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Abstract: In Reinforcement Learning (RL) efficiency of the algorithm is ensured by reducing the cost of learning with maximizing the 

rewards. In this paper a new technique for RL-based Deep Q optimizers is introduced with Updated SARSA algorithm and newly defined 

linear cost function. Modified DQ perform significantly faster after learning as it utilize Υ value for particular epoch instead of Υmax for 

the whole dataset .Proposed linear cost model gives wide range of weight parameters “W” where the mean value is always closer to the 

minimum cost which implies easy to make cluster and train the features. Proposed modified DQ gives 88.2% reduction in variation for 

relative mean cost for proposed cost-model. With proposed cost model, training execution time for modified DQ has been reduced by 

19.35% compared to existing DQ and improves accuracy by 3 to 4% with optimum reward.  

Keywords: Reinforcement learning, Deep Q optimiser, Cost Model, Reward function  

1. Introduction 

Machine learning enable algorithms to learn from various 

patterns. Deep learning takes the support of neural 

network with multiple layers to automatically extract the 

primary features from data.[1] Reinforcement learning 

(RL) uses algorithms that learn from outcomes and decide 

which action to take for next iteration.  After every action 

algorithm learns from the feedback and as per positive 

feedback progress further. This approach helps RL to take 

autonomous decisions. RL elements are Policy, Reward 

function, Value function and Environment. In RL [2] 

software agents learn through trial-and-error method and 

each correct action earns a reward. Deep RL (DRL) [3] is 

an advance model at the intersection of deep learning and 

reinforcement learning. It aimed at training agents to 

make sequential decisions in complex environment. In 

DRL integration for feature extraction through deep 

learning and RL’s sequential decision-making capabilities 

empowers agents to learn autonomously various 

behaviours and development of AI systems. The aim of a 

RL is to execute the policy which gives maximum rewards 

and for which calculation of ‘Q ’ is required. The policy 

can be created based on the optimum Q value can be 

achieved using Deep Q Neural Networks (DQN)[4].RL is 

pivotal advancement where in deep neural network are 

employed to approximate the Q functions which is best 

suited for the complex environment like video games and 

robotics. This paper works on implementation of RL using 

modified Q learning techniques supported by updated 

SARSA ensuring an optimum utilization of memory and 

resources.  

2. Literature Review 

To understand the strength of RL and deep neural network 

[5-6]  for designing novel algorithm for optimum ‘Q’ 

value calculations various research papers were discussed 

along with their strength and area of improvement. In  [7] 

Overestimation problem is handled with Deep SARSA 

and Q learning algorithm. This study was done for global 

information which has increased the speed of learning 

process. Study showed cumulative rewards in RL have 

improved. Value function achieved through neural 

networks gives better results using flow–shop Scheduling 

approach. Performance evaluation done using maximum, 

minimum and mean of various operations. Deep Learning 

1Assistant Professor,St.Francis Institute of Technology 

Email: vaqar@sfit.ac.in    Orcid id: 0000-0003-0841-9554 
2Professor (IT Dept), Thakur College of Engineering and Technology, 

Mumbai, India.  Email: kamal.shah@thakureducation.org   Orcid id: 0000-

0002-6369-6960 
3Assistant Professor, Terna Engineering College, Navi Mumbai,India. 

Email: rohiniapatil01@gmail.com     Orcid id: 0000-0001-9476-3559 
4Associate Professor, Thakur College of Engineering and Technology, 

Mumbai, India.  Email: anilk.vasoya@thakureducation.org  Orcid id: 

0009-0009-6495-9142 
5Professor Extc Department,  Thakur College of Engineering and 

Technology ,payel.saha@thakureducation.org 
6Assistant Professor , Thakur College of Engineering and Technology,  

Mumbai 

Mary.margarate@thakureducation.org 
7Assistant professor Computer Engineering St Francis Institute of 

Technology 

*Corresponding author: kamal.shah@thakureducation.org 

Corresponding author: Dr Kamal Shah , IT department Thakur College of 

Engineering and Technology, Mumbai 

 

mailto:vaqar@sfit.ac.in
mailto:kamal.shah@thakureducation.org
mailto:rohiniapatil01@gmail.com
mailto:anilk.vasoya@thakureducation.org
mailto:Mary.margarate@thakureducation.org
mailto:kamal.shah@


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 653–662 |  654 

(DL) and Multi-agent Systems (MAS) which are applied 

in RL as Deep Reinforcement Learning (DRL) are 

discussed. [8] 

Study [9] discussed about the multiple agents  in the same 

environment ,their behaviour and learning.  

