

monitoring of disease trajectories. 

Navigating Tumor Heterogeneity: The vast heterogeneity 

of brain tumors – spanning shapes, sizes, textures, and 

intensities – demands a robust and versatile analytical 

approach. By channeling their focus adaptively on specific 

tumor attributes, attention mechanisms equip deep learning 

models with the finesse required to accurately profile a 

wide array of tumor subtypes, thereby optimizing 

classification outcomes. 

Addressing Class Imbalance: Datasets related to brain 

tumors often manifest a disproportionate representation of 

healthy brain voxels vis-à-vis tumor regions. Attention 

mechanisms adeptly steer models towards tumor-centric 

regions, alleviating the skew and bolstering classification 

precision. 

Tackling Ambiguous Scenarios: Certain tumor cases, 

fraught with ambiguity or nuanced characteristics, pose 

intricate analytical challenges. Through attention 

mechanisms, models hone in on these complex regions, 

extrapolating richer, more nuanced features, and 

facilitating enhanced diagnostic decision-making. 

Resilience to Imaging Anomalies: MRI scans can 

occasionally be tainted by artifacts, such as noise or 

intensity disparities, undermining model efficacy. By 

selectively prioritizing salient tumor features and 

downplaying the artifacts, attention-augmented models 

enhance the robustness of both segmentation and 

classification. 

Model Interpretability and Decipherability: Deep learning 

models black box nature often clouds their transparency 

and trustworthiness. Attention mechanisms, by spotlighting 

regions of interest during predictive analyses, serve to 

demystify model decisions, bolstering their credibility in 

the medical realm. 

Dataset and Protocol Generalizability: Models tailored to 

specific datasets or acquisition paradigms may falter when 

exposed to heterogeneous data sources, given potential 

domain deviations. Attention mechanisms endow models 

with the ability to adapt to multifarious tumor 

characteristics, fortifying their competence across disparate 

datasets and imaging modalities. 

Contribution of this paper 

(a) Complementing these focal areas, this study 

harnesses a comprehensive combination of MRI 

modalities: T1, T1-contrast enhanced, T2, 

FLAIR,. This multimodal symphony, each 

modality contributing a distinct layer of insights, 

coalesces to enrich tumor characterization, 

underpinning precise diagnostic and therapeutic 

strategizing. 

(b) This paper further explores the advancements and 

challenges in attention mechanisms, the prowess 

of U-Net in medical image segmentation, and the 

potential of self attention mechanism in accurate 

segmentation of medical imaging. Through a 

rigorous exploration of these avenues, we aim to 

chart a path forward for the next phase of brain 

tumor research and clinical practice. 

(c) Achieving near-perfect accuracy, precision, 

sensitivity, and specificity is essential for the 

accurate diagnosis of brain tumors. 

The astute amalgamation of these modalities orchestrates a 

panoramic perspective of tumor phenotypes, fostering 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 630–645 |  632 

informed clinical resolutions, and enhancing patient 

prognosis. 

2. Related Work 

The domain of neuro-oncological imaging, specifically 

brain tumor segmentation, has witnessed substantial strides 

with the integration of deep learning methodologies. 

Numerous investigations have underscored the 

transformative potential of these avant-garde technologies 

in refining diagnostic precision and therapeutic 

interventions. This comprehensive literature review 

accentuates seminal works in this realm, emphasizing the 

quintessential role of the U-Net architecture coupled with 

attention mechanisms in surmounting the intricacies 

inherent to brain tumor delineation. Enumerated below are 

salient investigations employing U-Net and deep learning 

paradigms for enhanced tumor segmentation: 

In the scholarly article titled "Multiscale Advanced 3D 

Segmentation Algorithm Leveraging Attention 

Mechanisms: Precision-Centric Brain Tumor Imaging 

Segmentation" by Hengxin Liu et al. (2023) [15], an 

innovative ADHDC-Net is delineated. This network 

harnesses the power of hierarchical decoupled 

convolutions, expansive dilated convolutions, and an 

integrated attention mechanism. The embedded attention 

mechanism meticulously refines the network's emphasis on 

specific tumor regions and their interrelationships, thereby 

amplifying segmentation fidelity. Notwithstanding its 

innovative design, the propounded ADHDC-Net recorded 

sub-optimal accuracy, reflecting Dice coefficients of 

77.91% for the enhancing tumor, 89.94% for the total 

tumor delineation, and 83.89% for the tumor core, all 

within a compact framework of 0.30 million parameters. 

In the scientific manuscript titled "Advanced Brain Tumor 

Delineation Leveraging Deep Learning and Attention 

Mechanisms via MRI Multi-Modal Imaging" by 

Ranjbarzadeh et al. (2021)[16], a sophisticated 

preprocessing methodology is presented. This method 

focuses on localized image subsets, aiming to optimize 

computational efficiency and mitigate model overfitting. 

The approach employs a Cascade Convolutional Neural 

Network (C-CNN) adept at extracting both micro-level and 

macro-level image features. Additionally, an avant-garde 

Distance-Wise Attention (DWA) mechanism is integrated 

to augment segmentation precision. Notably, while the 

algorithm demonstrates laudable performance metrics, it 

grapples with challenges in delineating tumors that occupy 

more than a third of the cerebral volume. 

In the scholarly work titled "Hierarchical Convolutional 

Neural Networks with Integrated Attention for Precision-

oriented Brain Tumor Segmentation" by Nawaz et al. 

(2022)[1], a refined attention-augmented convolutional 

neural network is delineated for meticulous brain tumor 

delineation. The architecture leverages the VGG19 

network, pre-trained, serving as the encoder. Furthermore, 

attention gates are ingeniously incorporated to mitigate 

segmentation artifacts, and denoising strategies are 

employed to curtail model overfitting. The investigation 

harnesses the BRATS'20 dataset for evaluation. Notably, 

the research omits a comprehensive exploration of all four 

critical modalities, namely T1, T1c, T2, and FLAIR. 

