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Abstract: One of the most significant staple crops in the world is rice. Rice seedlings are particularly susceptible to salt stress during 

the seedling stage, which can negatively affect crop quality and yield. Traditional approaches for assessing the susceptibility of rice 

crops to salt stress during the seedling stage are deemed inadequate and time consuming. The study emphasizes the necessity of 

employing a deep learning model instead of traditional methods to identify and classify salinity stress in rice seedlings using field 

images. In order to predict salinity stress in rice crops, this research examines the significance of image processing methods employed 

in deep learning models. To enhance the clarity and visual representation of salinity-induced stress symptoms, we explore several 

image enhancement techniques, such as noise reduction, contrast augmentation, and image normalization. To further capture and 

quantify the distinct visual features related to salinity stress, feature extraction techniques such as texture analysis, shape analysis, and 

color-based segmentation are used. We employ a deep learning model such as VGG16 and VGG19 models to use these extracted 

features as input to effectively classify the severity of salinity stress in rice seedlings as 1,3,5,7,9 scores. A comprehensive set of rice 

seedling images from field taken under various salinity stress conditions is used to assess the suggested method. The effectiveness of 

image processing techniques in improving the discriminatory power of deep learning models for salinity stress prediction is 

demonstrated by experimental results with 99.40%.The combination of image enhancement and feature extraction methods 

significantly improves the overall accuracy and reliability of the predictions, enabling farmers to make informed decisions regarding 

crop management and potential interventions to mitigate salinity stress. 
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1. Introduction 

About half of the world's population, especially in Asia 

and Africa, rely on rice, a popular complex 

carbohydrate, to meet their nutritional needs. To support 

the expanding human population, attempts have been 

made to increase rice production in response to the 

rising demand for the grain. In many nations, rice is 

regarded as a key crop, with India set to become the 

world's top producer in 2021–2022. Small-scale 

country's rice. In addition, the economic value of rice as 

a staple meal and a source of income for farmers 

highlight how important it is to increase rice production 

in order to keep up with the growing demand. farmers 

who significantly rely on rice as their main source of 

income cultivate a sizeable amount of the Further 

discussing about salinity, it is essential to understand the 

stages of rice. The growth of rice is shown in Figure 1 

and divided into several stages, each characterized by 

specific physiological and morphological changes [1].  

 

Fig 1: Stages of Rice growth, Source: International 

Rice Research Institute (IRRI) 

 

The radicle (the embryonic root) and coleoptile (the 

protective sheath) emerge as the seed begins to take up 

water and swell in Germination stage. When the seed 

sprouts, the radical lengthens to form the first root 

system; Seedling stage: At this stage, the coleoptiles 

produce its first genuine leaf. In order to grow and 

perform photosynthesis, the seedling develops roots, 

branches, and leaves. It is a time where environmental 

stressors might affect the development; Tillering stage: 

During this phase, the rice plant begins to produce a 

number of tillers, which are also referred to as secondary 

shoots or stems. These tillers appear at the main shoot's 

base. Tillering affects the number of grains produced by 

increasing the potential for panicles (flowering 

structures); Vegetative stage: The rice plant continues to 
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grow additional tillers, stems, and leaves during this 

stage. The buildup of biomass and vegetative growth are 

the main points of attention. To help it absorbs nutrients 

and water, the plant develops a strong root system; 

Reproductive stage: This phase is where growth shifts 

from vegetative to reproductive. Panicle development 

on the rice plant produces the flowers that will 

eventually give rise to grains. Pollination and 

fertilization are steps in the flowering process that result 

in grain production; the stage of grain filling: After 

fertilization, the grains start to fill with carbohydrates 

and other nutrients. The outcome of this phase will 

determine the rice crop's ultimate output. The plant 

devotes resources to the growth of the grain, which 

gradually reaches its maximum size; Harvesting and 

grain maturation: The plant begins to senesce when the 

grain reaches maturity, changing from green to yellow 

or brown. The plant is getting close to maturity when the 

leaves and stems start to dry out. When the grains have 

the ideal amount of moisture for storage or 

consumption, harvesting begins. 

