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Abstract: Abstract: In this study, neurodegenerative diseases (Amyotrophic Lateral Sclerosis, Huntington’s disease, and Parkinson’s 
disease) were diagnosed and classified using force signals.  In the classification, five machine learning algorithms Averaged 2-Dependence 
Estimators (A2DE), K star (K*), Multilayer Perceptron (MLP), Diverse Ensemble Creation by Oppositional Relabeling of Artificial 
Training Examples (DECORATE), Random Forest) were compared by the 10-fold Cross Validation method. K* classifier gave the best 
outcome among these algorithms. As a result of quad classification of the K* classifier, the best classification accuracy was 99.17%. 
According to the first three and five principal component qualifications which are created from these 19 features, the best classification 
accuracies of K* classifier were 95.44% and 96.68% respectively 
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1. Introduction 
Neurodegeneration is a general term which expresses structure and 
function loss of neurons including their death. Many 
neurodegenerative diseases like Amyotrophic Lateral Sclerosis 
(ALS), Parkinson Disease (PD) and Huntington Disease (HD) 
occur as a consequence of the neurodegenerative processes. Some 
of the symptoms of the neurodegenerative diseases as ALS, HD 
and PD are mutual.  Some of these symptoms are physical [1]. One 
of the activities where physical disorders appear is ‘walking’ [2]. 
Early detection of neurodegenerative disease is crucial to prevent 
the progression of the disease. Furthermore, in certain 
neurodegenerative diseases, early diagnosis of the disease changes 
the course of the treatment [3-6]. Many published articles give an 
idea about the diagnosis and classification of neurodegenerative 
diseases. Here is brief information about these articles.  
In the study carried out by Banaie et al. (2011), a new automatic 
approach was developed in order to classify the patients who can 
move by using the features that have come out from the gait 
signals. In the study, four groups were chosen. These were: people 
suffering from ALS, HD, PD and Control Object (CO). The 
classification algorithm used in this study was a quadratic Bayesian 
classifier [7]. In the study carried out by Daliri (2012), an approach 
was offered for the diagnosis of neurodegenerative diseases (ALS, 
HD and PD) based on gait dynamics. Support Vector Machine 
(SVM) algorithm, was used for diagnosis, by employing different 
kernels. The best performance was obtained from radial basis 
kernel function [8]. In the study realized by Lee and Lim (2012), 
Wavelet based feature extraction was performed by using gait 
characteristics, in order to classify the Parkinson Disease. 
Classification was performed by using extracted features and 
weighted fuzzy membership function neural network (NEWFM) 
[9]. Drotár et al. (2014) argue that dysgraphia, one of the first 
motor symptoms observed in PD, can help tell such patients from 
healthy control objects, using kinematic changes in handwriting to 
diagnose PD. They first extract the features of the handwriting and 
form data sets, after which they use SVM to distinguish the classes 