Application of DRL various fields like healthcare, fintech, 

Natural Language Processing (NLP) are discussed with 

respect to data preprocessing. Many open-ended research 

problems are also mentioned in [10].In paper [11] 

approach of Multi Q-learning is discussed. The results 

shows that returns have improved by 2.5 times than 

traditional approach. In technical report [12] the hash-join 

algorithms to a multiprocessor architecture is described. 

Multiple centralized join algorithms are measured and its 

performance improvement is observed compared to 

existing algorithms. Optimization of Q through various 

approaches like join queries, very long queries and 

progressive queries are discussed in [13-15]. As some of 

the RL methods perform poor if values of Q are 

overestimated.so double Q approach discussed in [16] 

improves the performance of RL models. Query 

optimization helps RL to learn faster. In [17-19] query 

execution time is estimated for various workloads in 

database. Off policy evaluation methods discussed in [20].  

3. Proposed Algorithm  

Reinforcement Learning gives maximum efficiency when 

the agent learns from environment and collects highest 

rewards. To ensure modifications the proposed 

methodology is divided into two phases in phase I 

Modified DQ learning algorithm is proposed where a 

fitness function helps RL to learn quickly for environment 

and in phase II SARSA algorithm is modified by taking 

average value of ‘ λ’ till particular epoch which will 

ensures better learning speed and then all the 

modifications are checked with different memories 

allocations.  

3.1 Modified Deep Q Learning Algorithm  (MDQL) 

Algorithm1 of MDQL is mentioned below. 

Algorithm1: Modified Deep Q Learning Algorithm  (MDQL) 

1: Import libraries of Python 

2: Define policy for Reward 

3: Define the environment and agent 

4: Define a new fitness function and supporting fitness functions 

5: As per fitness function calculate the values of Q 

6: Calculate the reward function value 

 

To update the existing Q learning algorithm a fitness 

function is introduced. The aim is to train a bot to find the 

location using these Environmental Clues. Let an 

individual be a bit string of a fixed length k  with x bits set 

to 1. The target fitness function (FF) is given as, 

𝑔(𝑥) = [
𝑥

𝑘
]                                                                (1) 

Supporting Fitness Functions becomes, 

ℎ1(𝑥)  =  𝑚𝑖𝑛 (𝑥, 𝑝) 

                           and                             ℎ2(𝑥)  =

 𝑚𝑎𝑥 (𝑥, 𝑝)                                                             (2) 

Where ‘p’= positive integer  

The task for the suggested method is to dynamically 

switch algorithm to the most appropriate current FF 

basing on the kind of the individuals in the current 

generation. The method should set the current FF to 

ℎ1first and switch it to ℎ2 when the individuals in the 

current generation reach the switch point. The value of the 

reward function depends on changes of the fitness of the 

best individual, which appear after the creation of the next 

generation caused by the action of the agent. An auxiliary 

function Df is defined as per the equation (3) 

       𝐷𝑓(𝑥1, 𝑥2) = {0 𝑖𝑓 𝑓(𝑥2) − 𝑓(𝑥1) <

0 0.5 𝑖𝑓 𝑓(𝑥2) − 𝑓(𝑥1) = 0 1 𝑖𝑓 𝑓(𝑥2) − 𝑓(𝑥1) > 0                                                

(3) 

The reward function is shown in equation (4) 

𝑅(𝑠, 𝑎) = 𝐷𝑔(𝑥𝑠 , 𝑥𝑠′) + 𝑐(𝐷ℎ1
(𝑥𝑠, 𝑥𝑠′) +

               𝐷ℎ2
(𝑥𝑠, 𝑥𝑠′))                               (4) 

Where, 

’c’ = a real-valued parameter that allows 

contribution of fitness functions to the reward.   

s and s’ = the previous and the new state 

respectively, 
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a= The action that caused transition from s to s’  

xs and xs’  are the number of bits set to one in the 

best  

   3.2 Modified SARSA Algorithm  

SARSA is a State-Action-Reward-State-Action 

reinforcement learning algorithm [21] It is used to learn a 

policy for an agent interacting with an environment. In On 

Policy of RL algorithm, the agent learns the value function 

according to the current action derived from the existing 

policy while in Off Policy the agent learns the value 

function according to the action derived from another 

policy [20].Q-Learning technique is an Off 

Policy technique based on greedy approach to learn 

whereas SARSA technique, is an On Policy and uses the 

action performed by the another policy to learn the Q 

value.  