 

1.1 Effect of Salinity in Rice 

Salinity, or the excessive concentration of salt in soil or 

water, can have a big effect on rice yield and production 

[2]. Reduced growth and yield, ion toxicity, oxidative 

stress, changed physiological processes, changes in 

plant shape, and increased vulnerability to pests and 

diseases are just a few of the detrimental effects salinity 

can have on rice plants. The detrimental effects of 

salinity on rice production can be reduced, and 

sustainable rice agriculture can be achieved in saline-

affected areas, with the support of good management 

practices such the adoption of salt-tolerant rice cultivars, 

improved irrigation systems, and soil amelioration 

strategies. 

 

Here are some key points that highlight the effects of 

salinity on rice especially at seedling stage: 

i. Salinity can limit the growth and development of 

rice plants, which can result in decreased yields. 

Rice plants' ability to absorb water and vital 

nutrients can be hampered by high salt 

concentrations in irrigation or soil, which can result 

in nutritional imbalance, reduced biomass buildup, 

and water stress. Reduced tillering, fewer grains per 

panicle, stunted growth, and ultimately poorer rice 

yields can all be effects of this. 

ii. Ion toxicity: Excessive soil salt concentrations can 

cause hazardous ions like sodium (Na+) and 

chloride (Cl-) to build up in plant tissues disrupting 

normal cellular processes and leading to ion toxicity. 

Since Na+ ions can prevent the uptake of important 

minerals like potassium (K+), nutritional imbalances 

and decreased plant growth can occur. "Cl- ions" 

iii. Enhanced oxidative stress: Rice plants may 

experience oxidative stress as a result of salinity. 

This might result in the creation of reactive oxygen 

species (ROS), which can damage cellular structures 

and impair cellular functioning. Proteins, lipids, and 

DNA can sustain oxidative damage from ROS, 

which inhibits plant growth and development and 

lowers yields. 

iv. Modified physiological processes: Rice plants' 

transpiration, respiration, photosynthesis, and 

uptake of water and nutrients can all be impacted by 

salinity. Affected plant growth and development, 

decreased energy generation, and changed plant 

metabolism are all possible effects of these 

disturbances. Changes in plant morphology: Salinity 

can also cause changes in the morphology and 

anatomy of rice plants. This may include reduced 

root growth, increased root hair density, changes in 

leaf morphology, and alterations in reproductive 

structures. These changes can affect plant water and 

nutrient uptake, and overall plant growth and 

productivity. 

v. Increased vulnerability to pests and diseases: Due to 

compromised physiological processes and changed 

plant defenses, rice plants under salinity stress may 

be more susceptible to pests and diseases. This may 

cause further yield losses and have an adverse effect 

on rice output. 

 

By the observations of field experts and surveys, it is 

clear that rice crops are particularly vulnerable to saline 

shocks during the seedling stage. Any significant stress 

encountered at this time can do the plants permanent 

harm, resulting in decreased yield. However, 

conventional screening techniques are time-consuming 

and difficult, particularly when working with a wide 

variety of genotypes. Computerized screening, on the 

other hand, has the potential to be a quick, repeatable, 

and reliable procedure in this situation. The difficult and 

extremely nonlinear prediction and classification 

problems that have persisted over the past few decades 

can now be addressed with the help of deep learning 

techniques. 

 

As a result, field images are used to create a model that 

precisely predict the level of salt stress in rice fields at 

the seedling stage. A powerful deep learning framework 

that can accurately identify and categorize salinity stress 

in paddy plants is unquestionably required to do this. 

Such a framework would be a useful tool for 

recognizing various stress levels in paddy crops, such as 

stresses 1, 3, 5, 7, and 9. By putting this cutting-edge 

system in place, farmers and researchers can make 

knowledgeable choices and take the necessary steps to 

lessen the negative impacts of salinity stress on rice 

agriculture. 

This paper discusses the previous related work in 

section 2 which provides the importance of the proposed 

method. The section 3 describes the proposed method 

with deep learning model that uses various image 

processing techniques to extract features that enhance 

the image quality and contributes for a better prediction 

result. In section 4, we have discussed about the 

accuracy of the predicted results using the deep learning 

models that motivates us to use more and more deep 

learning models for better results. 

