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Abstract: One of the critical evolutionary operators in genetic algorithms (GAs) is crossover. Simulated Binary Crossover (SBX) is a 

commonly employed crossover operator in GA for real-valued encoding. Self-Adaptive SBX introduces a distribution index parameter 

that is updated in each generation, enabling the offspring solution distance to be independent of the parent solution distance. During 

evolution, the extinction of the fittest individuals is possible, and elitism is employed to prevent such extinction, thereby preserving the 

quality of the offspring. This research proposes GA with Self-Adaptive SBX-Elitism to enhance the performance of GA with Self-

Adaptive SBX. The performance of GA with Self-Adaptive SBX-Elitism and GA with Self-Adaptive SBX is tested on ten benchmark 

functions. The test results on ten populations in dimensions ten, twenty, and thirty indicate that GA with Self-Adaptive SBX-Elitism can 

reduce the average relative error by 99.99%, with an average computation time that is 19.40% faster compared to GA with Self-Adaptive 

SBX. GA with Self-Adaptive SBX-Elitism performs well across twenty populations in all test dimensions. 

Keywords: Elitism, Genetic Algorithm, Real-Valued Encoding, Self-Adaptive, Simulated Binary Crossover 

1. Introduction 

Global optimization problems are frequently encountered 

in everyday life. Complex global optimization problems 

cannot be effectively solved using conventional methods 

due to their lengthy computational time and various 

limitations [1]. Metaheuristics are efficient methods for 

solving complex optimization problems [2] that can rapidly 

generate solutions close to the global optimum and escape 

from local optima. Metaheuristic methods also incorporate 

learning strategies during the search process, making them 

more efficient in discovering the global optimum solution 

[3]. 

Genetic algorithms are one of the metaheuristic methods 

that adopt Darwin's theory of evolution, encompassing 

selection, crossover, and mutation. Encoding is the initial 

stage of genetic algorithms, which maps the phenotype 

space or solutions into the genotype space or code [4]. 

Binary encoding is the most commonly used encoding due 

to its simplicity. However, this encoding has limitations in 

the precision of the generated solutions, as the length of the 

binary string constrains it [5], and it requires longer 

computational time due to the need for solution variable 

conversion processes. Using real-valued encoding can 

provide a solution as it can work effectively without 

requiring conversion processes. 

Simulated Binary Crossover (SBX) is a crossover method 

in real-valued encoding that adapts the single-point 

crossover in binary encoding [6], [7]. SBX is parent-

centric, where two offspring values are generated around 

the parent values based on a probability distribution [8]. 

According to [9], SBX has been successfully applied to 

various optimization problems. In SBX, a parameter called 

the distribution index η controls the spread of offspring. 

This parameter is predetermined and remains constant 

during the solution search process. If the η value remains 

constant, the distance between offspring solutions is 

proportional to the distance between parent solutions. 

Thus, if two parent solutions are far apart, the offspring 

solutions will also be far apart, and vice versa [10]. It 

highlights the significance and criticality of determining 

this parameter. Deb, Sindhya, and Okabe [11] propose a 

self-adaptive procedure to update the value of η 

dynamically. Testing was conducted on three benchmark 

functions with one and two objective functions. The results 

showed that the proposed procedure outperformed the 

original SBX by finding better solutions. 

The weakness of GA lies in its inability to maintain good 

parents; no matter how good their parent chromosomes are, 

they cannot be preserved [12]. Elitism in genetic 

algorithms is often utilized to preserve the quality of 

individuals within the population. It is because, during 

evolution, the extinction of the best individuals is possible, 
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while they are expected to persist in each generation to 

yield better offspring. In the study conducted by Fanggidae 

et al. and Singh et al., the performance of GA and elitism 

GA was compared, and it was found that the use of elitism 

enhances the exploitation capability of GA in searching for 

optimal solutions [13], [14]. This research is focused on 

enhancing the performance of GA with Self-Adaptive SBX 

by incorporating an Elitism stage, referred to as GA with 

Self-Adaptive SBX-Elitism. Another objective is 

determining the optimal population size for GA with Self-

Adaptive SBX-Elitism. Testing on ten benchmark 

functions was conducted to address these research 

objectives. The test results demonstrate that GA with Self-

Adaptive SBX-Elitism can effectively reduce relative 

error, save computational costs, and perform well with a 

population of twenty. 

