

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 653

Modified Deep Q Optimizer with Updated SARSA for Improving

Learning Efficiency through Optimum Resource Utilization in

Reinforcement Learning

1Dr. Vaqar Ahmed Ansari, 2Dr. Kamal Shah, 3Dr. Rohini Patil, 4Dr. Anil Vasoya, 5Dr. Payel Saha,
6Ms. Mary Margaret, 7Mr. Suresh Rajpurohit

Submitted: 26/11/2023 Revised: 07/01/2024 Accepted: 19/01/2024

Abstract: In Reinforcement Learning (RL) efficiency of the algorithm is ensured by reducing the cost of learning with maximizing the

rewards. In this paper a new technique for RL-based Deep Q optimizers is introduced with Updated SARSA algorithm and newly defined

linear cost function. Modified DQ perform significantly faster after learning as it utilize Υ value for particular epoch instead of Υmax for

the whole dataset .Proposed linear cost model gives wide range of weight parameters “W” where the mean value is always closer to the

minimum cost which implies easy to make cluster and train the features. Proposed modified DQ gives 88.2% reduction in variation for

relative mean cost for proposed cost-model. With proposed cost model, training execution time for modified DQ has been reduced by

19.35% compared to existing DQ and improves accuracy by 3 to 4% with optimum reward.

Keywords: Reinforcement learning, Deep Q optimiser, Cost Model, Reward function

1. Introduction

Machine learning enable algorithms to learn from various

patterns. Deep learning takes the support of neural

network with multiple layers to automatically extract the

primary features from data.[1] Reinforcement learning

(RL) uses algorithms that learn from outcomes and decide

which action to take for next iteration. After every action

algorithm learns from the feedback and as per positive

feedback progress further. This approach helps RL to take

autonomous decisions. RL elements are Policy, Reward

function, Value function and Environment. In RL [2]

software agents learn through trial-and-error method and

each correct action earns a reward. Deep RL (DRL) [3] is

an advance model at the intersection of deep learning and

reinforcement learning. It aimed at training agents to

make sequential decisions in complex environment. In

DRL integration for feature extraction through deep

learning and RL’s sequential decision-making capabilities

empowers agents to learn autonomously various

behaviours and development of AI systems. The aim of a

RL is to execute the policy which gives maximum rewards

and for which calculation of ‘Q ’ is required. The policy

can be created based on the optimum Q value can be

achieved using Deep Q Neural Networks (DQN)[4].RL is

pivotal advancement where in deep neural network are

employed to approximate the Q functions which is best

suited for the complex environment like video games and

robotics. This paper works on implementation of RL using

modified Q learning techniques supported by updated

SARSA ensuring an optimum utilization of memory and

resources.

2. Literature Review

To understand the strength of RL and deep neural network

[5-6] for designing novel algorithm for optimum ‘Q’

value calculations various research papers were discussed

along with their strength and area of improvement. In [7]

Overestimation problem is handled with Deep SARSA

and Q learning algorithm. This study was done for global

information which has increased the speed of learning

process. Study showed cumulative rewards in RL have

improved. Value function achieved through neural

networks gives better results using flow–shop Scheduling

approach. Performance evaluation done using maximum,

minimum and mean of various operations. Deep Learning

1Assistant Professor,St.Francis Institute of Technology

Email: vaqar@sfit.ac.in Orcid id: 0000-0003-0841-9554
2Professor (IT Dept), Thakur College of Engineering and Technology,

Mumbai, India. Email: kamal.shah@thakureducation.org Orcid id: 0000-

0002-6369-6960
3Assistant Professor, Terna Engineering College, Navi Mumbai,India.

Email: rohiniapatil01@gmail.com Orcid id: 0000-0001-9476-3559
4Associate Professor, Thakur College of Engineering and Technology,

Mumbai, India. Email: anilk.vasoya@thakureducation.org Orcid id:

0009-0009-6495-9142
5Professor Extc Department, Thakur College of Engineering and

Technology ,payel.saha@thakureducation.org
6Assistant Professor , Thakur College of Engineering and Technology,

Mumbai

Mary.margarate@thakureducation.org
7Assistant professor Computer Engineering St Francis Institute of

Technology

*Corresponding author: kamal.shah@thakureducation.org

Corresponding author: Dr Kamal Shah , IT department Thakur College of

Engineering and Technology, Mumbai

mailto:vaqar@sfit.ac.in
mailto:kamal.shah@thakureducation.org
mailto:rohiniapatil01@gmail.com
mailto:anilk.vasoya@thakureducation.org
mailto:Mary.margarate@thakureducation.org
mailto:kamal.shah@

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 654

(DL) and Multi-agent Systems (MAS) which are applied

in RL as Deep Reinforcement Learning (DRL) are

discussed. [8]

Study [9] discussed about the multiple agents in the same

environment ,their behaviour and learning.