[10]. Akdemir et al. (2014) rely on Brain 18-Fluorodeoxyglucose 
Positron Emission Tomography (18F-FDG PET) to differentially 
diagnose some Parkinsonisms (PD, MSA, PSP, KBD, dementia 
with Lewy bodies (DLB) and control objects). The images were 
analyzed visually and using NeuroQ software [11]. Lee et al. 
(2014) analyze videos showing gait and posture characteristics of 
patients with PD to differentiate tem from Progressive 
Supranuclear Palsy (PSP) and Multiple System Atrophy (MSA) 
[12]. Pilleri et al. (2014) use heart rate and circadian rhythm of 
patients with PD and MSA for differential diagnosis. They then put 
the data to t-test and ANCOVA test to compare the two groups 
[13]. Navarro-Otano et al. (2014) study 123I-meta-
iodobenzylguanidine (123I-MIBG), heart rate, odor recognition, 
and [123I]FP-CIT (DaTscan) SPECT to differentiate PD from 
Vascular Parkinsonism (VP). The resulting data is then evaluated 
statistically [14]. Salvatore et al. (2014) rely on T1 weighted MRI 
to differentiate PD from PSP, using Principle Component Analysis 
(PCA) for feature extraction and SVM for classification of diseases 
[15]. Feng et al. (2014) use 3.0T MRI data for a differential 
diagnosis of PD and MSA, and statistical tests for comparison [16]. 
Baudrexel et al. (2014) compare 18F-FDG PET and Diffusion 
Weighted Imaging (DWI) for a differential diagnosis of PD, MSA 
and PSP, and then use ANOVA and ROC analysis for 
classification of the diseases [17]. Huertas-Fernández et al. (2015) 
use [123I]FP-CIT (DaTscan) SPECT method for differential 
diagnosis between PD and VP, and then use Logistic Regression, 
Linear Differential Analysis and SVM for classification of the 
diseases [18]. Zanigni et al. (2015) rely on MR Proton 
Spectroscopy (1H MRS) method for differential diagnosis between 
PD and other parkinsonian syndromes (MSA-C, MSA-P and 
Richardson syndrome (PSP-RS)). They focus on cerebellum 
differently from other studies, and analyze statistically data 
obtained in study [19]. Bradvica et al. (2015) rely on Transcranial 
Sonografy and odor test for differential diagnosis between PD and 
Essential Tremor (ET) but also compare results of Transcranial 
Sonografy and Dopamin Transporter Scan (DaTSCAN), and find 
out high degree of compatibility between them [20]. In the study 
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performed by Xia et al. (2015), a system based on machine learning 
was developed to classify the neurodegenerative diseases (ALS, 
HD, PD and normal subjects (healthy subjects)). The algorithms 
used in the classification were SVM, Random Forest, Multiple 
Layer Perceptron (MLP) and k-Nearest Neighbors (kNN) [21]. 
Vranová et al. (2016) rely on Clusterin protein level in 
cerebrospinal fluid for differential diagnosis between 
neurodegenerative diseases (PD, DLB, AD, MSA, PSP). They use 
statistical analysis in comparing the data [22]. Drotár et al. (2016) 
rely on kinematic and pressure characteristics of handwriting for 
differential diagnosis between patients with PD and control 
objects, and then use kNN, AdaBoost and SVM in classifying the 
two groups [23]. 
In the studies on the diagnosis of neurodegenerative diseases, 
diagnosis is done either by focusing on particular diseases 
(especially PD and CO group) or frequent diseases as ALS, HD 
and PD are analyzed one by one with the control groups. However, 
in this study, quad classification was established by using all 
disease groups and control groups data together. Moreover, the 
accuracy of this study is higher than the other studies. 

2. Material and Methods 
In this study, statistical features were derived from gait force 
signals. After this step, the dataset was formed. Then, among the 
statistical features that were produced, the features that give more 
information were chosen using various feature selection methods. 
Those feature selection methods are: InfoGainAttributeEval, 
ChiSquaredAttributeEval, ConsistencySubsetEval, 
GainRatioAttributeEval, ReliefFAttributeEval, 
SVMAttributeEval and SymmetricalUncertAttributeEval. And the 
process of feature selection is performed by taking the average of 
the methods. Chosen features were examined experimentally on 
whether they increase the performance of Machine Learning 
algorithms. Thus, feature vector that gives the most information 
was formed. Since the dimension of this vector was big, its 
dimension was reduced by using Principal Component Analysis. 
Feature extraction was completed with this dimension reduction. 
Finally, the best classifier was chosen using the obtained features. 
Flow chart of this process is shown in Figure 1. 

 

 

Figure 1. Flowchart of the proposed system for diagnosis and classifying of Neurodegenerative diseases (ALS, PD, HD).

2.1. Gait Dynamics Signals 

Gait analysis (GA) used in this study is a kinetic analysis which is 
one of the measures of 3D GA. The only data which can be 
measured in kinetic analysis is Ground reaction force vector 
(GRFV). GRFV is measured with plates that gauge the total 
impulse of foot on the ground. Data used in the study were 
collected from the right and left feet of Hausdorff’s 64 subjects (15 
PD patients, 20 HD patients, 13 ALS patients and 16 healthy 
people). These data were taken from PhysioNet database [24]. 
These gait signals from the subjects were sampled with 300 Hz 
frequency and there are five minutes of data for each subject. The 