2. Method 

2.1. Benchmark Function 

Ten benchmark functions are used in the testing [15], [16]. 

The global optimal solutions are denoted by 𝑥∗, where 𝐷 

represents the dimension of the solution, and 𝑓(𝑥∗) 

represents the fitness of the global optimal solution. The 

specific details of the benchmark functions are presented in 

Table 1. 

Table 1. Minimization problem benchmark functions 

Function name Model Search space 

Global 

optimum 

x* f(x*) 

Ackley Function 𝑓(𝑥) = −20𝑒
√𝐷−1∑ 𝑥𝑖

2𝐷
𝑖=1

−0.02

− 𝑒𝐷
−1 ∑ 𝑥𝑖

2 cos(2𝜋𝑥𝑖)
𝐷
𝑖=1  

+ 20 + 𝑒 

-35 ≤ xi ≤ 35 (0,..,0) 0 

Alpine Function 𝑓(𝑥) =∑|𝑥𝑖sin(𝑥𝑖) + 0.1𝑥𝑖|

𝐷

𝑖=1

 -10 ≤ xi ≤ 10 (0,..,0) 0 

Exponential Function 𝑓(𝑥) = −exp (−0.5∑𝑥𝑖
2

𝐷

𝑖=1

) -1 ≤ xi ≤ 1 (0,..,0) -1 

Griewank Function 𝑓(𝑥) =∑
𝑥𝑖
2

4000

𝐷

𝑖=1

−∏cos (
𝑥𝑖

√𝑖
)

𝐷

𝑖=1

+ 1 
-100 ≤ xi ≤ 

100 
(0,..,0) 0 

Rastrign Function 𝑓(𝑥) = 10𝐷 +∑[𝑥𝑖
2 − 10 cos(𝜋𝑥𝑖)]

𝐷

𝑖=1

 
-5.12 ≤ xi ≤ 

5.12 
(0,..,0) 0 

Rosenbrock Function 𝑓(𝑥) = ∑[ 100(𝑥𝑖+1  −  𝑥𝑖
2 )2 + (𝑥𝑖 − 1)

2]

𝐷−1

𝑖=1

 -5 ≤ xi ≤ 10 (1,..,1) 0 

Salomon Function 𝑓(𝑥) = 1 − cos

(

 2𝜋√∑𝑥𝑖
2

𝐷

𝑖=1
)

 + 0.1√∑𝑥𝑖
2

𝐷

𝑖=1

 
-100 ≤ xi ≤ 

100 
(0,..,0) 0 

Schaffer F6 Function 𝑓(𝑥) = ∑ 0.5 +
sin2(√𝑥𝑖

2 + 𝑥𝑖+1
2 )−0.5

[1 + 0.001(𝑥𝑖
2 + 𝑥𝑖+1

2 )]2

𝐷−1

𝑖=1

 
-100 ≤ xi ≤ 

100 
(0,..,0) 0 

Schwefel 2.4 Function 𝑓(𝑥) =∑(𝑥𝑖 − 1)
2 + (𝑥𝑖 + 𝑥𝑖

2)2
𝐷

𝑖=1

 0 ≤ xi ≤ 10 (1,..,1) 0 

Sphere Function 𝑓(𝑥) =∑𝑥𝑖
2

𝐷

𝑖=1

 
-5.12 ≤ xi ≤ 

5.12 
(0,..,0) 0 
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2.2. Selection 

The selection operator chooses two chromosomes from the 

population to be parents in the crossover stage [17], [18]. 

A chromosome can be selected as a parent in the selection 

process based on its fitness. Chromosomes with better 

fitness are more likely to be selected as parents [19], [20]. 