Application of DRL various fields like healthcare, fintech,

Natural Language Processing (NLP) are discussed with

respect to data preprocessing. Many open-ended research

problems are also mentioned in [10].In paper [11]

approach of Multi Q-learning is discussed. The results

shows that returns have improved by 2.5 times than

traditional approach. In technical report [12] the hash-join

algorithms to a multiprocessor architecture is described.

Multiple centralized join algorithms are measured and its

performance improvement is observed compared to

existing algorithms. Optimization of Q through various

approaches like join queries, very long queries and

progressive queries are discussed in [13-15]. As some of

the RL methods perform poor if values of Q are

overestimated.so double Q approach discussed in [16]

improves the performance of RL models. Query

optimization helps RL to learn faster. In [17-19] query

execution time is estimated for various workloads in

database. Off policy evaluation methods discussed in [20].

3. Proposed Algorithm

Reinforcement Learning gives maximum efficiency when

the agent learns from environment and collects highest

rewards. To ensure modifications the proposed

methodology is divided into two phases in phase I

Modified DQ learning algorithm is proposed where a

fitness function helps RL to learn quickly for environment

and in phase II SARSA algorithm is modified by taking

average value of ‘ λ’ till particular epoch which will

ensures better learning speed and then all the

modifications are checked with different memories

allocations.

3.1 Modified Deep Q Learning Algorithm (MDQL)

Algorithm1 of MDQL is mentioned below.

Algorithm1: Modified Deep Q Learning Algorithm (MDQL)

1: Import libraries of Python

2: Define policy for Reward

3: Define the environment and agent

4: Define a new fitness function and supporting fitness functions

5: As per fitness function calculate the values of Q

6: Calculate the reward function value

To update the existing Q learning algorithm a fitness

function is introduced. The aim is to train a bot to find the

location using these Environmental Clues. Let an

individual be a bit string of a fixed length k with x bits set

to 1. The target fitness function (FF) is given as,

𝑔(𝑥) = [
𝑥

𝑘
] (1)

Supporting Fitness Functions becomes,

ℎ1(𝑥) = 𝑚𝑖𝑛 (𝑥, 𝑝)

 and ℎ2(𝑥) =

 𝑚𝑎𝑥 (𝑥, 𝑝) (2)

Where ‘p’= positive integer

The task for the suggested method is to dynamically

switch algorithm to the most appropriate current FF

basing on the kind of the individuals in the current

generation. The method should set the current FF to

ℎ1first and switch it to ℎ2 when the individuals in the

current generation reach the switch point. The value of the

reward function depends on changes of the fitness of the

best individual, which appear after the creation of the next

generation caused by the action of the agent. An auxiliary

function Df is defined as per the equation (3)

 𝐷𝑓(𝑥1, 𝑥2) = {0 𝑖𝑓 𝑓(𝑥2) − 𝑓(𝑥1) <

0 0.5 𝑖𝑓 𝑓(𝑥2) − 𝑓(𝑥1) = 0 1 𝑖𝑓 𝑓(𝑥2) − 𝑓(𝑥1) > 0

(3)

The reward function is shown in equation (4)

𝑅(𝑠, 𝑎) = 𝐷𝑔(𝑥𝑠 , 𝑥𝑠′) + 𝑐(𝐷ℎ1
(𝑥𝑠, 𝑥𝑠′) +

 𝐷ℎ2
(𝑥𝑠, 𝑥𝑠′)) (4)

Where,

’c’ = a real-valued parameter that allows

contribution of fitness functions to the reward.

s and s’ = the previous and the new state

respectively,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 655

a= The action that caused transition from s to s’

xs and xs’ are the number of bits set to one in the

best

 3.2 Modified SARSA Algorithm

SARSA is a State-Action-Reward-State-Action

reinforcement learning algorithm [21] It is used to learn a

policy for an agent interacting with an environment. In On

Policy of RL algorithm, the agent learns the value function

according to the current action derived from the existing

policy while in Off Policy the agent learns the value

function according to the action derived from another

policy [20].Q-Learning technique is an Off

Policy technique based on greedy approach to learn

whereas SARSA technique, is an On Policy and uses the

action performed by the another policy to learn the Q

value.