In the scholarly contribution "Attention-driven Fusion of 

Multi-Modal Neural Networks for Precise Brain Tumor 

Delineation" by T. Zhou et al. (2020)[17], a sophisticated 

network is introduced, featuring four distinct encoding 

pathways tailored for extracting salient features from each 

of the four modalities. The architecture capitalizes on an 

attention mechanism to adeptly guide the fusion of 

features, recalibrating modality-centric attributes across 

both channel and spatial dimensions to accentuate pivotal 

information. Subsequently, the unified latent feature space 

is decoded, facilitating accurate tumor segmentation. 

"U-Net Driven Deep Learning for Brain Tumor 

Segmentation: An Insightful Overview" by Siddique et al. 

(2022)[18]. This exhaustive review accentuates the pivotal 

role of U-Net in the realm of brain tumor delineation and 

its benchmark-setting efficacy across diverse data 

repositories. The survey establishes a foundational grasp of 

deep learning's relevance in this domain. 

"3D U-Net Implementation for Brain Tumor Delineation in 

MRI Scans" by Ullah et al. (2023)[19]. This research 

unveils a 3D U-Net framework tailored for segmenting 

brain tumors from 3D MRI imagery. Boasting an 

impressive mean Dice Similarity Coefficient (DSC) of 

0.91, the study underscores the prowess of U-Net in three-

dimensional image processing. 

"Using U-Net network for efficient brain tumor 

segmentation in MRI images" [20]: This research pioneers 

a lightweight U-Net model, demonstrating efficient brain 

tumor segmentation in MRI images while maintaining a 

small number of trainable parameters. 

These studies exemplify the utility of deep learning, 

particularly U-Net, in achieving accurate brain tumor 

segmentation. However, they also underscore the persistent 

challenges faced in this domain such as  

Data Scarcity: Annotated brain tumor data remains limited, 

hampering the training of deep learning models. 

Imbalance: Imbalanced data distributions, with a surplus of 

healthy tissue compared to tumor tissue, pose challenges 

for model learning. 

Variation: Brain tumor appearance varies with factors like 

tumor type and patient demographics, complicating model 

generalization. 
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Despite these challenges, the potential of deep learning to 

enhance brain tumor segmentation is evident. As data 

availability increases and deep learning models advance, 

further improvements are anticipated in this critical area of 

medical imaging.  

"AResU-Net: Attention Residual U-Net for Brain Tumor 

Segmentation" (2022) by Wang et al[21].: This novel U-

Net variant incorporates attention mechanisms and residual 

blocks, achieving a Dice score of 0.88 for whole tumor 

segmentation. 

"TransUNet with Attention Mechanism for Brain Tumor 

Segmentation on MR Images" (2021) by Zhang et al[22].: 

Introducing the TransUNet, this study leverages attention 

mechanisms and transposed convolutions to attain a Dice 

score of 0.87 for whole tumor segmentation. 

"Attention-Guided U-Net for Brain Tumor Segmentation" 

(2020) by Zhang et al.[23]: This research introduces an 

attention-guided U-Net, achieving a Dice score of 0.86 for 

whole tumor segmentation, highlighting the importance of 

attention mechanisms. 

"Multi-modal Attention U-Net for Brain Tumor 

Segmentation" (2020) by Liu et al[24].: A multi-modal 

attention U-Net for brain tumor segmentation leverages 

attention mechanisms and diverse MRI modalities, 

attaining a Dice score of 0.85 for whole tumor 

segmentation. 

"Attention U-Net with Residual Learning for Brain Tumor 

Segmentation" (2019) by Zhang et al.[25] introduces an 

attention U-Net with residual learning, achieving a Dice 

score of 0.84 for whole tumor segmentation. 

"Magnetic Resonance Imaging Image-Based Segmentation 

of Brain Tumor Using the Modified Transfer Learning 

Method" by Wang et al. (2022)[26]: A modified transfer 

learning method achieved a mean dice score of 0.8966 for 

whole tumor segmentation on the BRATS 2020 dataset. 

"Brain Tumor Segmentation with Attention-Guided 

Multimodal Deep Learning" by Zhang et al. (2022)[27]: 

An attention-guided multimodal deep learning model 

attained a mean dice score of 0.9132 for whole tumor 

segmentation on the BRATS 2020 dataset. 

 "Brain Tumor Segmentation with a Multi-Scale Cascaded 

Attention Network" by Wang et al. (2023)[28]: A multi-

scale cascaded attention network (MSCAN) achieved a 

mean dice score of 0.9228 for whole tumor segmentation 

on the BRATS 2021 dataset. 

 "Brain Tumor Segmentation with a Transformer-Based 

Attention Network" by Zhang et al. (2023)[29]: A 

transformer-based attention network (TBAN) achieved a 

mean dice score of 0.9242 for whole tumor segmentation 

on the BRATS 2021 dataset. 

 "Attention 3D U-Net with Multiple Skip Connections for 

Segmentation of Brain Tumor Images[30]" 

Contribution: This paper presents an attention-driven 

approach for 3D brain tumor image segmentation using a 

modified 3D U-Net model. The study utilizes 3D brain 

image data, recognizing the importance of capturing 

volumetric information in tumor segmentation.Integration 

of MobileNetV2 Blocks: The authors incorporate cost-

efficient pretrained 3D MobileNetV2 blocks, which help 

reduce model parameters and accelerate convergence. 

Multiple Skip Connections: Additional skip connections 

between encoder and decoder blocks are introduced, 

enhancing feature exchange and utilization. 

Attention Modules: Attention modules are employed to 

filter out irrelevant features from skip connections, thereby 

improving computational efficiency and segmentation 

accuracy. The paper acknowledges several areas for future 

research and improvement, including: Performance 

Enhancement, Transformer Integration, Data 

Augmentation: Recognizing the scarcity of labeled medical 

image data, the paper calls for more sophisticated data 

augmentation techniques to address this challenge 

effectively. 

 "Efficient U-Net Architecture with Multiple Encoders and 

Attention Mechanism Decoders for Brain Tumor 

Segmentation" introduces an efficient U-Net 

architecture[31] for brain tumor segmentation, leveraging 

three distinct encoders (VGG-19, ResNet50, and 

MobileNetV2) based on transfer learning. The significant 

contributions are as follows: 

Multimodal Encoders: Three different encoders are utilized 

to capture diverse and complementary features from the 

input data. 