Equations (1) to (3) describe that each chromosome has a 

selection probability 𝑝𝑘 and cumulative probability 𝑞𝑘, 

where 𝑓𝑘 is the fitness of the 𝑘-th chromosome, 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 

is the population size, 𝑘 = 1,2, … , 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒, and 𝐹 is the 

total fitness. 

𝐹 = ∑ 𝑓𝑘
𝑝𝑜𝑝_𝑠𝑖𝑧𝑒
𝑘=1  (1) 

𝑝𝑘 =
𝑓𝑘

𝐹
 (2) 

𝑞𝑘 = ∑ 𝑝𝑗
𝑘
𝑗=1  (3) 

If 𝑟𝑘 satisfies the condition 𝑞𝑘−1 ≤ 𝑟𝑘 < 𝑞𝑘, then the 𝑘-th 

individual is selected. Here, 𝑟𝑘 is a uniformly distributed 

random number between [0,1] generated as many times as 

the population size. 

2.3. Crossover 

The selected parents are subsequently mated to produce 

offspring as replacements for their parents. 

The SBX algorithm [19]: 

− Generate random numbers uniformly distributed in the 

range [0,1]. 

− Perform crossover if the randomly generated number is 

smaller than the crossover probability, 𝑝𝑐. 

− The spreading factor 𝛽 is a non-negative variable that 

determines the distance between the offspring 

generated and the parent. The rules derived from the 

value of 𝛽 are as follows: 

1. 𝛽 = 1, the distance between offspring and parent is 

zero; in other words, the offspring generated is identical to 

the parent. 

2. 𝛽 > 1, the distance between offspring and parent is 

distant. 

3. 𝛽 < 1, the distance between offspring and parent is 

close. 

The value of 𝛽 can be computed using (4). 

𝛽(𝑢) = {
(2𝑢)

1

𝜂+1 , 𝑢 ≤ 0.5

[
1

2(1−𝑢)
]

1

𝜂+1
, 𝑢 > 0.5

 (4) 

Where 𝑢 is a random uniform [0,1], and 𝜂 is a non-

negative constant distribution index. 

− The value of 𝛽 generates two offspring using (5), 

where 𝐶1 is offspring 1, 𝐶2 is offspring 2, 𝑃1 is 

parent 1, and 𝑃2 is parent 2. The generated offspring 

chromosomes replace the parental chromosomes. 

𝐶1 =
1

2
[(1 + 𝛽)𝑃1 + (1 − 𝛽)𝑃2]

𝐶2 =
1

2
[(1 − 𝛽)𝑃1 + (1 + 𝛽)𝑃2]

 (5) 

In Self-Adaptive SBX, the value of 𝜂 is dynamically 

adjusted by comparing offspring quality to their parent 

[11], as shown in (6). 

 

𝑖𝑓 𝑚𝑒𝑎𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶1), 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶2)) 𝑤𝑜𝑟𝑠𝑒 𝑡ℎ𝑎𝑛 

     𝑚𝑒𝑎𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃1), 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃2))

                 𝜂 = 𝛼(1 + 𝜂) − 1
𝑒𝑙𝑠𝑒

                 𝜂 =
1+𝜂

𝛼
− 1

 (6) 

Where 𝛼 is a factor satisfying 𝛼 > 1, the value of 𝜂 is 

bounded within the range [0, 50]. 

2.4. Mutation 

The mutation alters the value of a single gene within a 

chromosome in a population. Mutation facilitates the 

population to achieve diversity more rapidly, thereby 

preventing premature convergence. In the case of random 

mutation, gene values are altered by introducing a random 

number. The random mutation algorithm: 

− Generate random uniform numbers in the range 

[0,1]. 

− If the randomly generated number is smaller than 

the mutation probability 𝑝𝑚, then randomly select 

one gene within the chromosome for mutation. 

− Perform mutation using (7). 