Existing SARSA-Bellman Equation is [22]

 𝑄(𝑠𝑡,𝑎𝑡) = 𝑄(𝑠𝑡,𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛶𝑚𝑎𝑥𝑄(𝑠𝑡+1
′ , 𝑎𝑡+1

′)) −

𝑄(𝑠𝑡,𝑎𝑡) (5)

Where,

▪ 𝑄(𝑠𝑡,𝑎𝑡) =

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠𝑡

▪ 𝑟 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑤𝑎𝑟𝑑

▪ 𝑠𝑡+1
′ , 𝑎′ = 𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑎𝑛𝑑 𝑎𝑐𝑡𝑖𝑜𝑛

▪ 𝛼 = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

▪ 𝛶𝑚𝑎𝑥 =

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒

To improve the speed of learning instead of calculating

discount factor after each step and to reduce the reward to

keep final reward bounded as modified to 𝛶 where value

of discount factor is calculated till particular Epochs as

seen in Modified SARSA Eq.6

𝑄(𝑠𝑡,𝑎𝑡) = 𝑄(𝑠𝑡,𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛶𝑄(𝑠𝑡+1
′ , 𝑎′)) −

𝑄(𝑠𝑡,𝑎𝑡) (6)

Algorithm2: Modified Q Learning and Modified SARSA (MQLMS)

1: Start

2: Observe the current state

3: Initialize the 𝑄(𝑠𝑡,𝑎𝑡)to some arbitrary values

4: Based on value of Ɛ take a decision for exploration or exploitation

5: In Exploitation state Modified Q value is calculated as per Eq. 6

6: In Exploration state based on Fitness function values are calculated

7: Based on the either step 5 or 6 action at is selected

8: Based on action reward is received

9: Q table is than updated based on reward value for the next state

10: Repeat steps 4-8 until the set epochs end

This loop continues till the desired Fitness function is achieved with minimum cost and maximum reward. The below figure

1 shows the flowchart of MQLMS methodology.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 656

Fig.1: Flowchart of Modified Q Learning and Modified SARSA (MQLMS)

One of the primary objectives of RL is to minimize the

cost of learning. To realize the same a novel cost function

model is defined.

Cost Model 1: The first cost model [19], uses main-

memory database that performs two types of joins: index

joins and in-memory hash joins

cij(O)=c(Ol)+match(Ol,Or).|Ol| (7)

chj(O)=c(Ol)+c(Or).|O| (8)

where

c = the cost estimation function,

 cij(O)= cardinality function, and match denotes the

expected cost of an index match.

Cost Model 2: In cost model 2 index eligibility is

removed and only hash joins and nested loop joins

with a memory limit M.

 𝑐𝑗𝑜𝑖𝑛={𝑐(𝑂𝑙) + 𝑐(𝑂𝑟) + |𝛰| 𝑖𝑓 |𝑂𝑟| + |𝑂𝑙| ≤

𝑀 𝑐(𝑂𝑙) + 𝑐(𝑂𝑟) + 2(|𝑂𝑟| + |𝑂𝑙|) +

|𝑂| 𝑖𝑓(|𝑂𝑟| 𝑐(𝑂𝑙) + 𝑐(𝑂𝑟) + (|𝑂𝑟| +

⌈
|𝑂𝑟|

𝑀
⌉|𝑂𝑙|) . |𝑂𝑙|) ≤ 𝑀2 (9)

The non-linearity in this model are size-dependent.

Controlling the size of intermediate relations is important

in the optimization problem

Cost Model 3: It is based on Gamma database where the

left operator as the “build” operator and the right operator

as the “probe” operator [23].

 cnobuild=c(Ol)+c(Or) -|Or|+|O| (10)

Proposed Cost Model:

Cost function optimization algorithms attempt to find the

optimal values for the model parameters by finding the

global minima of cost functions. Gradient Descent

algorithm makes use of gradients of the cost function to

find the optimal value for the parameters.