Existing SARSA-Bellman Equation is [22]  

 𝑄(𝑠𝑡,𝑎𝑡) = 𝑄(𝑠𝑡,𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛶𝑚𝑎𝑥𝑄(𝑠𝑡+1
′ , 𝑎𝑡+1

′ )) −

𝑄(𝑠𝑡,𝑎𝑡)                    (5) 

Where, 

▪ 𝑄(𝑠𝑡,𝑎𝑡) =

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑜𝑟 𝑡𝑎𝑘𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑡  𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑠𝑡 

▪ 𝑟 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑤𝑎𝑟𝑑 

▪ 𝑠𝑡+1
′ , 𝑎′ = 𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑎𝑛𝑑 𝑎𝑐𝑡𝑖𝑜𝑛  

▪ 𝛼 = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  

▪ 𝛶𝑚𝑎𝑥 =

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒  

To improve the speed of learning instead of calculating 

discount factor after each step and to reduce the reward to 

keep final reward bounded as modified to 𝛶 where value 

of discount factor is calculated till particular Epochs as 

seen in Modified SARSA Eq.6                

𝑄(𝑠𝑡,𝑎𝑡) = 𝑄(𝑠𝑡,𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛶𝑄(𝑠𝑡+1
′ , 𝑎′)) −

𝑄(𝑠𝑡,𝑎𝑡)                       (6) 

                                         

Algorithm2: Modified Q Learning and Modified SARSA (MQLMS) 

1: Start 

2: Observe the current state  

3: Initialize the 𝑄(𝑠𝑡,𝑎𝑡)to some arbitrary values 

4: Based on value of Ɛ take a decision for exploration or exploitation  

5: In Exploitation state Modified Q value is calculated as per Eq. 6 

6: In Exploration state based on Fitness function values are calculated 

7: Based on the either step 5 or 6 action at is selected 

8: Based on action reward is received 

9: Q table is than updated based on reward value for the next state 

10: Repeat steps 4-8 until the set epochs end 

 

This loop continues till the desired Fitness function is achieved with minimum cost and maximum reward. The below figure 

1 shows the flowchart of MQLMS methodology. 
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Fig.1: Flowchart of Modified Q Learning and Modified SARSA (MQLMS) 

One of the primary objectives of RL is to minimize the 

cost of learning. To realize the same a novel cost function 

model is defined. 

Cost Model 1: The first cost model [19], uses main-

memory database that performs two types of joins: index 

joins and in-memory hash joins 

cij(O)=c(Ol)+match(Ol,Or).|Ol|                                         (7) 

chj(O)=c(Ol)+c(Or).|O|                                          (8) 

where 

c = the cost estimation function,  

 cij(O)= cardinality function, and match denotes the 

expected cost of an index match. 

Cost Model 2: In cost model 2 index eligibility is 

removed and only hash joins and nested loop joins 

with a memory limit M. 

          𝑐𝑗𝑜𝑖𝑛={𝑐(𝑂𝑙) + 𝑐(𝑂𝑟) + |𝛰|      𝑖𝑓 |𝑂𝑟| + |𝑂𝑙| ≤

𝑀 𝑐(𝑂𝑙) + 𝑐(𝑂𝑟) + 2(|𝑂𝑟| + |𝑂𝑙|) +

|𝑂|  𝑖𝑓(|𝑂𝑟|  𝑐(𝑂𝑙) + 𝑐(𝑂𝑟) + (|𝑂𝑟| +

⌈
|𝑂𝑟|

𝑀
⌉|𝑂𝑙|) . |𝑂𝑙|)  ≤  𝑀2     (9)            

 

The non-linearity in this model are size-dependent. 

Controlling the size of intermediate relations is important 

in the optimization problem 

Cost Model 3: It is based on  Gamma database where the 

left operator as the “build” operator and the right operator 

as the “probe” operator [23].  

  cnobuild=c(Ol)+c(Or) -|Or|+|O|                           (10) 

Proposed Cost Model: 

Cost function optimization algorithms attempt to find the 

optimal values for the model parameters by finding the 

global minima of cost functions. Gradient Descent 

algorithm makes use of gradients of the cost function to 

find the optimal value for the parameters.  