mechanism which is used to obtain those data was developed by 
Hausdorff et al [25]. Hausdorff examined ALS and its changes on 
the gait rhythm. That study is based on the measurements of 
duration and length of strides on normal individuals and ALS 
patients [26]. In another study of Hausdorff et al., duration of 
double step was examined in relation to age and Huntington 
disease [27]. In that study, 5-minute force signals that were taken 
from each patient (right and left foot) were split up for 1 minute. 
So, 640 new data (320 for right foot and 320 for left foot) were 
created. Neurodegenerative patients’ force signals on right and left 
foot were shown in Figure 2 and Figure 3 respectively.
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Figure 2. The left foot force-sensitive resistor data for one ALS patient (age: 68, sex: male), one PD patient (age: 77, sex: male), one HD patient (age: 42, 

sex: male) and one CO subject (age: 57, sex: female). The x-axis label marks the sampling timestamp of the gait signal, and the y-axis label is its 
amplitude. 

 
Figure 3. The right foot force-sensitive resistor data for one ALS patient (age: 68, sex: male), one PD patient (age: 77, sex: male), one HD patient (age: 

42, sex: male) and one CO subject (age: 57, sex: female). The x-axis label marks the sampling timestamp of the gait signal, and the y-axis label is its 
amplitude. 

2.2. Statistical Features and Preparation of the Datasets 

Statistical parameters were formed by using 320 gait signals (force 
signal) and each parameter was matched to one feature. 26 
statistical features (for left foot and right foot) and their 
abbreviations are as follows: Maximum (F1-F14), minimum (F2-
F15), mean (F3-F16), standard deviation (F4-F17), skewness (F5-
F18), kurtosis (F6-F19), first quartile (F7-F20), median (F8-F21), 
third quartile (F9-F22), interquartile range (F10-F23), range (F11-
F24), trimmed mean (F12-F25), mean absolute deviation (F13-
F26). 
The number of statistical features obtained from gait signals was 
13. These features were created separately for right and left foot. 
Later, the dataset was formed. There were 4 datasets: Dataset 1 
containing 13 features and only the data of the left foot; Dataset 2 
containing 13 features and only the data of the right foot; Dataset 3 
containing 13 features and the data of both right and left feet; 
Dataset 4 containing 26 features and the data of both right and left 
feet. The classification of all these datasets was done in order to 

interpret the causes of the classification results better. Therefore, 
the causes of classification results could be interpreted better. 

2.3. Kstar (K*) Classifier 

The algorithm that gave the best results in classification problems 
in this study is K* algorithm. K* algorithm is also a simple 
instance-based classification and resembles kNN algorithm [28]. 
K* algorithm uses entropic measurement based on the probability 
of transforming an instance within another one through random 
selection among all possible transforms. In fact, the transform 
complexity of an instance within another one is the distance 
between the instances. There are many benefits of using entropic 
distance. These are; using missing values and real valued 
attributes. 
Let I be a possibly infinite set of instances and T a finite set of 
transformations on I. Each t ∈ T maps instances to instances: t:I→I. 
K* function is calculated as shown in the statement (Eq. 3). 

( ) ( )( )( )1 1 1, ,−= =  n n nt x t t t x wheret t t
  (1) 
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     (2) 

( ) ( )* *
2, log ,= −i iK y x P y x     (3) 

In this statement, P* is the probability of all transformational paths 

from x to y. It is shown in statement (Eq. 4). 

( ) ( )( )
* ,

∈ =
= ∑

i
i t P t a b

P y x P t     (4) 

3. Methodology Statistical Criteria used for the 
Analysis of Experiments 

Some criteria were required in order to decide how successful a 
classifier is at the end of the learning process. The criteria are as 
follows: 
Kappa Statistics was used to measure consistency between the 
predicted and the observed classifications in a dataset [29]. Kappa 
value is given in (Eq. 5). P(a) shows the accuracy of the classifier 
and P(e) is the expected accuracy gained by the classifier that 
makes a random prediction on the same data set. In other words, it 
is the probability of occurrence of the prediction. 

( ) ( )
( )1

−
=

−
P a P e

K
P e

     (5) 

F-Measure value (Eq. 6) is stated as the harmonic average of 
precision and recall values. In terms of the examples classified as 
positive and negative, precision gives the rate of accurately 
classified positive ones among the examples predicted as positive. 