 

2. Literature Survey Of Image Processing For Deep 

Learning Models 

The traditional method of identifying rice scores 

through visual analysis discussed in one of our previous 

works [4]. To brief it, the experts would go for a lab 
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setup as shown in Figure 2. At the seedling stage, 

microplots will be used to test the salinity stress 

tolerance of landrace collections. Through oven 

treatment and subsequent germination, seeds are 

prepared by removing their dormancy. Up until the 

second leaf stage, seedlings will be initially grown in 

non-salinized water. They are subsequently subjected to 

rising salt levels gradually for 14–15 days. Until the 

salinity-sensitive check genotype perished [14], the 

salinity level was kept. The standard evaluation system 

(SES) [ 6] for rice was used to grade the samples on a 

scale of 1 to 9. The color, shape, and texture of the 

leaves on stressed rice seedlings exhibit apparent 

symptoms [13]. These micro-symptoms are challenging 

to detect and measure manually by visual inspection. 

The efficiency of the prediction of salinity and analysis 

is based on the experience of the agricultural experts, 

which may be time consuming and tedious as well.   

 

 
Fig 2: Experimental setup for Traditional method 

of identification of salinity stress in various genotypes 

of Rice seedlings 

 

It is crucial to design an automated classification system 

for the prediction of salinity in rice seedlings for better 

rice yields. For agricultural researchers and scientists 

looking on innovative crop management methods, such 

a system would be of great value. Since none of the 

works are done on prediction of salinity in Rice at 

seedling stage, we are listing some of the related papers 

that combine image processing and deep learning for 

various image analysis and classification applications 

shown in Table 1. 

 

Table 1: Survey of image processing for deep learning models 

S.No Title of the Paper Year 
Methods 

Used 

Comparative 

Remarks with 

proposed Work 

1 

Rice Plant Disease Detection Using 

Image Processing and Probabilistic 

Neural Network. [11] 

2022 
Neural 

Networks 

Rice Plant 

Disease 

Detection 

But No salinity 

prediction was 

done 

2 

Spectroscopy based novel spectral 

indices, PCA- and PLSR-coupled 

machine learning models for 

salinity stress phenotyping of rice 

[3] 

2020 

PLSR- and 

PCA-based 

machine 

learning 

models 

Estimated Rice 

leaf nutritional 

content 

But No salinity 

prediction was 

done 

3 

Rice disease leaf classification 

using CNN with Transfer Learning 

[13] 

2020 CNN 

Rice leaf disease 

Classification 

But No salinity 

prediction was 

done 

4 

Rice Grain Classification using 

Image Processing & Machine 

Learning Techniques [14] 

2020 Deep learning 

Rice Grain 

Classification 

But No salinity 

prediction was 

done 

5 

Rice Sample Segmentation and 

Classification Using Image 

Processing and Support Vector 

Machine [15]  

2018 

Local Binary 

Pattern (LBP) 

and Support 

Vector 

Machine 

(SVM). 

Rice quality 

identification 

But No salinity 

prediction was 

done 

 

3. Proposed Method 

Deep learning-based salinity prediction has the potential 

to offer insightful information about salinity levels in 

rice-growing regions [5], assisting farmers and 

decision-makers in making well-informed choices about 

irrigation management, crop planning, and other 

agricultural practices to reduce the detrimental effects of 

salinity on rice production. Prior to deploying deep 

learning models in actual agricultural applications, it is 

crucial to apply image processing techniques to confirm 

the better accuracy and dependability using actual data 

and field tests. 

In the proposed method shown in the Figure 3, the rice 

seedling data samples collected are preprocessed to 

remove any noise, enhance contrast, and normalize the 

lighting. This will ensure that the images are of 

consistent quality and are suitable for analysis. Then the 

Image segmentation techniques are applied to identify 
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and separating the objects or areas of interest within an 

image. Then the features are extracted from the 

segmented images, such as color, texture, and shape. 

These features will be used as inputs to the deep learning 

model to classify the images to the one of the relevant 

classes as Score1, Score3, Score5, Score7, and Score9. 