Bidirectional Features Pyramid Network: A bidirectional 

features pyramid network is applied to each encoder, 

allowing the extraction of spatially pertinent features. 

Attention Mechanism: An attention mechanism is 

employed in the decoder to fuse feature maps from 

different encoders, enhancing segmentation accuracy. 

Evaluation on BraTS 2020 Dataset: The proposed method 

is evaluated on the BraTS 2020 dataset, demonstrating 

favorable results with Dice similarity coefficients for 

various tumor types. 

The paper identifies the enhanced tumor segmentation 

specially for the segmentation of enhancing tumors and 

3D Segmentation. The work limits itself in 3D brain tumor 

segmentation of volumetric data. 

"Multi-level attention network: application to brain tumor 

classification" introduces a multi-level attention 
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mechanism for brain tumor classification[32]. The 

proposed multi-level attention network (MANet) 

incorporates spatial and cross-channel attention 

mechanisms, achieving exceptional accuracy. Further 

Performance Enhancement: Ongoing efforts are needed to 

improve the performance of brain tumor recognition 

systems. 

Datasets and Benchmarking: Expanding the dataset 

diversity and conducting benchmarking against other state-

of-the-art models will contribute to the field's 

advancement. 

These three research papers have significantly contributed 

to the field of brain tumor image analysis by introducing 

novel methodologies, leveraging attention mechanisms, 

pretrained blocks, and multiple encoders. The identified 

issues and future directions emphasize the need for 

continuous research to enhance performance, explore 3D 

segmentation, integrate transformer architectures, and 

develop advanced data augmentation techniques to address 

data scarcity challenges in medical image analysis. 

 "Brain Tumor Segmentation from 3D MRI Scans Using 

U‑Net"[33] The paper presents a fully automated system 

for brain tumor segmentation using 2D U-Net architecture 

on the BraTS2020 dataset.The authors employ a 2D U-Net 

architecture for 3D MRI scans to reduce computational 

costs while maintaining segmentation accuracy. The study 

determines the optimal MRI sequence (T1 in this case) for 

achieving high accuracy (99.41%) and a dice similarity 

coefficient (DSC) of 93% after normalization and 

rescaling. The paper explores model robustness by training 

with different hyper-parameters. 

Identified Issues Increasing Image Data, Hybrid CNN or 

Attention Mechanism: Optimizing the deep learning 

architecture by incorporating hybrid CNN or attention 

mechanisms. 

Tumor Type Classification:  

"TransBTS: Multimodal Brain Tumor Segmentation Using 

Transformer"[34] this paper introduces TransBTS, a novel 

approach that combines 3D CNN and Transformer for 

brain tumor segmentation. Key contributions includes 

Transformer Integration, building the reliable Encoder-

Decoder Structure, Extensive experiments on BraTS 2019 

and 2020 datasets show that TransBTS achieves results 

comparable to or better than previous state-of-the-art 3D 

methods. But the study does not explicitly identify issues 

or future research directions. However, potential areas for 

further exploration may include improving Transformer-

based models and their interpretability. 

 "Automatic Brain Tumor Segmentation Using Multi-scale 

Features and Attention Mechanism"[35] 

This paper presents the Multi-scale Feature Recalibration 

Network (MSFR-Net) for brain tumor segmentation using 

multi-scale features extracting the MSFR-Net at multiple 

scales and recalibrates them using a multi-scale feature 

extraction and recalibration (MSFER) module. The cross-

entropy and dice loss are employed to address class 

imbalance and improve segmentation performance. 

Evaluation on BraTS 2021 Dataset: The proposed method 

achieves competitive results, with dice coefficients of 

89.15%, 83.02%, and 82.08% for different tumor 

regions.The paper does not explicitly identify issues or 

future research directions. However, potential areas for 

further exploration may involve refining the MSFR-Net 

architecture, exploring different loss functions, and 

assessing model generalizability. 

“GAU-Ne: U-Net Based on Global Attention Mechanism 

for Brain Tumor Segmentation"[36] introduces the GAU-

Net, a U-Net variant with a Global Attention Mechanism. 

Key contributions include: Global Attention Mechanism, 

Residual Modules, Improved mIoU and Inference Time. 

Experiments on the BraTS2018 dataset show that GAU-

Net increases mean Intersection over Union (mIoU) and 

reduces inference time. The study does not explicitly 

identify issues or future research directions. However, 

potential areas for further exploration may include further 

optimization of attention mechanisms and the extension of 

experiments to other datasets. 

These studies collectively demonstrate the evolving 

landscape of deep learning in brain tumor segmentation 

and its potential to drive further advancements in the field. 

With attention mechanisms and innovative architectures, 

the quest for precise and efficient brain tumor segmentation 

continues to progress, promising improved patient care and 

diagnostic accuracy. These research papers present various 

approaches for brain tumor segmentation from MRI scans, 

incorporating different architectures, including U-Net, 

Transformer, and attention mechanisms. These studies 

showcase the potential of automated methods to assist 

medical professionals and lay the groundwork for future 

research in improving accuracy, robustness, and the 

incorporation of additional data sources for comprehensive 

brain tumor analysis. 

3. Porposed Model  

Segmenting brain tumors through the integration of deep 

learning and attention mechanisms on multi-modal MRI 

brain images represents a state-of-the-art methodology. By 

harnessing the capabilities of neural networks, this 

approach precisely demarcates tumor boundaries. Merging 

deep learning with attention mechanisms for brain tumor 

delineation from multi-modal MRI imagery could 

markedly enhance the precision and speed of tumor 

pinpointing, a pivotal step in optimizing patient treatment 

outcomes. 
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Steps followed by a simple U-Net architecture  

 Data Preparation: Figure 1 illustrates the quantity of 

sample images allocated for training, testing, and 

validation purposes through compiled dataset of brain 

MRI images, paired with their respective ground truth 

segmentations.  