2* Pr * Re
Pr Re

− =
+

ecision callF Measure
ecision call

   (6) 

F-Measure is particularly an important criterion in the preparation 
process of training data in order to increase the performance of the 
classifier. Accordingly, in this study, it is aimed to get a happy 
graph [30] from learning curve drawn between F-Measure and data 
size. 
Bias-Variance tradeoff has a key role to understand Machine 
learning algorithms. Use of Bias-Variance tradeoff in experimental 
studies has gradually increased in recent years [29]. Terms of Bias 
and Variance help explain how superior the simple predictors can 
be to the complicated ones and how superior model groups can be 
to the simple models [31]. 
Some methodologies were applied within the experiments in this 
study in order to measure the performance of the learning system 
correctly, in other words, in order to guarantee the accuracy of 
experiment results. This method is known as k-fold cross 
validation (k-fold CV). K-fold CV method was used to determine 
if training data is enough for a classifier to learn. K-fold CV offers 

a method of dividing data into about k equal parts in order to 
predict a classifier’s accuracy. The answer of the question: “why 
the k value was 10?” in this study is that it was observed that the 
correct number was about 10 in order to make the most accurate 
prediction of the rate of error in the common tests done by using 
different techniques on various training and test sets. Additionally, 
theoretical proofs support the statement [29]. Leave-one-out cross-
validation (LOOCV) which is the specialized phase of k-fold CV 
method was used sometimes while testing performances of 
Machine Learning classifiers. This method was used particularly 
to reveal how different from one another the models created by the 
classifiers were. 

4. Results and Discussion 
The experiments were started by choosing the optimum of four 
datasets gathered from the raw data. Once this dataset was chosen, 
all of the experiments were done using that dataset. The classifier 
results for election process of the dataset are shown in Table 1. In 
order to evaluate the efficiency of the classifiers used in our 
experiments, we have calculated two baselines: a majority based 
random predictor; a class distribution based random predictor and 
a most recent candidate matching predictor. Majority based 
classification (ZeroR classifier) was done by assigning the most 
frequent class to each instance, which was the HD class in our 
dataset. Class distribution based random classification was carried 
out by randomly assigning classes to the instances on the basis of 
their distributions. Baseline classifiers were used to compare the 
performances of other classifiers. Other classifiers were expected 
to perform better than baseline classifiers. The five chosen 
classifiers performed better when compared to baseline classifiers. 
Except the baseline classifiers, the classifiers at the Dataset 4 
performed better at classifying in comparison to others according 
to the results shown on Table 1. 

Table 1. The classifying results of classifiers on datasets 

Classifier Dataset-1 Dataset-2 Dataset-3 Dataset-4 

Baseline-1 (ZeroR) 31.25 31.25 31.25 31.25 

Baseline-2 (Rand) 25.94 26.88 23.91 24.38 

A2DE 70.63 75.00 67.34 90.31 

MLP 73.75 70.94 66.56 91.25 

DECORATE 88.44 87.19 84.38 93.75 

K* 88.75 91.25 87.34 96.25 

Random Forest 88.75 89.06 86.41 94.69 

Average (%) 66.79 67.37 63.88 74.55 

                                            Table 2. The results of the classifiers after parameter change 

Classifier  Parameter Accuracy Precision Recall F-measure Kappa 

K* globalBlend=14 96.88 0.97 0.97 0.97 0.96 

DECORATE desiredSize=45 94.69 0.95 0.95 0.95 0.93 

Random Forest default 94.69 0.95 0.95 0.95 0.93 

 After Dataset 4 was chosen as training data, the next step was the 
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selection of the classifier which achieved the highest performance. 
The parameters of the highest performance classifiers K*, 
DECORATE and Random Forest were changed in order to inspect 
the accuracy, precision, recall, f-measure and kappa values. In the 
light of these results, it was observed that classifier K* had better 
results compared to other classifiers.  The results are shown on 
Table 2. 
After Dataset 4 was chosen as the training data, K* classifier was 
chosen, the following step was the feature selection. The features 
that were not required for feature selection were eliminated to 
increase the accuracy of the classifier, and to decrease the required 
time.  The results were calculated by averaging the seven methods 
used in feature selection. These results express the effect of each 
feature in terms of classifying accuracy. According to the data, the 
F11 feature, which was also called the maximum and minimum 
range of the left, provided the highest amount of information. The 
lowest information provided was in the F5 feature which was also 
called the skewness value. 
 