 

 
Fig 3: Workflow of proposed methodology 

 

3.1 Image Processing Techniques 

Image processing techniques are used to identify 

salinity in rice is through the analysis of digital rice 

seedling images taken directly from the rice fields. By 

analyzing these images, visual cues that indicate the 

presence of salinity would be identified, such as changes 

in color or texture of the rice plants. The segmentation 

and feature extraction algorithms are used to identify 

specific types of salinity stress on the rice seedling 

images. The salt stress can cause different types of 

damage to different parts of the plant, such as leaves, 

stems, or roots. By analyzing images of the rice plants, 

which parts of the plants are most affected by salinity 

stress are identified.  

3.1.1 Data Collection 

We have consulted with domain experts from ICAR 

Goa, India and followed established scientific protocols 

to collect the images from the experimental setup 

carried out at ICAR Goa, India to ensure accurate and 

reliable results. Around 600 images of rice seedlings 

were taken by camera directly from an experimental 

field in various lighting situations and perspectives. The 

dataset includes the images of scoring levels such as 

Score 1, Score 3, Score 5, Score 7, Score 9 which are 

shown in Figure 4. 

 

 

 
Fig 4. Rice Seedling samples for each grade were collected from Experimental Setup conducted at ICAR,Goa,India 

 

The Table 2 depicts the standard evaluation system used 

by the agricultural experts to label the rice seedling with 

salinity scores. A 1–9 scale was used to score the 

samples in accordance with the standard evaluation 

system (SES) for rice [6]. Scores of 1-2 indicate high 

tolerance, scores of 3 indicate tolerances, scores of 5 

indicate moderate tolerance, scores of 7-8 indicate 

sensitivity, and scores of 9 indicate extreme sensitivity. 

 

Table 2: Standard evaluation system for scoring of 

visual salt injury at seedling and reproductive stages in 

rice. 
Score Observation Tolerance 

Grade1 Normal growth, no 

leaf symptoms 

Highly tolerant 

Grade3 Nearly normal 

growth, but leaf tips 

or few leaves 

whitish & rolled 

Tolerant 

Grade 5 Growth is severely 

retarded; most 

leaves are rolled; 

few elongating 

Moderatelytolerant 

Grade7 Complete cessation 

of growth; most 

Sensitive 

leaves dry; some 

plants dying 

Grade9 Almost all plants 

are dead or dying 

Highly sensitive 

 

3.1.2 Pre-Processing 

Import the original rice leaf images into the computer 

for pre-processing. Following that, individually do 

thresholding on the images to transform them into 

binary images. In addition, privately conduct the 

dilation and erosion procedures to eliminate noise from 

the images captured. After that, computed the four 

extreme points (extreme top, extreme bottom, extreme 

right, and extreme left) of the threshold images by 

selecting the contour with the greatest area of the 

threshold images and selecting the largest contour of the 

threshold images. Finally, crop the image based on the 

information provided by the contour and extreme point 

information. Figure 5 shows Bicubic interpolation is 

used to enlarge the salty images that have been clipped. 

This method is preferred over other interpolation 

methods such as bilinear interpolation because it 

produces a smoother curve than other methods such as 

bilinear interpolation.  
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It is also preferred over other methods such as bilinear 

interpolation for images because of the large amount of 

noise along the edges. When comparing the intensity of 

one pixel to the intensity of its neighbor's pixels, 

individually used a median filter to minimize the 

difference in brightness between the two pixels. To get 

the required results, all images are preprocessed using a 

median filter, edge detection, and binarization 

employing thresholding [7]. 

Here, the three-dimensional graphics are adjusted to be 

compatible with the Python programming language. 

The images are scaled, and the distortion produced by 

the non-uniform intensity of the magnetic field during 

that is eliminated. Noise is reduced by using a Median 

filter with three 3x3x3 filters. After scaling, the supplied 

image's dimensions are 120*120*77 pixels as shown in 

Figure 5. 