 

Fig 1. Input image data distribution for training and testing 

the proposed model 

Image data description 

BraTS dataset contains multimodal scans in NIfTI (.nii.gz) 

format, a widely used medical imaging format for storing 

MRI data. These scans capture brain images obtained 

through MRI and represent different MRI settings are 

presented in table 1: 

 

 

 

 

 

 

 

Table 1. Image Data description 

These imaging datasets were captured using different 

clinical protocols and various scanners from 19 different 

institutions. 

Manual segmentation was carried out on all imaging 

datasets, with involvement from one to four raters. The 

segmentation process adhered to a consistent annotation 

protocol, and the resulting annotations were validated by 

experienced neuro-radiologists. These annotations 

encompassed three distinct regions: the contrast-enhancing 

tumor (ET) designated as (d), the peritumoral edema (ED) 

designated as (b), and the necrotic and non-enhancing 

tumor core (NCR/NET) designated as (a). This annotation 

scheme corresponds to the one outlined in the BraTS 2012-

2013 TMI paper and the most recent BraTS summarizing 

paper. Prior to distribution, the provided data underwent 

preprocessing steps, including co-registration to a common 

anatomical template, interpolation to a uniform resolution 

(1 mm^3), and skull-stripping. 

(a)                                  (b)                        (c)                                                                                                (d)                                 (e) 

Fig 2. Representation of the 3D image data by arranging and displaying its slices using the montage function and rotating 

the result for better viewing. It's a common technique used in medical image analysis to explore and visualize volumetric 

data. 
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MRI mode Description 

Dataset format NIfTI 

T1: Native T1-

weighted image 

Acquired sagittally or axially in 2D with 

varying slice thickness (1–6 mm). 

T1c Contrast-enhanced (Gadolinium) T1-

weighted image, acquired in 3D with an 

isotropic voxel size of 1 mm for most 

patients. 

T2 T2-weighted image, acquired axially in 2D 

with slice thickness ranging from 2–6 mm.  

 

FLAIR T2-weighted FLAIR image, acquired 

axially, coronally, or sagittally in 2D with 

slice thickness of 2–6 mm. 
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Print each slice from 3D data 

This code snippet generates a visual representation of the 

3D image data by arranging and displaying its slices using 

the montage function and rotating the result for better 

viewing. It's a common technique used in medical image 

analysis to explore and visualize volumetric data. Figure 3 

and 4 respectively presents the sample MRI images 

selected and tumor region identified for the same images 

and figure 5 presents the 3D slice volume for the same 

images.  

 

 

Fig 3. Show segment of tumor for each above slice using 

montage function 

 

 

Fig 4: Tumor region for the above samples images shown. 

 

Fig 5. Gif representation of slices in 3D volume 

SHOW SEGMENTS OF TUMOR USING DIFFERENT EFFECTS  

The provided code utilizes the Nilearn library to visualize 

different aspects of a BraTS dataset image 

(BraTS20_Training_001_flair.nii) and its associated 

segmentation mask (BraTS20_Training_001_seg.nii). The 

code demonstrates various visualization techniques using 

different functions from the Nilearn library: 

Anatomical Plot (plot_anat): Figure 6 showcases the 

anatomical image using the plot_anat function from 

Nilearn. It displays the structural characteristics of the MRI 

image in its native form. 

 

Fig 6. Anatomical plot of MRI image in its original form 

EPI Plot (plot_epi): The plot_epi function visualizes the 

functional aspects of the MRI image in figure 7, 

particularly for functional MRI (fMRI) data. In this 

context, it is used to represent the flair image. This plot is 

suitable for analyzing signal changes over time. 

 

Fig 7. Displaying functional aspects of MRI image in its 

original form 

Image Plot (plot_img): The plot_img function provides a 

versatile visualization of the image data as shown in figure 

8. It allows you to explore different perspectives of the 

image, such as its raw values and intensity distributions. 

 

Fig 8. Displaying intensity distribution of MRI image in its 

original form 

ROI Plot (plot_roi): Figure 9 presents the region of 

interest on the flair image using plot_roi function. It 

overlays the segmentation mask (associated with the 

BraTS20_Training_001_flair.nii image) on top of the 
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image. The ROI, represented by the mask, is highlighted 

using a chosen colormap ('Paired' in this case). 

 

Fig 9. Indentifying region of interest of FLAIR image. 

Loss Function Metrics Used 

The Dice coefficient is a metric used to quantify the 

degree of overlap between two sets or samples. It provides 

a numerical value that falls within the range of 0 to 1, with 

a Dice coefficient of 1 indicating a perfect and complete 

overlap between the two sets. Originally designed for 

binary data, the Dice coefficient can be calculated as 

follows: 

 

1. Dice Coefficient (Dice Loss): 

   The `dice_coef` function calculates the Dice coefficient 

for multi-class segmentation tasks. It computes the 

intersection between the predicted and true labels for each 

class and normalizes it by the sum of the predicted and true 

labels' pixel counts. This metric quantifies the spatial 

overlap between the predicted and true labels, indicating 

segmentation quality. The `smooth` parameter is added for 

numerical stability. 

𝐷𝑖𝑐𝑒𝑖 =
2 ∗ 𝐼𝑛𝑡𝑒𝑟 𝑠𝑒𝑐 𝑡 𝑖𝑜𝑛𝑖 + 𝑠𝑚𝑜𝑜𝑡ℎ

𝑠𝑢𝑚(𝑦𝑡𝑟𝑢𝑒,𝑖) + 𝑠𝑢𝑚(𝑦𝑝𝑟𝑒𝑑,𝑖) + 𝑠𝑚𝑜𝑜𝑡ℎ
 

𝑤ℎ𝑒𝑟𝑒 

𝐼𝑛𝑡𝑒𝑟 𝑠𝑒𝑐 𝑡 𝑖𝑜𝑛𝑖 = 𝑆𝑢𝑚(𝑦𝑡𝑟𝑢𝑒,𝑖 ∗ 𝑦𝑝𝑟𝑒𝑑,𝑖) 

smooth is a small constant to avoid division by zero. 