 

After the ranks of the features were acquired, starting with the 
primary information providing feature, new Feature datasets were 
created by adding secondary and tertiary and lesser information 
providing features to the primary one. In total, 26 feature datasets 
were created. The first set contains only the {F11} feature, the 
second set contains the {F11, F4} features and the final set 
contains all the {F11, F4, F15, ..., F18, F5} features. According to 
the accuracy and Root Relative Squared Error (RRSE) values of 
the model created by Classifier K* with default parameters, the 
feature dataset which consisted of the first 19 features achieved the 
highest Accuracy = 98.75% and the lowest Root Mean Squared 
Error (RRSE) = 15.56%.  According to this statement, the first 19 
features had the highest information value, and these features were 
chosen to create the Feature dataset. This dataset consisted of: 
{F11, F4, F15, F10, F17, F14, F23, F24, F2, F20, F1, F7, F9, F13, 
F21, F26, F3, F8, F16}. 
The Accuracy and RRSE value of Classifier K* using the 
parameter of Globalblend values are shown in Figure 4. According 
to all these results, the most suitable Globalblend value was 19. 

 
 Figure 4. Accuracy and RRSE value of classifier K* according to Global blend parameters. 

The Graph of bias-variance is shown in Figure 5. This is a graph 
that demonstrates the error origination point of a classifier; whether 
it is bias based or variance based. If the error origination point is 
based on bias, the convergence of the values of RMSECV and 
RMSEtraining stops at a certain value when the amount of data is 
increasing. In other words, the error could not be corrected because 
of bias even if data numbers are the highest. Additionally, there 
was a significant gap between the values of RMSECV and 
RMSEtraining. If the error origination point is based on variance, the 
situation is the opposite of bias based error. When the amount of 

data increases, the values of RMSECV and RMSEtraining start to get 
closer, and the gap between those two the lines closes. On the other 
hand, the increase in the amount of data does not always decrease 
the errors caused by variance.  When Figure 5 is inspected, it is 
seen that when the amount of data increases, the gap between two 
values progressively decreases. In addition, regardless of the 
amount of data presented, RMSEtraining always had the value of 
zero, but the value RMSECV progressively decreases and finally 
had the value of 0.07. In conclusion, the complexity of local model 
created by classifier K* and the complexity of data fit each other. 
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Figure 5. Bias-variance graph of classifier K*

Happy Graph for classifier K* is shown on Figure 6. When Figure 
6 is observed, it is seen that when the amount of data is 241, 242 
and 243, the value of F-measure is 0.992. In addition, when the 
amount of data is 320, it is observed that the value of F-measure is 
0.991. According to this information, the amount of data needed 

for classifier training can be limited to 241. When the amount of 
data was 241, it was observed that classifier K* achieved Accuracy 
= 99.17% and RMSE = 0.05 values.  According to these results, 
the amount of data should be limited to 241. 

 

 
Figure 6. Happy Graph for classifier K*

Table 3. Summary table of classifier K* after classifying process 

Statistical summary Result 

Correctly Classified Instances 99.1701 % 

Incorrectly Classified Instances 0.8299 % 

Kappa statistic 0.9888 

Mean absolute error 0.004 

Root mean squared error 0.0507 

Relative absolute error 

Root relative squared error 

1.0817 % 

11.7975 % 

Total Number of Instances 241 
 

The classifying results of classifier K* are shown on Table 3. 
According to the results, the correct classifying percentage of 
samples is 99.1701, as 239 samples were classified correctly while 
only 2 samples were classified incorrectly. It is also possible that 
classifier achieved perfect learning as the Kappa value was 0.9888. 
In addition to this, four error measurement statistics proved really 
low error values. 
Detailed accuracy table of classifier K* is shown in Table 4.  
According to this table, classifier K* created a local model which 
learns all the classes (ALS, CO, HD, PD) excellently because the 
precision, recall, F-measure and Receiver Operating Characteristic 
(ROC) Area values higher than 0.5 were the desired results. All of 
the values are either 1 or very close to 1 in Table 4. Thus, it is 
possible to claim that classifier K* created a model that could make 
generalization on all classes. 
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The percent variability explained by each principal component is 
shown in Figure 7.  The total amount of principal components was 
19. Only the first three of the components explain 95.967% of the 
variability. Hence, the others are not shown in Figure 7. The first 