 𝑔′ = 𝑔 + 𝑟(𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) (7) 

Where 𝑔𝑚𝑎𝑥  is the maximum value of the gene in the 

population, 𝑔𝑚𝑖𝑛 is the minimum value of the gene in 

the population, r is a random number uniformly 

distributed within the range [-0.1, 0.1] [21], 𝑔 

represents an allele of the selected gene, and 𝑔′ is a 

novel allele for the selected gene. The illustration of 

mutations can be observed in Figure 1. 

 

Fig. 1.  Illustration of mutations 
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2.5. Elitism 

The evaluation process can result in losing the best 

chromosome within a population. Elitism is a process 

where the best chromosome is retained in the population. 

Classical elitism duplicates the best chromosomes from the 

previous generation's population to replace the worst 

chromosomes in the new population [22]. Algorithm 1 

illustrates the implementation of Self-Adaptive SBX-

Elitism in a genetic algorithm. 

 

Algorithm 1. Genetic Algorithm with Self-Adaptive SBX-Elitism 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

max_generation = 1000 

convergence_threshold = 0.9 

Generate population 

Evaluation 

Find best_fitness {chromosome with the best fitness in one generation} 

Calculate population_convergence 

global_fitness = best_fitness {chromosome with the best fitness from all generations} 

While (population_convergence <= convergence_threshold && generation <= max_generation) 

For i = 1 to population 

 Selection {selecting two chromosomes} 

 Crossover 

End for 

For i = 1 to population 

 Mutation 

End for 

Elitism {replace worst_fitness with best_fitness} 

Evaluation 

Find best_fitness 

Calculate population_convergence 

 If global_fitness worse than best_fitness 

  global_fitness = best_fitness 

 End if 

generation++ 

End while 

solution = global_fitness 

 

 

3. Result and Discussion 

The genetic algorithm with Self-Adaptive SBX and Self-

Adaptive SBX-Elitism was implemented in C# on a 

computer with the configuration of AMD Ryzen 3 3250U, 

CPU @2.6GHz - Up to 3.5GHz, 8 GB RAM, and a 64-bit 

operating system. The testing was conducted on ten 

benchmark functions, as presented in Table 1. The 

predetermined parameters were 𝜂 initial = 2 and 𝛼 = 2 [11], 

𝑝𝑐 = 0.9, 𝑝𝑚 = 0.2, and 𝑡𝑟𝑖𝑎𝑙 = 100. The testing results 

included the average best, mean, and execution time. 

Tables 2 and 3 display the testing results for the benchmark 

functions across ten populations. Additionally, testing was 

performed on populations of twenty and thirty for the 
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benchmark functions, and the results are presented in Table 

4 and Figures 2 to 4. 

The results of testing on ten populations, as shown in 

Tables 2 and 3, indicate that GA with Self-Adaptive SBX-

Elitism successfully reduced the average relative error by 

99.99% with an average computation time that is 19.40% 

faster compared to GA with Self-Adaptive SBX. It proves 

that elitism in GA with Self-Adaptive SBX-Elitism can 

provide solutions that approach the global optimum. Figure 

2 demonstrates that GA with Self-Adaptive SBX-Elitism, 

when tested on functions 5, 6, and 9, encountered difficulty 

finding solutions within populations of sizes 20 and 30. 

 