Hypothesis: h(x)=W+bx (11)

On each iteration t, the cost of the data is found.

Cost Function:

 𝐶(𝑊, 𝑏) =
1

2𝑡
∑𝑡

𝑖=1 (ℎ(𝑥(𝑖)) − 𝑦(𝑖))2 (12)

The partial differentiation of cost function with respect to

weights and bias is computed.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 657

 𝑑𝑊 =
𝛿

𝛿𝑊
 C(W,b) (13)

Where W, b is it weight and bias

Partial differentiation with respect to bias

 𝑑𝑏 =
𝛿

𝛿𝑏
 C(W,b) (14)

Goal is to Minimize 𝐶(𝑊, 𝑏)

The weights and bias are then updated by making use of

gradients of the cost function and learning rate 𝛼 [0,1].

The value of 𝛼 can range from 0.0 to 1.0. Greater the value

of 𝛼, greater is the number of steps taken to find the global

minimum of the cost function.

Updating parameters: W=W – (α . dW) and b=b-(α . b)

(15)

4. Result Analysis and Discussion

The SARSA algorithm learns a policy that balances

exploration and exploitation and can be used in a variety

of applications, including robotics, game playing, and

decision making. However, it is important to note that the

convergence of the SARSA algorithm can be slow,

especially in large state spaces, and there are other

reinforcement learning algorithms that may be more

effective in certain situations. The proposed approach of

MQLMS is implemented with multi agent environment

and the agent is of type, deep Q agent value based.

In experiment an EC2 c5.9xlarge instance with 36 vCPUs

is used. SparkSQL’s bushy dynamic pro-gram takes 1000

seconds to plan the largest query (Q64, 18-relation join);

A zoomed-in view of the rest of the planning latencies is

included. Results in Fig1 the y = x line represent speedup.

Across the workload, DQ’s mean speedup over SparkSQL

for execution is 1.0× and that for optimization is 3.6×.

Below figure 2 showed the latency comparison.

Fig 2: Execution and optimization latencies of DQ and SparkSQL on TPC-DS (SF1).

As shown in Fig 3 ,A modest amount of real execution using around 100 queries allows DQ to surpass both its original

performance (by 3×) as well as Postgres (by 3.5×).

Fig 3: Effects of ne-tuning DQ on JOB Q10c.

As shown in Fig 4 (a) and (b) as the training steps

increases the RL algorithm learns from environment and

reduces the losses and improves accuracy. Here training

steps are normalized between the range [0,1]. The

accuracy which was targeted through training is obtained

during validation when the training steps are increased by

50% whereas loss difference between training and

validation reduces marginally after 80% steps.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 658

Fig 4(a): Loss during training and validation

Fig 4(b): Accuracy vs Training steps

Comparative Cost analysis for existing all three cost models and proposed cost model shown in below table1.

Table1: Comparative Cost analysis for existing cost models and proposed cost model

 Proposed Cost Model Cost Model 1 Cost Model 2 Cost Model 3

Optimizer

Defined in

various

literature

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

Zig-zag

(ZZ) [16]

1.02 5.96 49.56 1.0 1.07 1.87 1.0 5.07 43.16 1.0 3.41 23.13

QickPick

(QP) [24]

1.01 65.08 498.34 1.0 23.87 405.04 7.43 51.84 416.18 1.43 16.74 211.13

IK-KBZ

(KBZ) [25]

1.00 37.78 118.67 1.0 3.45 36.78 5.21 29.61 106.34 2.21 14.61 96.14

Right-deep

(RD) [26]

1.56 98.04 387.63 4.7 53.25 683.35 1.93 8.21 89.15 1.83 5.25 69.15

Left-deep

(LD) [26]

1.04 12.87 78.32 1.0 1.08 2.14 1.75 7.31 65.45 1.35 4.21 35.91

Exhaustive

(EX) [26]

1.00 1.06 1.28 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Existing

DQ

1.03 1.98 14.92 1.0 1.32 3.11 1.0 1.68 11.64 1.0 1.91 13.14

Modified

DQ

(Proposed)

1.09 2.03 18.92 1.0 1.78 4.12 1.0 1.87 17.23 1.0 1.94 18.91

Table 1 compares a proposed cost model with three

parameters min, max and mean .It is observed that in

proposed cost model large variation of cost with distinct

clusters of minimum cost projected ,as mean value is very

close to minimum value of cost. Modified DQ techniques

projected better outcomes in comparison of existing DQ

and other existing optimizers. The proposed cost model

has minimum cost of 1.09 and range is larger as 18.92 with

mean value of 2.03 which is close to minimum cost .