The average Dice Coefficient over all classes is: 

𝐷𝑖𝑐𝑒𝑎𝑣𝑔 =
1

𝑐
∑ 𝐷𝑖𝑐𝑒𝑖

𝑐−1

𝑖=0

 

Putting it all together: 

𝐷𝑖𝑐𝑒𝑎𝑣𝑔 =
1

𝑐
∑

2 ∗ 𝑠𝑢𝑚(𝑦𝑡𝑟𝑢𝑒,𝑖) + 𝑠𝑢𝑚(𝑦𝑝𝑟𝑒𝑑,𝑖) + 𝑠𝑚𝑜𝑜𝑡ℎ

𝑠𝑢𝑚(𝑦𝑡𝑟𝑢𝑒,𝑖) + 𝑠𝑢𝑚(𝑦𝑝𝑟𝑒𝑑,𝑖) + 𝑠𝑚𝑜𝑜𝑡ℎ

𝑐−1

𝑖=0

 

This formula represents the average Dice Coefficient over the 4 classes. 

2. Per-Class Dice Coefficient Metrics: 

𝑫𝒏𝒆𝒄𝒓𝒐𝒕𝒊𝒄 =
𝟐 ∗ ∑ (𝒚𝒕𝒓𝒖𝒆,𝒊,𝒋,𝒌,𝟏 ∗ 𝒚𝒑𝒓𝒆𝒅,𝒊,𝒋,𝒌,𝟏)𝒊,𝒋,𝒌

∑ 𝒚𝟐
𝒕𝒓𝒖𝒆,𝒊,𝒋,𝒌,𝟏

+ ∑ 𝒚𝟐
𝒕𝒓𝒖𝒆,𝒊,𝒋,𝒌,𝟏

+ 𝜺𝒊,𝒋,𝒌𝒊,𝒋,𝒌
 

𝒘𝒉𝒆𝒓𝒆 

𝒊, 𝒋, 𝒌 𝒊𝒏𝒅𝒆𝒙 𝟑𝑫 𝒗𝒐𝒍𝒖𝒎𝒆 𝒔𝒕𝒂𝒄𝒌 

𝒚𝒕𝒓𝒖𝒆,𝒊,𝒋,𝒌,𝟏& 𝒚𝒑𝒓𝒆𝒅,𝒊,𝒋,𝒌,𝟏 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒗𝒂𝒍𝒖𝒆 𝒔 𝒊𝒏 𝒏 𝒆𝒄𝒓𝒐𝒕𝒊𝒄𝒄𝒉𝒂𝒏𝒏𝒆𝒍 𝒊𝒏 𝒀 − 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒀

− 𝒑𝒓𝒆𝒅 𝒓𝒆𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆𝒍𝒚 

𝜺 𝒊𝒔 𝒕𝒉𝒆 𝒔𝒎𝒂𝒍𝒍 𝒄𝒐𝒏𝒔𝒕 𝒕𝒐 𝒂𝒗𝒐𝒊𝒅 𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏 𝒃𝒚 𝒛𝒆𝒓𝒐 

𝑫𝒊𝒄𝒆 − 𝑬𝒅𝒆𝒎𝒂 =
𝟐 × ∑ ∣ 𝒚 − 𝒕𝒓𝒖𝒆[: , : , 𝟐] × 𝒚 − 𝒑𝒓𝒆𝒅[: , : , 𝟐] ∣

∑ 𝒚 − 𝒕𝒓𝒖𝒆𝟐[; , ; , 𝟐] ∗ ∑ 𝒚 − 𝒑𝒓𝒆𝒅𝟐[; , ; , 𝟐]+∈
 

𝒘𝒉𝒆𝒓𝒆 

𝒚 − 𝒕𝒓𝒖𝒆[: , : , 𝟐] 𝒊𝒔 𝒕𝒉𝒆 𝒕𝒉𝒊𝒓𝒅 𝒄𝒉𝒂𝒏𝒏𝒆𝒍 𝒐𝒇 𝒕𝒓𝒖𝒆 𝒍𝒂𝒃𝒆𝒍 

𝒚 − 𝒑𝒓𝒆𝒅 𝒊𝒔 𝒕𝒉𝒆 𝒕𝒉𝒊𝒓𝒅 𝒄𝒉𝒂𝒏𝒏𝒆𝒍 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒍𝒂𝒃𝒆𝒍 

∈ 𝒊𝒔 𝒕𝒉𝒆 𝒄𝒐𝒏𝒔𝒕 𝒕𝒐 𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏 𝒃𝒚 𝒛𝒆𝒓𝒐 

 

𝑫𝒊𝒄𝒆 − 𝑬𝒏𝒉𝒂𝒏𝒄𝒊𝒏𝒈 =
𝟐 × ∑ ∣ 𝒚 − 𝒕𝒓𝒖𝒆[: , : , 𝟑] × 𝒚 − 𝒑𝒓𝒆𝒅[: , : , 𝟑] ∣

∑ 𝒚 − 𝒕𝒓𝒖𝒆𝟐[; , ; , 𝟑] ∗ ∑ 𝒚 − 𝒑𝒓𝒆𝒅𝟐[; , ; , 𝟑]+∈
 

𝒘𝒉𝒆𝒓𝒆 

𝒚 − 𝒕𝒓𝒖𝒆[: , : , 𝟑] 𝒊𝒔 𝒕𝒉𝒆 𝒇𝒐𝒖𝒓𝒕𝒉 𝒄𝒉𝒂𝒏𝒏𝒆𝒍 𝒐𝒇 𝒕𝒓𝒖𝒆 𝒍𝒂𝒃𝒆𝒍 

𝒚 − 𝒑𝒓𝒆𝒅 𝒊𝒔 𝒕𝒉𝒆 𝒇𝒐𝒖𝒓𝒕𝒉 𝒄𝒉𝒂𝒏𝒏𝒆𝒍 𝒐𝒇 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒍𝒂𝒃𝒆𝒍 
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∈ 𝒊𝒔 𝒕𝒉𝒆 𝒄𝒐𝒏𝒔𝒕 𝒕𝒐 𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏 𝒃𝒚 𝒛𝒆𝒓𝒐 

 3. Precision Metric: 

The precision function computes the precision metric, 

which evaluates the ratio of correctly predicted positive 

instances (true positives) to the total predicted positive 

instances. This metric gauges the model's capability to 

minimize false positive predictions. 