Table 2. Testing of minimization benchmark functions across ten populations 

Functi

on 

GA with Self-Adaptive SBX GA with Self-Adaptive SBX-Elitism 

Worst Best Mean Time Worst Best Mean Time 

D = 10         

F1 7.12 0.00 3.11 49.64 0.77 0.00 0.37 44.39 

F2 49.96 0.00 8.74 47.94 0.13 0.00 0.00 33.93 

F3 -0.86 -1.00 -0.99 43.46 -1.00 -1.00 -1.00 35.59 

F4 11.98 0.00 2.22 50.32 0.42 0.00 0.05 36.80 

F5 171.23 0.00 72.68 48.44 11.02 0.00 0.84 35.27 

F6 
3359956.5

0 
9320.22 

132764.3

5 
42.57 

8.85 
7.78 8.55 36.69 

F7 13.38 0.00 4.60 46.88 0.60 0.00 0.29 35.53 

F8 4.49 0.00 3.34 58.57 2.63 0.00 0.99 44.22 

F9 10341.27 7.50 4887.45 71.05 0.03 0.00 0.00 59.23 

F10 141.06 0.00 11.37 43.16 0.00 0.00 0.00 20.51 

D = 20         

F1 6.68 0.00 2.88 62.92 3.13 0.00 0.79 56.72 

F2 75.98 0.00 15.50 63.01 0.54 0.00 0.09 54.11 

F3 -0.90 -1.00 -0.99 50.44 -1.00 -1.00 -1.00 52.02 

F4 20.83 0.00 3.29 66.32 0.44 0.00 0.02 44.38 

F5 577.57 0.00 148.60 60.36 38.87 0.00 12.92 57.29 

F6 
3039372.3

0 

25700.7

4 

249437.0

4 
52.72 

18.99 
17.95 18.67 51.80 

F7 16.61 0.00 6.89 54.22 1.30 0.00 0.94 51.03 

F8 9.48 0.00 7.16 71.93 6.47 0.00 3.64 64.31 

F9 30712.66 5551.60 10831.78 95.56 1.14 0.00 0.17 92.75 

F10 524.29 0.00 28.73 53.31 0.00 0.00 0.00 32.18 

D = 30         

F1 6.75 0.00 3.00 78.83 2.98 0.00 1.33 70.54 

F2 85.29 0.00 21.46 90.21 1.70 0.00 0.36 67.77 
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F3 -0.88 -1.00 -0.98 73.26 -1.00 -1.00 -1.00 59.34 

F4 23.77 0.00 4.26 92.35 0.18 0.00 0.00 47.69 

F5 679.44 0.00 210.32 75.36 83.98 0.00 29.11 67.72 

F6 
11695568.

96 

39505.5

6 

703246.6

6 
63.21 28.98 28.30 28.73 61.56 

F7 27.48 0.00 7.94 67.44 2.80 0.00 1.54 58.89 

F8 14.42 0.00 9.66 105.09 11.28 0.00 7.12 87.54 

F9 
35339.22 10013.2

1 
14999.14 167.33 10.90 0.04 2.18 127.50 

F10 688.87 0.00 40.24 75.49 0.00 0.00 0.00 42.08 

Table 3. Summary of benchmark function testing across ten populations 

Dimension 

Mean of 

global optimum 

for ten benchmark 

functions 

GA with Self-Adaptive SBX GA with Self-Adaptive SBX-Elitism 

Average 
Relative 

error 

Average 
Relative 

error Mean Time Mean Time 

10 -0.10 13775.69 50.20 137757.90 1.01 38.22 11.10 

20 -0.10 26048.09 63.08 260481.90 3.62 55.66 37.20 

30 -0.10 71854.17 88.86 718542.70 6.94 69.06 70.40 

Average -0.10 37225.98 67.38 372260.83 3.86 54.31 39.57 

Table 4. Testing of minimization problem benchmark functions using GA with Self-Adaptive SBX-Elitism 

Function Solution with population = 20 Solution with population = 30 

 Worst Best Mean Time Worst Best Mean Time 

D = 10         

F1 0.72 0.00 0.39 118.71 0.87 0.00 0.38 187.87 

F2 0.04 0.00 0.00 100.24 0.15 0.00 0.03 186.59 

F3 -1.00 -1.00 -1.00 95.09 -0.98 -1.00 -1.00 173.99 

F4 0.25 0.00 0.03 103.48 0.30 0.00 0.01 188.88 

F5 9.35 0.00 1.74 105.43 9.95 0.00 2.71 188.34 

F6 9.00 8.41 8.95 98.45 9.26 8.80 9.00 173.83 

F7 0.60 0.00 0.29 95.15 0.83 0.00 0.26 169.81 

F8 2.03 0.00 0.05 106.64 0.00 0.00 0.00 187.33 

F9 0.68 0.00 0.06 132.15 12.33 0.01 7.71 215.77 

F10 0.00 0.00 0.00 95.20 0.00 0.00 0.00 169.18 

D = 20         

F1 1.57 0.00 0.66 134.13 1.26 0.00 0.54 232.72 

F2 0.38 0.00 0.08 130.25 0.46 0.00 0.13 226.62 

F3 -1.00 -1.00 -1.00 121.58 -1.00 -1.00 -1.00 208.38 

F4 0.95 0.00 0.02 137.83 0.00 0.00 0.00 239.57 
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F5 39.44 0.00 10.84 134.52 29.21 0.00 7.44 234.66 