 
Fig 5: Preprocessed image of rice seedling sample 

 

3.1.3 Resizing, Rescaling and Cropping 

The trade-off between image quality and file size must 

be taken into account when rescaling an image. Loss of 

clarity and detail can occur when an image is enlarged, 

whereas loss of key details or information can occur 

when an image is reduced in size. Contrarily, cropping 

entails deleting a section of the image by trimming the 

edges. This method is used to get rid of distracting 

backgrounds and other undesired aspects from an 

image.  When cropping an image, it is ensured that the 

important features and details are not lost in the process. 

Deep learning models typically require input images to 

be of a specific size and scale. As part of image 

processing steps, the images are resized and rescaled the 

images of rice seedlings to a standard size, such as 

256x256 or 512x512 pixels. Resizing and rescaling the 

images as shown in Figure 6 are done using image 

processing libraries such as OpenCV or PIL. Resizing 

and rescaling will also help to reduce the computational 

cost of training the deep learning model. 

 

 
Fig 6: Resized and Rescaled image of rice seedling 

sample 

 

3.1.4 Normalization 

The process of normalization involves converting the 

image's pixel values to a standard scale. This phase is 

crucial because it makes sure that there is no bias in the 

deep learning model towards any particular pixel 

intensity range. To normalize a dataset, we have 

subtracted the mean pixel value from each pixel and 

divided the result by the standard deviation. Scikit-learn 

libraries are used for normalization. 

 

3.1.5 Labeling 

The images of rice seedlings should also be annotated 

with the appropriate class or category. This stage is 

essential because it teaches the deep learning model 

which images belong to which classes and how to 

forecast outcomes correctly. First, as shown in Figure 1, 

the labeling procedure for the various scoring levels—

including Score 1, Score 3, Score 5, Score 7, and Score 

9 as shown in Figure 2 is supplied manually by field 

specialists from the ICAR Goa, India.  

 

3.1.6 Data Augmentation 

Several random adjustments were used to supplement 

the data in order to expand the dataset, enhance 

generalization, and reduce overfitting. These 

adjustments comprised a 15-degree rotation range, 0.1 

height and width translation ranges, 0.1 height 

transformation ranges, 0.5 to 1.5 brightness ranges, and 

horizontal and vertical flips. The ability to analyze 

volumetric filed data using 2D deep learning techniques 

has been made possible by developments in neural 

network architectures, data augmentation methods, and 

top-tier GPUs. Image augmentation techniques were 

used because a portion of the dataset wasn't especially 

huge.By changing an existing dataset, image 

augmentation includes constructing an artificial dataset. 

It creates numerous clones of the original image, each 

with different dimensions, directions, locations, 

brightness levels, etc. Without adding fresh data, this 

method can improve the model's classification accuracy. 

For the constructed machine learning system in this 

work, two augmentation techniques rotation and 

horizontal flipping - were individually used to produce 

fresh training sets. Depending on the situation, the 

rotation procedure randomly rotates the input image by 

90 degrees zero or more times. Each of the rotated 

photos was then given a horizontal flip. 

  It is advised to adjust the field images in the dataset to 

have comparable widths and heights in order to get the 

best results. This is especially significant because the 

collection includes field images of various sizes. To 

match the input image dimensions of the pre-trained 

CNN models in this study, the photos were scaled to a 

size of 194x194 pixels. Five folds, each containing 1260 

images, were created from the 600 image training 

dataset.A sample of the augmented images are shown in 

Figure 7. 

 

3.1.7 ROI Extraction and Segmentation 

Recognizing rice leaves before preprocessing involves 

region of interest extraction. The current method 

considers the leaf image as a whole, but because it can 

only partially eliminate background noise and ignores 

elements like finger location and shape, it is insufficient 

for achieving correct detection. We provide a more 

sophisticated method to deal with this problem by 

limiting the analysis to a particular area between two 

leaf image depressions as shown in Figure 8.  
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Fig 7: Data Augmentation 

 

 
Fig 8: ROI Extraction performed on Rice seedling images 

 

We deploy a brand-new ROI extraction technique and 

present a cutting-edge field slope operator designed 

specifically for this application. This technique 

overcomes the difficulty of precisely restricting the ROI 

in images with considerable gradient variations by 

scanning the target with a wide field of view, simulating 

human vision.  Additionally, by averaging these 

conflicting elements over a greater range with a larger-

sized operator, noise and uneven lighting in the image 

can be mitigated. The accuracy of subsequent matching 

and recognition operations is improved by this method. 