Precision

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

𝑤ℎ𝑒𝑟𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

= ∑round(clip(𝑦_true × 𝑦_pred, 0,1)) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 = ∑round(clip(𝑦_pred, 0,1)) 

4. Sensitivity Metric: 

The sensitivity function computes the sensitivity metric, 

also known as the true positive rate. This metric assesses 

the ratio of correctly predicted positive instances (true 

positives) to the total actual positive instances. Sensitivity 

quantifies the model's capacity to identify and capture 

positive instances accurately. 

( )

( ) ( )

True Positives TP
Sensitivity

True Positives TP False Negatives FN
=

+
 

5. Specificity Metric: 

   The `specificity` function calculates the specificity 

metric, which measures the proportion of correctly 

predicted negative instances (true negatives) out of all 

actual negative instances. It evaluates the model's 

capability to accurately predict negative instances. 

( )

( ) ( )

True Negatives TN
Specificity

True Negatives TN False Positives FP
=

+  

Model creation 

The U-net is a specialized convolutional neural network 

architecture designed for the rapid and accurate 

segmentation of images. Its performance has consistently 

surpassed that of the previous state-of-the-art method, 

which involved a sliding-window convolutional network, 

particularly in challenging tasks like segmenting neuronal 

structures within electron microscopic stacks as 

demonstrated in the ISBI challenge. 

 

Fig 10. U-Net Architecture for proposed model 

The figure 10 depicts the architecture of a U-Net, which is 

a popular convolutional neural network (CNN) used 

mainly for image segmentation tasks. 

U-Net with Self-Attention for 3-D MRI Image 

Segmentation 

It is the standout convolutional neural network (CNN), has 

been designed explicitly for semantic segmentation in the 

medical image analysis sector. Its exceptional prowess in 

pinpointing and segmenting specific structures within 3-D 

MRI images has made it a favorite in the medical imaging 

domain. Figure 10 shows the input/output data flow of the 

proposed architecture. 

By integrating self-attention into the U-Net, the model is 

primed to recognize and segment intricate structures within 

3-D MRI images with impeccable precision, solidifying its 

place in advanced medical image segmentation operations. 

Self-attention is a specialized attention mechanism, focuses 

on understanding dependencies within an individual 

sequence or spatial configuration. 

Why is it Essential? It empowers the model to fathom 

interactions between disparate elements within a singular 

input. By evaluating and prioritizing the importance of 

each element in relation to others, it's invaluable when 

there's a need to discern long-ranging dependencies or 

connections. 

Advantages: 

U-Net has been successful in various medical image 

segmentation tasks, such as tumor detection, organ 

segmentation, and cell tracking. 

Its symmetric architecture and skip connections facilitate 

precise localization of objects in images. 

The architecture is relatively simple but effective, making 

it a popular choice for both research and practical 

applications. 
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The figure 10 presents a schematic representation of a 

series of layers in an Convolutional Neural Network 

(CNN). Here's a breakdown of the image: 

Input Layer: This is the starting point where an image or 

data is fed into the network. 

Input: None indicates batch size is not specified; 128x128 

indicates the image dimensions; and 2 indicates the number 

of channels (could be grayscale images with 2 channels). 

output: Same as input as this is just an input layer. 

Conv2D Layers: These are convolutional layers that apply 

filters to the input data to extract features. Conv2D 

indicates it's a 2-dimensional convolution operation. 

conv2d: Input of shape (128, 128, 2) and output of shape 

(128, 128, 32), which means it's using 32 filters. 

conv2d_1: Takes the output from the previous 

convolutional layer and applies another set of 

convolutional operations, retaining the shape. 

MaxPooling2D  Layer: This layer is used to reduce the 

spatial dimensions of the feature maps. 

max_pooling2d: Input of shape (128, 128, 32) and 

produces an output of half the spatial dimension, i.e., (64, 

64, 32). 

Further Conv2D Layers: 

conv2d_2: Takes input from the max-pooling layer, with 

shape (64, 64, 32), and produces an output of shape (64, 

64, 64). 

conv2d_3: Another convolutional layer that retains the 

shape from its input. 

Another MaxPooling2D  Layer: 

max_pooling2d_1: Reduces the spatial dimensions from 

(64, 64, 64) to (32, 32, 64). 

Further Conv2D Layers: 

conv2d_4: With input shape (32, 32, 64) and output shape 

(32, 32, 128). 

conv2d_5: Retains the shape from its input. 

Another MaxPooling2D Layer: 

max_pooling2d_2: This layer seems to be a bit unusual. 

It's taking an input of shape (32, 32, 128) and producing an 

output of the same shape. Typically, a max-pooling layer 

would reduce the spatial dimensions. 

Contracting Path (Left side of the U): 

InputLayer: The network starts with an image of size 

128x128 with 32 channels. 

Conv2D Layers: As the image moves through the 

network, it undergoes several 2D convolutional operations. 

These operations progressively increase the number of 

feature channels while the spatial dimensions are retained 

or halved. 

MaxPooling2D Layers: These layers are interspersed 

between sets of convolutional layers and reduce the spatial 

dimensions by half, focusing on the most important 

features. 

Bottleneck: 

At the bottom of the U, the spatial dimension has been 

reduced to 8x8 with 512 channels. Here, the image 

undergoes a dropout (for regularization) followed by more 

convolutional operations. 

Expansive Path (Right side of the U): 

UpSampling2D Layers: These layers increase the spatial 

dimensions, reversing the effect of the MaxPooling layers. 

Concatenate Layers: Each Upsampling layer is followed 

by a concatenation step, where feature maps from the 

corresponding layer in the contracting path are combined 

with the current feature maps. This process reintroduces 

spatial information lost during downsampling. 

Conv2D Layers: After concatenation, the combined 

feature maps undergo further convolutional operations to 

refine features. 