Although the modified Q cost-model shifts the mean cost

less towards the lowest cost value, the broad cost range

has grown by 28.36% compared to the original DQ. With

regard to the change in memory size from 108 to 102, the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 659

proposed cost-model's improved DQ results in an 88.2%

reduction in variation for the relative mean cost.

Table 2: Proposed Cost Model mean relative cost vs. memory limit

Table 2 shows that proposed modified DQ algorithm

utilized minimum resources for maximum learning and

perform better than majority of the existing algorithms.

Difference D is 0.5 in memory allocation from 102 to 108

whereas for KBZ optimizer it is 29.78.

Fig 5: Memory allocation and learning in various optimizers

As shown in Fig 5 the difference in learning is almost flat

which ensures that with minimum resources also optimum

learning can be ensured. Table 3 shows proposed cost

model training execution time vs. memory limit (number

of tuples in memory). (Relative Scaling* in Milli-seconds

) *960.02 mili-sec for 8 GB RAM and Internet speed

approx. 100 MBPS is considered.

Table 3: shows Proposed Cost Model Training Execution time in ms vs. memory limit

0

5

10

15

20

25

30

35

KBZ LD EX Existing DQ Modified DQ

Memory allocation and learning in diffrent optimizers

M=10^2 M=10^4 M=10^6 M=10^8

 M=108 M=106 M=104 M=102 D= M=108- M=102

KBZ 1.0 2.96 28.03 30.78 29.78

LD 1.0 1.04 5.72 6.45 5.45

EX 1.0 1.0 1.01 1.02 0.02

Existing DQ 1.0 1.21 2.41 5.24 4.24

Modified DQ 1.02 1.34 1.42 1.52
0.5

 M=102 M=104 M=106 M=108 Difference

KBZ 50.23 10.33 5.2 1.04 49.19

LD 27.32 8.67 3.41 1.91 25.41

EX 2.5 1.03 0.96 0.92 1.58

Existing DQ 2.24 2.01 1.67 1.24 1

Modified DQ 1.84 1.56 1.2 1 0.84

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 660

Table 3 shows that as memory increases time reduces for

execution. In Modified DQ algorithm the difference in

time requirement compared to all other optimizers is

minimum. Maximum time is taken by KBZ optimizer.

Fig 6: Time required for different memory allocation

As shown in Fig 6 it is clearly observed that modified DQ

algorithm is efficiently execute the task with minimum

memory. Below table 4 shows proposed cost model

accuracy vs. memory limit.

Table 4: Proposed Cost Model Accuracy% vs. memory limit for specific training execution time (number of tuples in

memory).

 M=102 M=104 M=106 M=108

KBZ 67 73 87 53

LD 78 81 85 64

EX 84 89 91 76

Existing DQ 83 91 94 78

Modified DQ 86 94 97 82

Fig 7: Accuracy comparison of different optimizers

As shown in Fig 7 the accuracy of Modified DQ optimizer

is better in different memory allocations compared to

existing optimizers

5. Conclusions

MDQL is a practical compromise that takes advantage of

the join optimisation problem's structure. Proposed cost

model gives wide range of weight parameters “W” where

the mean value is always closer to the minimum cost

which implies easy to cluster out and train the features.