three principal components, feature vectors and data are shown in 
Figure 8. Additionally, how 19 features contributed to the three 
principal components was shown in Figure 8 with a vector 
consisting of length and direction. 

 

 
Figure 7. The percent variability explained by each principal component

 
Figure 8. The representation of the first three principal components

Table 4. Detailed accuracy table of K* classifier by class 

 TP Rate FP Rate Precision Recall F-Measure ROC Area Class 

1 0 1 1 1 1 ALS 

0.983 0 1 0.983 0.992 1 CO 

1 0.006 0.988 1 0.994 1 HD 

0.982 0.005 0.982 0.982 0.982 1 PD 

Weighted Avg. 0.992 0.003 0.992 0.992 0.992 1  
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Moreover, new features created by the principal components are 
shown in Figure 8.  Classifier K* had the accuracy value of 
95.4357% and RMSE value of 0.1555 (GlobalBlend = 14) in 
classifying when the first three features were chosen. Therefore, 
230 out of 241 data were classified correctly with the use of only 
three features. Additionally, the total data explanation percentage 
of three principal components was 95.976%.  Classifier K* had the 
accuracy value of 96.6805% and RMSE value of 0.1229 
(GlobalBlend = 20) in classifying when the first five features were 
chosen. Therefore, 233 out of 241 data were classified correctly 
via using only five features. In addition to these, the total data 
explanation percentage of five principal components was 
98.3201%. It was observed that when other features were added, 
there was no increase in the results of classifying. 

5. Conclusion 
In this study, gait signals were used to classify neurodegenerative 
diseases and control objects. Thirteen statistical features for each 
left and right foot were created from these signals. Four datasets 
were created from the constructed features. Compared to others, 
the dataset which consisted of both left and right data was learned 
better by all of the classifiers. After dataset was chosen, the most 
successful classifier was defined as classifier K*. Classifier K* 
achieved better performance results in comparison to the classifiers 
of A2DE, MLP, DECORATE and Random Forest. After that step, 
the election of the features with the highest informative value was 
carried out. At this step, 19 out of 26 features were elected. (F1, 
F2, F3, F4, F7, F8, F9, F10, F11, F13, F14, F15, F16, F17, F20, 
F21, F23, F24, F26) After the election of features, the parameters 
that had the best performance for classifier K* were chosen. 
Therefore, GlobalBlend parameter value was defined to be 19. The 
gap between the classifying results of Classifier K* were observed 
when the value of k was changed during CV process. It was 
observed that the performance of classifier K* didn’t change when 
the value of k was changed during CV process. According to that 
information, it is possible to state that classifier K* had a stable 
condition. After that step, number adjustment of training data used 
for the training process of classifier K* which consisted of 320 
numbers of data was carried out. A happy graph was created and 
the number of data required for the training process was defined to 
be 241. Therefore, during 10-fold CV process, classifier K* 
achieved the results of Accuracy = 99.1701% and RMSE = 0.0507 
when GlobalBlend parameter was 19 and training dataset 
consisting of 241 number of data with 19 features was used. 
The 19 features which were obtained by feature selection process 
were used to create new features by PCA method. These features 
were created by first three and first five principal components. 
During 10-fold CV process for the first three principal 
components, classifier K* achieved the results of 
Accuracy = 95.4357% and RMSE = 0.1555 when GlobalBlend 
parameter was 14 and a training dataset consisting of 241 number 
of data was used. During 10-fold CV process for the first five 
principal components, Classifier K* achieved the results of 
Accuracy = 96.6805% and RMSE = 0.1229 when GlobalBlend 
parameter was 20 and a training dataset consisting of 241 number 
of data was used. 
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