Using a method called semantic segmentation is one 

popular method for segmenting images in which each 

pixel in an image is given a label designating which 

object or area of the image it belongs to. Here, salinity 

is predicted in images of rice seedlings by designating 

each pixel as either originating from the seedling or 

from the surrounding soil. With the labeled field images, 

the deep learning model for semantic segmentation is 

trained. Images of rice seedlings at various salinity 

levels, including Score 1, Score 3, Score 5, Score 7, and 

Score 9, are included in this dataset. The images are 

labeled at the pixel level to show what portions of the 

image represent the seedling and what portions 

represent the soil. 

 

3.1.8  Feature Extraction 

Once the image is segmented the feature extraction 

process is carried out which is an important step. 

Salinity stress often leads to changes in the texture and 

color patterns of rice leaves or other plant parts. We 

have used local binary patterns to quantify and extract 

textural features that characterize salinity-induced 

changes in the image. 

Here are some of the features that are extracted from rice 

seedling images for salinity prediction: 

Leaf color: Salinity can have an impact on the color of 

leaves. The salinity level can be determined by taking 

the color values from the leaves. 

Leaf area: Salinity can have an impact on how quickly 

leaves grow. The amount of salinity's impact on the 

growth of the rice seedling can be determined by 

counting the area of the leaves. 

Leaf shape: Salinity can also have an impact on a leaf's 

shape. The length, width, and perimeter of the leaves, 

which are characteristics related to leaf shape, can be 

extracted to learn more about the impact of salinity. 

Texture: The texture of the leaves can also be impacted 

by salinity. It can be helpful to extract texture-related 

variables including contrast, homogeneity, and energy 

to learn more about how salinity affects rice seedlings. 

Chlorophyll content: Salinity can impact the amount of 

chlorophyll in the leaves. Knowing how much 

chlorophyll is present can help researchers understand 

how salt affects rice seedlings' ability to 

photosynthesize. 

Stem thickness: Salinity may have an impact on how the 

stem grows. A useful indicator of how salinity affects 

the growth of the rice seedling is the stem thickness 

measurement. 

Root length: Salinity may also have an impact on how 

fast roots grow. The amount to which salinity has an 

impact on the growth of the rice seedling can be 

determined by measuring the length of the roots. 

Shoot length: Salinity can also have an impact on how 

the shoot grows. The length of the shoot can be used to 

measure the impact of salinity on the development of the 

rice seedling. 

In contrast to feature extraction, which includes 

choosing pertinent characteristics to meaningfully 

represent the raw data, implicit processing refers to 

learning from raw data without actively extracting 

features. Deep learning models do not require explicit 
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feature extraction or segmentation because the 

algorithm already takes care of these tasks. Due to their 

ability to learn complex and abstract features that are 

hard to extract using conventional feature extraction 

approaches, deep learning models have an advantage 

over feature-based methods. Therefore, using this 

method can make it much easier to identify and classify 

pests and illnesses that impact rice harvests. 

Convolutional neural network (CNN) models such as 

VGG16 and VGG19 that have already been trained can 

be reused, but they might need some modifications to 

better fit the job at hand.We shall train the CNN model 

with above mentioned extracted features which is 

discussed in Results section. 

 

3.2 VGG16 and VGG19 -Deep Learning Models for 

Salinity Prediction 

For predicting salinity in rice, deep learning approaches 

are advantageous because they can manage 

complicated, high-dimensional data, adapt to changing 

environmental conditions, and produce accurate 

predictions. Depending on the unique needs of the task 

and the features of the data, a variety of deep learning 

methods such as VGG16 and VGG19are employed to 

estimate the salinity of rice.  

We utilized the pre-trained VGG16 and VGG 19 models 

for the model architecture, which was trained on the 

image dataset. Karen Simonyan and Andrew Zisserman 

presented VGG in 2014 (Simonyan and Zisserman, 

2015), and the acronym stands for the visual 

geometrical group at Oxford. The model's key 

improvement was the use of compact 3x3 convolutional 

filters. Max-pooling was used across a 2-by-2-pixel 

window with a 2-pixel strive to perform the pooling. 