The modified DQ in proposed cost-model although has

less shift in mean cost towards minimum cost value, there

is a wide cost-range increased by 28.36% compared to

existing DQ. Proposed modified DQ gives 88.2%

reduction in variation for relative mean cost with respect

to change in memory size from 108 to 102 for proposed

.cost-model. For proposed cost model, training execution

time for modified DQ is reduced by 19.35% for memory

size of 108 and by 17.85% for memory size of 102

compared to existing DQ whereas accuracy has been

0

10

20

30

40

50

60

KBZ LD EX Existing DQ Modified
DQ

Time in milisceonds V/S memory
requiered for execution

M=10^2 M=10^4 M=10^6 M=10^8

0

50

100

M=10^2 M=10^4 M=10^6 M=10^8

comparision of Accuracy in Diffrent optimizer

KBZ LD EX Existing DQ Modified DQ

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 661

increased by 3 to 4%. Future research that focuses on the

extremes of learning and query optimisation may reveal

more information.

References

[1] Nguyen T T, Nguyen N D & Nahavandi S 2020

Deep Reinforcement Learning for Multiagent

Systems: A Review of Challenges, Solutions, and

Applications. IEEE Trans Cybern. 50(9):1-27

[2] Cao Z & Lin C T 2023 Reinforcement Learning

From Hierarchical Critics. IEEE Trans Neural Netw

Learn Syst. 34(2):1066-1073

[3] Li, X., Xu, H., Zhang, J., & Chang, H.2023 Deep

Reinforcement Learning for Adaptive Learning

Systems. Journal of Educational and Behavioral

Statistics. 48(2): 220–243

[4] Tan, F., Yan, P., & Guan, X. 2017 Deep

Reinforcement Learning: From Q-Learning to Deep

Q-Learning. International Conference on Neural

Information Processing.

[5] Park, J. & Park, J. 2020 Enhanced Machine Learning

Algorithms: Deep Learning, Reinforcement learning

and Q-learning. Journal of Information Processing

Systems. 16(5):1001-1007

[6] Wang Hao-nan, Liu Ning, ZhangYi-yun, Feng Da-

wei, Huang Feng, Li Dong-sheng et.al. 2020 Deep

reinforcement learning: a survey. Frontiers of

Information Technology & Electronic Engineering.

21

[7] Xu Z X, Cao L, Chen X L, Li C X, Zhang Y L, &

Lai J 2018 Deep reinforcement learning with sarsa

and Q-learning: A hybrid approach. IEICE

Transactions on Information and Systems E101.

D(9): 2315-2322

[8] Ren J, Ye C & Yang F 2021 Solving flow-shop

scheduling problem with a reinforcement learning

algorithm that generalizes the value function with

neural network. Alexandria Engineering Journal.

60(3):2787-2800

[9] Samieiyeganeh M., Rahmat R W B O K, Khalid F B,

& Kasmiran KA 2022 Deep reinforcement learning

to multi-agent deep reinforcement learning. J of

Theoretical and Applied Information Technology.

100(4):990-1003

[10] Cai Q,Cui C,Wang W,Xie Z,Zhang M 2023 A

Survey on Deep Reinforcement Learning for Data

Processing and Analytics. IEEE Transactions on

Knowledge & Data Engineering, 35(05):4446-4465

[11] Duryea E, Ganger M, &Hu W 2016 Exploring Deep

Reinforcement Learning with Multi Q-Learning.

Intelligent Control and Automation.07(04):129-144

[12] Gerber RH 1986 Dataflow query processing using

multiprocessor hash partition algorithms. Technical

report, Wisconsin Univ., Madison

[13] Markl V, Raman V, Simmen D, Lohman G, Pirahesh

H, & Cilimdzic M 2004 Robust query processing

through progressive optimization.Proceedings of the

2004 ACM sigmod international conference on

management of data.659–670

[14] Neumann T, & Radke B 2018 Adaptive optimization

of very large join queries. In Proceedings of the 2018

International Conference on Management of Data.

677–692

[15] Ortiz J, Balazinska M, Gehrke J, & Keerthi SS 2018

Learning state representations for query

optimization with deep reinforcement learning. In

Proceedings of the Second Workshop on Data

Management for End-To-End Machine Learning,

DEEM’18. 1–4

[16] Van Hasselt H, Guez A, & Silver D 2016 Deep

reinforcement learning with double q-learning.

Proceedings of the AAAI Conference on Artificial

Intelligence.30(1)

[17] Wu W, Chi Y, Hac ́ıgum u ̈s H,& Naughton J F 2013

Towards predicting query execution time for

concurrent and dynamic database workloads.