F6 19.00 18.77 18.98 125.09 19.28 18.95 19.00 208.65 

F7 1.50 0.00 0.66 120.41 1.90 0.00 0.58 202.26 

F8 6.45 0.00 0.39 147.61 7.47 0.00 0.14 239.59 

F9 3.34 0.23 1.13 192.47 21.63 5.22 18.01 291.67 

F10 0.00 0.00 0.00 119.02 0.00 0.00 0.00 206.18 

D = 30         

F1 1.89 0.00 0.87 169.26 1.50 0.00 0.64 281.15 

F2 2.50 0.00 0.29 169.23 1.20 0.00 0.32 276.24 

F3 -1.00 -1.00 -1.00 144.60 -1.00 -1.00 -1.00 246.32 

F4 1.10 0.00 0.01 174.34 0.00 0.00 0.00 290.83 

F5 76.88 0.00 22.78 167.19 90.70 0.00 16.55 285.24 

F6 29.00 28.75 28.99 147.98 29.00 28.99 29.00 250.14 

F7 2.50 0.00 1.20 146.42 2.81 0.00 0.85 242.53 

F8 5.34 0.00 0.18 181.99 0.00 0.00 0.00 298.09 

F9 10.91 1.41 4.60 239.50 36.19 17.47 28.39 366.23 

F10 0.00 0.00 0.00 138.72 0.00 0.00 0.00 243.17 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 2.  Mean of minimization problem benchmark functions using GA with Self-Adaptive SBX-Elitism: (a) Dimension 10; 

(b) Dimension 20; (c) Dimension 30 
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However, in a population of size 10, GA with Self-

Adaptive SBX-Elitism faced challenges in finding 

solutions for functions 5, 6, and 8. Testing was conducted 

on populations of sizes 20 and 30 for dimensions 10, 20, 

and 30 to obtain the optimal population size. Figures 3 and 

4 show that GA with Self-Adaptive SBX-Elitism 

performed well with a population size of 20 across all 

tested dimensions, while the computation time ranked 

second. 

 

Fig. 3.  Average of mean minimization problem benchmark functions using GA with Self-Adaptive SBX-Elitism in 

dimensions 10, 20, and 30 

 

Fig. 4.  Average computation time of ten minimization problem benchmark functions using GA with Self-Adaptive SBX-

Elitism in dimensions 10, 20, and 30 

4. Conclusion 

This study tested the genetic algorithm with Self-Adaptive 

SBX and Self-Adaptive SBX-Elitism on ten benchmark 

functions. The test parameters were set as 𝜂 initial = 2, 𝛼 = 

2, 𝑝𝑐 = 0.9, 𝑝𝑚 = 0.2, and 𝑡𝑟𝑖𝑎𝑙 = 100. The testing results 

across ten populations in dimensions 10, 20, and 30 

demonstrated that GA with Self-Adaptive SBX-Elitism 

was able to reduce the average relative error by 99.99% 

with an average computation time that was 19.40% faster 

compared to using GA with Self-Adaptive SBX. GA with 

Self-Adaptive SBX-Elitism performed well with a 

population size of 20 across all tested dimensions and 

ranked second in computation time. GA with Self-

Adaptive SBX-Elitism ensures convergence toward the 

global optimum. For further research, the performance of 

the GA algorithm with Self-Adaptive SBX-Elitism on 

functions 5, 6, and 9 can be improved through experiments 

involving the utilization of different selection operators 

and elitism strategies. 
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