 

 

 
Figure 9: VGG Architecture 

 

In these models, many convolutional layers are often 

stacked, followed by activation functions like ReLU and 

layer pooling to reduce spatial dimensions. To generate 

the salinity score predictions, the final layers include 

fully linked layers and a softmax or sigmoid activation 

function. Using the training dataset, we have trained the 

VGG16 and VGG 19 models. By minimizing a loss 

function during training, the model learns to optimize 

internal parameters like weights and biases. The 

difference between the true salinity scores and the 

anticipated salinity scores is quantified by the loss 

function. The gradients are computed and the model 

parameters are updated in this case using adaptive 

optimization. The validation dataset was used to change 

the model's hyperparameters, including learning rate, 

batch size, and regularization methods. This helped to 

improve the model's performance and prevented 

overfitting. 

Here, the initial layer weights are fixed, and we have 

used Python programming in the Jupyter Notebook 

Framework to tune the model's final layers for our 

application, as illustrated in Figure 10. 

 

 
Fig 10. Sample piece of python code for training the model 

 

The algorithms forecast the salinity scores for fresh, 

unused samples of rice when training is finished and it 

has been fine-tuned. We run the trained model on an 

input image of a rice seedling, and it outputs a salinity 

score depending on the features that were learned. For 

fresh, unused rice seedling samples, this model is used 

to forecast the salinity scores. The trained model is then 

applied to the input image, and based on the ingested 

data, it produces a projected salinity score. Our input 

data for rice seedlings was slid over by several learnable 

filters or kernels in each layer of the VGG16 model, 

which produced feature maps by performing element-

wise multiplications and summations. Within our data, 

these layers were able to identify the regional trends and 

spatial correlations. In order to inject non-linearity into 

the network, we have introduced a Rectified Linear Unit 

(ReLU) as an activation function after each 

convolutional layer. This activation function maintains 

positive values while setting negative values to zero.By 

lowering their spatial dimensions, pooling layers down 

samples the feature maps produced by convolutional 

layers. CNNs frequently employ the max pooling 

strategy, which keeps the maximum value from each 

pooling window while discarding the others. Pooling 

gives spatial invariance to minor input data translations 

and aids in lowering computing complexity. 
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We have added more fully connected layers after 

multiple convolutional and pooling layers. These layers 

link all the neurons in the layer below to the layer above. 

The global patterns and relationships in the learned 

characteristics are captured by fully connected layers. In 

order to avoid over fitting, we additionally employ a 

regularization method called Dropout that is frequently 

employed in CNNs. During training, it randomly 

changes a portion of the input units to zero, which aids 

in lowering neuronal dependencies and enhancing the 

network's generalization capacity. The feature maps are 

flattened into a 1-dimensional vector before being 

passed to the fully connected layers as the output of the 

convolutional and pooling layers. This transforms the 

spatial data into a format that the fully connected layers 

may use. The final layer of the CNN architecture is the 

output layer, which produced the salinity stress score 

predictions with 97.50 % accuracy. 

 

4. Results And Discussions  

In our studies, we make use of pre-trained CNN models 

on the Imagenet dataset's one thousand classes. The 

initial and final layers of these models, including fully 

connected, convolutional, softmax, and classification 

output layers, are modified such that they are suitable 

for our intended use. Upper layers of pre-trained models 

often catch task-specific data whereas lower levels 

capture generic characteristics. The pre-trained model 

may be modified to new tasks by altering the higher 

layers, drawing on the information gained from the 

original work. Following this, once all models were 

trained with the identical set of hyperparameters. 

Training lasted 30 epochs, the number of which was 

established by comparing the models' training and 

validation results. Network training using the Adam 

optimizer and a learning rate of 0.0001. Several data 

partitioning strategies were used to assess the models' 

capacity to generalize to a larger testing set. We have 

used a 60/40 split between the dataset's training and 

validation sets.  