Proceedings of the VLDB Endowment.6(10):925–

936

[18] Wu W, Chi Y, Zhu S, Tatemura J, Hacigum ̈us H,

& Naughton J F 2023 ̈Predicting query execution

time: Are optimizer cost models really unusable?.

Proceedings International Conference on Data

Engineering. 1081-1092

[19] Leis V, Gubichev A, Mirchev A, Boncz P, Kemper

A, & NeumannT 2015 How good are query

optimizers, really? Proceedings of the VLDB

Endowment. 9(3):204–215

[20] Uehara M, Shi C & Kallus N 2022 A Review of Off-

Policy Evaluation in Reinforcement Learning.

[21] Zhao D , Wang H, Shao K, & Zhu Y 2016 Deep

reinforcement learning with experience replay based

on SARSA. 2016 IEEE Symposium Series on

Computational Intelligence (SSCI). 1-6

[22] Bellman R E 1957 Dynamic programming.

Princeton University Press

[23] Tan F, Yan P, Guan X 2017 Deep Reinforcement

Learning: From Q-Learning to Deep Q-Learning

https://www.researchgate.net/scientific-contributions/Fuxiao-Tan-29585711?_sg%5B0%5D=JrBIfZC24uFwmonNG83FjpKUjWEzNgpGFOLo7IUm4sZ4mCEy-uq6qDw35RcW3ZejeFEsArE.Fixk5e4V_UeCHSPkLpZOVX3PzSsJkIRqnwO3rHkWqYzHY4D-cku04fCWzuEMYDrb-2GUQhKqc611xMQ_oLkPAw&_sg%5B1%5D=ON-pSkwAUuWHW4u0cNaQepUXxx3se-iF8TaW-3X5Lb8ju7Kt4EqFYgQ4dHtt58D4xrnEe-U.Vugff1cM88pubHsvfiDXaG21pHXky8ggDcsn2uHrUEsv3fFIjnXG4EB23iV5HWS0gqJFKZjuYkJS0CpPDTKsXQ&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/scientific-contributions/Pengfei-Yan-2134321792?_sg%5B0%5D=JrBIfZC24uFwmonNG83FjpKUjWEzNgpGFOLo7IUm4sZ4mCEy-uq6qDw35RcW3ZejeFEsArE.Fixk5e4V_UeCHSPkLpZOVX3PzSsJkIRqnwO3rHkWqYzHY4D-cku04fCWzuEMYDrb-2GUQhKqc611xMQ_oLkPAw&_sg%5B1%5D=ON-pSkwAUuWHW4u0cNaQepUXxx3se-iF8TaW-3X5Lb8ju7Kt4EqFYgQ4dHtt58D4xrnEe-U.Vugff1cM88pubHsvfiDXaG21pHXky8ggDcsn2uHrUEsv3fFIjnXG4EB23iV5HWS0gqJFKZjuYkJS0CpPDTKsXQ&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/scientific-contributions/Xinping-Guan-8435826?_sg%5B0%5D=JrBIfZC24uFwmonNG83FjpKUjWEzNgpGFOLo7IUm4sZ4mCEy-uq6qDw35RcW3ZejeFEsArE.Fixk5e4V_UeCHSPkLpZOVX3PzSsJkIRqnwO3rHkWqYzHY4D-cku04fCWzuEMYDrb-2GUQhKqc611xMQ_oLkPAw&_sg%5B1%5D=ON-pSkwAUuWHW4u0cNaQepUXxx3se-iF8TaW-3X5Lb8ju7Kt4EqFYgQ4dHtt58D4xrnEe-U.Vugff1cM88pubHsvfiDXaG21pHXky8ggDcsn2uHrUEsv3fFIjnXG4EB23iV5HWS0gqJFKZjuYkJS0CpPDTKsXQ&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 | 662

International Conference on Neural Information

Processing.475-483

[24] Waas F, &Pellenko A 2000 Join order selection-

good enough is easy. In British National Conference

on Databases. 51–67

[25] Krishnamurthy R, Boral H, & Zaniolo C 1986

Optimization of nonrecursive queries. In VLDB. 86:

128–137

[26] Ziane M, Za M,& Borla-Salamet P 1993 Parallel

query processing with zigzag trees. The

International Journal on Very Large Data Bases.

2(3):277–302