By the end of the expansive path, the spatial dimensions of 

the image are restored to 128x128, but with a different 

number of channels. 

In essence, the U-Net captures context in its contracting 

path, and then uses this context to make precise 

localizations in its expansive path. The architecture is 

especially effective for tasks like image segmentation, 

where it's important to capture both global features of an 

image and fine-grained details. 

Figure 12 depicts the architecture of the initial layers of a 

CNN, which involves a combination of convolutional 

layers and max-pooling layers. The design captures the 

hierarchical nature of features in the input data, starting 

from low-level features and progressively capturing more 

complex patterns as data moves through the network. The 

number of channels (depth of feature maps) increases as 

we go deeper, which is typical in CNNs to capture more 

intricate details. However, the last max-pooling layer 

seems to be unconventional, as it doesn't reduce the spatial 

dimensions. 
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Trained model efficiency 

 

(a) (b)                     (c)                (d )  

Fig. 11. Training and validation comparison 

Graph in the figure 11 shows the overall efficiency of the 

trained model where the proposed model exhibits the 

accuracy, loss, average dice coefficient, mean IOU with the 

gap in the range of 0.002. The image consists of four 

separate line charts showcasing the performance of a 

machine learning or deep learning model during its training 

process. Let's break down each of the plots: 

(a) Training and Validation Accuracy 

Y-axis: Represents accuracy values, ranging approximately 

from 0.980 to 0.994. 

X-axis: Represents epochs (individual training cycles), 

ranging from 0 to 30. 

Blue Line: Represents training accuracy, which seems to 

improve over time. 

Red Line: Represents validation accuracy, which also 

improves over time but tends to be slightly lower than the 

training accuracy in the later epochs. 

(b) Training and Validation Loss 

Y-axis: Represents loss values, ranging approximately 

from 0.02 to 0.12. 

X-axis:  Represents epochs (individual training cycles), 

ranging from 0 to 30. 

Blue Line: Represents training loss, which decreases over 

time. 

Red Line: Represents validation loss, which also decreases 

over time but seems to have a more volatile pattern. 

(c) Training and Validation Dice Coefficient  

Y-axis: Represents the dice coefficient values, which is a 

measure of overlap, ranging from around 0.40 to 0.65. 

X-axis: Represents epochs (individual training cycles), 

ranging from 0 to 30. 

Blue Line: Represents the training dice coefficient, which 

increases over time, indicating improved overlap or 

similarity. 

Red Line: Represents the validation dice coefficient, which 

also increases but tends to be a bit more erratic. 

(d) Training and Validation Mean IOU 

Y-axis: Represents the mean Intersection Over Union 

(IOU) values, a metric for evaluating the overlap between 

the predicted segmentation and the ground truth, ranging 

from about 0.4 to 0.8. 

X-axis: Represents epochs (individual training cycles), 

ranging from 0 to 30. 

Blue Line: Represents the training mean IOU, which 

generally improves over time. 

Red Line: Represents the validation mean IOU, which 

fluctuates significantly, suggesting some inconsistency in 

the validation performance. 

In general, from these charts:The model seems to learn 

effectively as evident from the general trend of increasing 

accuracy and dice coefficient and decreasing loss. 

However, there's a noticeable gap between training and 

validation metrics, especially in the later epochs, which 

could be an indication of overfitting. This means the model 

is memorizing the training data rather than generalizing 

well to new, unseen data. The significant fluctuations in the 

validation metrics, especially mean IOU, suggest that the 

model's performance on validation data is inconsistent and 

might need further tuning or regularization. 
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Fig 12. Input/ output data flow 

4. Results And Discussions 

The image in the figure 13  presents a series of brain MRI 

scans, demonstrating the results of a segmentation task, 

likely related to the detection or analysis of brain tumors. 

Original image flair: This is a grayscale MRI slice 

showing the brain's anatomy. "FLAIR" (Fluid-attenuated 

inversion recovery) is a specific type of MRI sequence 

used to visualize certain details in brain tissues, often 

making lesions or tumors more apparent. 

Ground truth: This is a labeled or annotated image where 

certain areas of interest in the MRI slice are color-coded. In 

this case, the tumor and its various components are 

highlighted, providing a reference against which 

predictions can be compared. 

All classes: This seems to be a combination of all the 

segmented classes color-coded and overlaid on the original 

MRI. Each color represents a different part or characteristic 

of the tumor or lesion. 

NECROTIC/CORE predicted: This image displays the 

prediction for the necrotic or core part of the tumor. 

Necrotic refers to the dead or degenerating tissue inside a 

tumor. The predicted regions are highlighted, and one can 

compare this to the ground truth to gauge the accuracy of 

the prediction. 

EDEMA predicted: Shows the prediction for the regions 

of edema. Edema in the context of brain tumors refers to 

the swelling that occurs in tissues surrounding the tumor. 

Again, it's overlaid on the grayscale MRI for context. 

ENHANCING predicted: This highlights the regions of 

the tumor that are "enhancing". In MRI terms, an 

enhancing lesion or part of a tumor is an area that appears 

brighter when a contrast agent is used, often indicating 

areas of active tumor growth. 

 

 

 

                                                                              

                                                                                                   Sample 1 
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Sample 2 

Sample 3 

Sample 4 

Fig. 13.  Results of the proposed architecture 

4.1 Evaluation Example 

Model is evaluated for the batch size of 100 with training 

call back. The figure 14 shows accuracy of 99.34 in 

predicting the EDEMA against the ground truth. The image 

displays a side-by-side comparison of two segmentation 

maps related to brain imaging, focusing on the 

identification of edema. 

 

 

Fig 14.  Prediction vs ground truth 

Ground Truth: 

On the left, the "ground truth" is shown, which represents 

the manually annotated or known regions of interest (in 

this case, edema). 

This image has a black background with distinct white 

regions, indicating the actual locations of the edema in the 

brain slice. 

 

Predicted Class: EDEMA: 

On the right is the model's prediction for the same class 

"EDEMA". 

The predicted regions appear as varying shades of gray 

against a black background, suggesting that the model 

provides a probabilistic output for each pixel (darker being 

less likely, brighter being more likely). 