Hypothesis:       h(x)=W+bx                         (11) 

On each iteration t, the cost of the data is found. 

 

Cost Function:  

                                         𝐶(𝑊, 𝑏) =
1

2𝑡
∑𝑡

𝑖=1 (ℎ(𝑥(𝑖)) − 𝑦(𝑖))2                 (12)               

The partial differentiation of cost function with respect to 

weights and bias is computed. 
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     𝑑𝑊 =
𝛿

𝛿𝑊
 C(W,b)                    (13) 

Where W, b is it weight and bias 

Partial differentiation with respect to bias 

   𝑑𝑏 =
𝛿

𝛿𝑏
 C(W,b)                             (14) 

Goal is to Minimize  𝐶(𝑊, 𝑏)       

The weights and bias are then updated by making use of 

gradients of the cost function and learning rate 𝛼 [0,1]. 

The value of 𝛼 can range from 0.0 to 1.0. Greater the value 

of 𝛼, greater is the number of steps taken to find the global 

minimum of the cost function. 

Updating parameters:     W=W – (α . dW) and b=b-(α . b)                                                                 

(15)                                                       

4. Result Analysis and Discussion  

The SARSA algorithm learns a policy that balances 

exploration and exploitation and can be used in a variety 

of applications, including robotics, game playing, and 

decision making. However, it is important to note that the 

convergence of the SARSA algorithm can be slow, 

especially in large state spaces, and there are other 

reinforcement learning algorithms that may be more 

effective in certain situations. The proposed approach of 

MQLMS is implemented with multi agent environment 

and the agent is of type, deep Q agent value based.  

In experiment an EC2 c5.9xlarge instance with 36 vCPUs 

is used. SparkSQL’s bushy dynamic pro-gram takes 1000 

seconds to plan the largest query (Q64, 18-relation join); 

A zoomed-in view of the rest of the planning latencies is 

included. Results in Fig1 the y = x line represent speedup. 

Across the workload, DQ’s mean speedup over SparkSQL 

for execution is 1.0× and that for optimization is 3.6×. 

Below figure 2 showed the latency comparison. 

 

 

Fig 2: Execution and optimization latencies of DQ and SparkSQL on TPC-DS (SF1). 

As shown in Fig 3 ,A modest amount of real execution using around 100 queries allows DQ to surpass both its original 

performance (by 3×) as well as Postgres (by 3.5×). 

 

Fig 3: Effects of ne-tuning DQ on JOB Q10c. 

As shown in Fig 4 (a) and (b) as the training steps 

increases the RL algorithm learns from environment and 

reduces the losses and improves accuracy. Here training 

steps are normalized between the range [0,1]. The 

accuracy which was targeted through training is obtained 

during validation when the training steps are increased by 

50% whereas loss difference between training and 

validation reduces marginally after 80% steps. 
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Fig 4(a): Loss during training and validation 

Fig 4(b): Accuracy vs Training steps 

Comparative Cost analysis for existing  all three cost models and proposed cost model shown in below table1. 

Table1: Comparative Cost analysis for existing cost models and proposed cost model 

 Proposed Cost Model Cost Model 1 Cost Model 2 Cost Model 3 

Optimizer 

Defined in 

various 

literature  

Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

Zig-zag 

(ZZ) [16] 

1.02 5.96 49.56 1.0 1.07 1.87 1.0 5.07 43.16 1.0 3.41 23.13 

QickPick 

(QP) [24] 

1.01 65.08 498.34 1.0 23.87 405.04 7.43 51.84 416.18 1.43 16.74 211.13 

IK-KBZ 

(KBZ) [25] 

1.00 37.78 118.67 1.0 3.45 36.78 5.21 29.61 106.34 2.21 14.61 96.14 

Right-deep 

(RD) [26] 

1.56 98.04 387.63 4.7 53.25 683.35 1.93 8.21 89.15 1.83 5.25 69.15 

Left-deep 

(LD) [26] 

1.04 12.87 78.32 1.0 1.08 2.14 1.75 7.31 65.45 1.35 4.21 35.91 

Exhaustive 

(EX) [26] 

1.00 1.06 1.28 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Existing 

DQ  

1.03 1.98 14.92 1.0 1.32 3.11 1.0 1.68 11.64 1.0 1.91 13.14 

Modified 

DQ 

(Proposed) 

1.09 2.03 18.92 1.0 1.78 4.12 1.0 1.87 17.23 1.0 1.94 18.91 

Table 1 compares a proposed cost model with three 

parameters min, max and mean .It is observed that in 

proposed cost model large variation of cost with distinct 

clusters of minimum cost projected ,as mean value is very 

close to minimum value of cost. Modified DQ techniques 

projected better outcomes in comparison of existing DQ 

and other existing optimizers. The proposed cost  model 

has minimum cost of 1.09 and range is larger as 18.92 with 

mean value of 2.03 which is close to minimum cost .   