 

Table.3: CNN Modelling Parameters 
Model Input Size Parameters 

(in millions) 

F1-Score Accuracy 

VGG19 224 × 224 × 3 148,568,120 0.752 0.994 

VGG16 224 × 224 × 3 149,249,861 0.725 0.975 

 

Table 3 shows the modelling parameters such as input 

size used, parameters for each model, F1 score and 

Accuracy for VGG 16 and VGG 19. Performance 

metrics for pre-trained deep learning models over 10 

runs utilizing 60% of the data were provided in Table 3. 

The remaining 40% of the data was used to assess the 

accuracy of the models, and the results were tallied. 

 

The F1 score balances accuracy and recalls into a single 

number. Precision measures how many positive 

observations were successfully predicted as a 

percentage of all positive observations predicted, 

whereas recall measures how many positive 

observations were accurately predicted as a percentage 

of all observations in the actual class. The most common 

indicator of a classification model's effectiveness is its 

accuracy. With an imbalanced dataset, however, 

accuracy in classification tasks is accompanied by a 

higher F1 score. 

 

We could also observe the difference between the 

accuracy with feature extraction and without feature 

extraction as shown in Table 4. The CNN resulted in 

improved accuracy when it’s trained with extracted 

features. We make use of CNN models to find 

unexpected patterns in the data. CNNs are excellent at 

extracting distinguishing elements from images and 

have proven to be remarkably effective in spotting 

complicated patterns that are difficult to spot using 

traditional methods. 

 

Table 4: Accuracy of classification based on feature 

extraction is measured 

Classifier 

Accuracy (%) 

without features 

extraction 

Accuracy (%) 

with features 

extraction 

CNN-

VGG19) 
89.53 % 99.40 % 

 

The confusion matrices, shown in Figure 11, also reveal 

the models' best and worst performances.  

 
Fig 11: Confusion matrix 

Test accuracy measures the model's performance on 

unseen data. It indicates how well the model generalizes 

to new examples and predicts salinity levels accurately. 

Loss represents the error between the predicted salinity 

levels and the actual salinity levels in the training 

dataset. During training, the model tries to minimize the 

loss by adjusting its internal parameters. The Train, Test 

Accuracy, and Loss gained by the model are shown in 

Figure 12.Epochs refer to the number of times the model 

iterates over the entire training dataset during training. 

Each epoch consists of a forward pass (prediction), a 

backward pass (gradient calculation), and parameter 

updates.  During each epoch, the model's performance 

is evaluated on the training dataset. Training accuracy 
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measures how well the model predicts the salinity levels 

for the training examples. It indicates how well the 

model is fitting the training data. After training the 

model for the desired number of epochs, it is evaluated 

on the testing dataset.  

 

 
Fig 12: Train, Test Accuracy, and Loss 

 

Conclusion 

This study's goal was to automatically identify and 

classify rice seedlings based on salinity levels using 

photographs taken in the field. The usefulness of this 

strategy was effectively shown by using deep learning 

and image processing techniques. The photos were 

enhanced using a variety of image processing 

techniques, and the classification work was assessed 

using the two popular pre-trained deep learning models, 

VGG-16 and VGG-19. By training on a dataset of over 

6800 images of diverse rice seedling varieties, the 

VGG-19 model achieved an impressive average stress 

classification accuracy of 99.4%. The research also 

highlighted the crucial role of image processing 

techniques in enhancing the accuracy of deep learning 

models for salinity level prediction in rice. These 

techniques effectively extracted relevant features from 

rice seedling images, resulting in a substantial 

improvement in accuracy from 89.53% to 99.4%. 

The obtained results are encouraging, particularly due to 

the larger number of images considered in this work. 

However, there is still room for further improvement. 

As a future scope, the salinity stress classification 

performance of the VGG-16 model and VGG-19 can be 

compared with other state-of-the-art models such as 

ResNet, GoogLeNet, Inception-v3, and LeNet. The 

application of image processing techniques in 

conjunction with deep learning models offers a valuable 

tool for efficiently monitoring and managing salinity 

levels in rice cultivation, ultimately leading to improved 

crop yield and agricultural sustainability. This study 

bridges the gap between visual information derived 

from images and predictive models, empowering 

researchers and practitioners in their efforts to optimize 

rice production. 
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