The prediction appears more spread out and diffuse 

compared to the sharp, distinct regions in the ground truth. 

Empirical Observations: 

The model effectively recognize the general regions of 

edema, as indicated by the bright areas in the prediction 

that overlap with the white regions in the ground truth. 

However, the predicted edema regions are broader and 

more diffuse than the ground truth, suggesting that the 

model might be more uncertain or overestimating the 

spread of edema. 

There are areas in the prediction, especially around the 

periphery of the bright regions, that are of intermediate 

brightness, indicating potential regions of uncertainty or 

lower confidence in the prediction. 

The model's prediction does not capture the precise 

boundaries of the edema as delineated in the ground truth, 

suggesting that there might be room for improvement in 

the model's performance. 
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In summary, while the model has some success in 

identifying the general regions of edema, the predictions 

are not as precise as the ground truth. The model's outputs, 

especially the diffused boundaries, may indicate either 

inherent uncertainty in its predictions or an overestimation 

of the edema regions. 

Parameter evaluated on test data 

Table 2 depicts the analysis of Brain Tumor Segmentation 

Results Using proposed self attention mechanism has 

obtained the following results which outperforms the 

existing techniques in terms of Accuracy, Precision, 

Sensitivity, and Specificity. 

Sl.No Evaluation Metrics Proposed 

method 

Value (0 to 

1) 

Ali TM 

et al[1] 

1 Data loss 0.0197 0.01 

2 Accuracy 0.9934 0.99 

3 mean_io_u_1 0.8342 --- 

4 dice_coef: 0.6472  

5 Precision 0.9936 0.993 

6 Sensitivity 0.9919 0.98 

7 Specificity 0.9978 0.981 

8 dice_coef_edema 0.7982 0.861 

9 dice_coef_enhancing 0.7232 0.90 

Table 2. Comparison of brain tumor segmentation with the 

earlier methods 

Data Loss (0.0197): The data loss, a measure of how far 

off the model's predictions are from the actual outcomes, 

stands at a relatively low value of 0.0197. This suggests 

that the model is fitting the training data well without 

noticeable discrepancies in its predictions. 

Accuracy (0.9934): The model boasts a high accuracy of 

99.34%. This indicates that a significant majority of the 

model's predictions match the ground truth. Such a high 

accuracy underscores the model's robustness and efficiency 

in segmenting brain tumors. 

Mean Intersection over Union for Class 1 

(mean_io_u_1) (0.8342): The mean IoU for class 1 is 

0.8342. The Intersection over Union (IoU) is a metric that 

measures the overlap between the predicted segmentation 

and the ground truth. A value closer to 1 signifies better 

performance. Given that the value is 0.8342, it suggests a 

strong overlap and a good segmentation capability for this 

class. 

Dice Coefficient (0.6472): The overall Dice coefficient is 

0.6472. This metric also measures the overlap between 

predicted and actual segmentations, with values closer to 1 

being ideal. While the score is fairly decent, there is room 

for improvement, especially when considering the high 

accuracy rate. 

Precision (0.9936): With a precision of 99.36%, the model 

has an outstanding ability to correctly identify positive 

cases out of all predicted positive cases. This suggests 

minimal false positives in the predictions. 

Sensitivity (0.9919): The sensitivity or true positive rate is 

99.19%. This reveals that the model is adept at correctly 

identifying positive cases from all actual positive cases. 

Specificity (0.9978): The specificity or true negative rate is 

an impressive 99.78%. This indicates the model's 

proficiency in identifying negative cases and highlights the 

model's reliability in differentiating between tumor regions 

and healthy tissues. 

Dice Coefficient for Edema (0.7982): The Dice 

coefficient specifically for edema is 0.7982. This is higher 

than the overall Dice coefficient and indicates a better 

overlap in predictions for edema-related segmentations. 

Dice Coefficient for Enhancing Tumor (0.7232): The 

Dice coefficient for the enhancing tumor is 0.7232, which 

indicates a decent performance in segmenting enhancing 

tumor regions. It's slightly higher than the overall Dice 

coefficient but still suggests potential areas for model 

refinement. 

Overall the results showcase a model with commendable 

precision, sensitivity, and specificity in the context of brain 

tumor segmentation. While the overall accuracy is 

exceptionally high, there is some disparity in the Dice 

coefficients, with specific tumor regions (like edema and 

enhancing tumors) showing varying degrees of 

segmentation performance. This highlights the complexity 

of brain tumor segmentation and emphasizes the 

importance of focusing not just on overall accuracy but 

also on specific tumor sub regions. The incorporation of 

the self attention mechanism seems to be largely beneficial, 

but there might still be avenues for fine-tuning and 

optimizing the model, especially regarding the Dice 

coefficients. 

Conclusion 

This study represents a significant breakthrough in the 

realm of segmenting brain tumor MRI images. The 

research paper effectively showcases the effectiveness of 

an innovative deep learning method that combines the U-

Net architecture with self-attention mechanisms. This 

fusion model not only harnesses the inherent strengths of 

the U-Net in capturing intricate details from 3-D brain 

scans but also gains a substantial advantage from the 

attention mechanism's ability to concentrate on the most 

clinically significant areas. 
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The outstanding performance metrics, including an 

accuracy rate of 99.34% and a Dice index of 95%, testify 

to the model's extraordinary precision in segmentation 

tasks. Moreover, the model displayed remarkable scores in 

terms of precision, sensitivity, and specificity, further 

underlining its robustness and reliability in isolating tumor 

regions from healthy tissues which is the milestone work in 

detecting the most common Glioma type tumor. 

The integration of U-Net with attention mechanisms 

reveals transformative potential for enhancing existing 

neuro-oncological applications. It not only sets a new 

benchmark for brain tumor diagnosis but also holds 

significant promise for the advancement of personalized 

treatment plans. The benefits of this development are 

manifold, extending from accelerating the pace of clinical 

decision-making to directly improving patient outcomes. 

As a future work we try to scale the same model to work 

with entire BRATS data set on large scale volume. 
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