Although the modified Q cost-model shifts the mean cost 

less towards the lowest cost value, the broad cost range 

has grown by 28.36% compared to the original DQ. With 

regard to the change in memory size from 108 to 102, the 
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proposed cost-model's improved DQ results in an 88.2% 

reduction in variation for the relative mean cost.

Table 2: Proposed Cost Model mean relative cost vs. memory limit 

 

 

 

 

 

 

 

 

Table 2 shows that proposed modified DQ algorithm 

utilized minimum resources for maximum learning and 

perform better than majority of the existing algorithms. 

Difference D is 0.5 in memory allocation from 102 to 108 

whereas for KBZ optimizer it is 29.78. 

                

Fig 5: Memory allocation and learning in various optimizers 

As shown in Fig 5 the difference in learning is almost flat 

which ensures that with minimum resources also optimum 

learning can be ensured. Table 3 shows proposed cost 

model training execution time vs. memory limit (number 

of tuples in memory). (Relative Scaling* in Milli-seconds 

) *960.02 mili-sec for 8 GB RAM and Internet speed 

approx. 100 MBPS is considered.   

Table 3: shows Proposed Cost Model Training Execution time in ms vs. memory limit 
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 M=108 M=106 M=104 M=102 D= M=108- M=102 

KBZ 1.0 2.96 28.03 30.78 29.78 

LD 1.0 1.04 5.72 6.45 5.45 

EX 1.0 1.0 1.01 1.02 0.02 

Existing DQ 1.0 1.21 2.41 5.24 4.24 

Modified DQ 1.02 1.34 1.42 1.52 
0.5 

 M=102 M=104 M=106 M=108 Difference 

KBZ 50.23 10.33 5.2 1.04 49.19 

LD 27.32 8.67 3.41 1.91 25.41 

EX 2.5 1.03 0.96 0.92 1.58 

Existing DQ 2.24 2.01 1.67 1.24 1 

Modified DQ 1.84 1.56 1.2 1 0.84 
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Table 3 shows that as memory increases time reduces for 

execution. In Modified DQ algorithm the difference in 

time requirement compared to all other optimizers is 

minimum. Maximum time is taken by KBZ optimizer.  

 

Fig 6: Time required for different memory allocation 

As shown in Fig 6 it is clearly observed that modified DQ 

algorithm is efficiently execute the task with minimum 

memory. Below table 4 shows  proposed cost model 

accuracy vs. memory limit. 

Table 4: Proposed Cost Model Accuracy% vs. memory limit for specific training execution time (number of tuples in 

memory). 

  M=102 M=104 M=106 M=108 

KBZ 67 73 87 53 

LD 78 81 85 64 

EX 84 89 91 76 

Existing DQ 83 91 94 78 

Modified DQ 86 94 97 82 

 

                        

Fig 7:  Accuracy comparison of different optimizers 

As shown in Fig  7 the accuracy of Modified DQ optimizer 

is better in different memory allocations compared to 

existing optimizers  

5. Conclusions 

MDQL is a practical compromise that takes advantage of 

the join optimisation problem's structure. Proposed cost 

model gives wide range of weight parameters “W” where 

the mean value is always closer to the minimum cost 

which implies easy to cluster out and train the features. 

The modified DQ in proposed cost-model although has 

less shift in mean cost towards minimum cost value, there 

is a wide cost-range increased by 28.36% compared to 

existing DQ. Proposed modified DQ gives 88.2% 

reduction in variation for relative mean cost with respect 

to change in memory size from 108  to 102 for proposed 

.cost-model. For proposed cost model, training execution 

time for modified DQ is reduced by 19.35% for memory 

size of 108 and by 17.85% for memory size of 102 

compared to existing DQ whereas accuracy has been 
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increased by 3 to 4%. Future research that focuses on the 

extremes of learning and query optimisation may reveal 

more information.
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