

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 174

New Approach of Self-Adaptive Simulated Binary Crossover-Elitism in

Genetic Algorithms for Numerical Function Optimization

Adriana Fanggidae*1, Muhammad Iqrom Catur Prasetyo2, Yulianto Triwahyuadi Polly3, Meiton Boru4

Submitted: 06/12/2023 Revised: 17/01/2024 Accepted: 27/01/2024

Abstract: One of the critical evolutionary operators in genetic algorithms (GAs) is crossover. Simulated Binary Crossover (SBX) is a

commonly employed crossover operator in GA for real-valued encoding. Self-Adaptive SBX introduces a distribution index parameter

that is updated in each generation, enabling the offspring solution distance to be independent of the parent solution distance. During

evolution, the extinction of the fittest individuals is possible, and elitism is employed to prevent such extinction, thereby preserving the

quality of the offspring. This research proposes GA with Self-Adaptive SBX-Elitism to enhance the performance of GA with Self-

Adaptive SBX. The performance of GA with Self-Adaptive SBX-Elitism and GA with Self-Adaptive SBX is tested on ten benchmark

functions. The test results on ten populations in dimensions ten, twenty, and thirty indicate that GA with Self-Adaptive SBX-Elitism can

reduce the average relative error by 99.99%, with an average computation time that is 19.40% faster compared to GA with Self-Adaptive

SBX. GA with Self-Adaptive SBX-Elitism performs well across twenty populations in all test dimensions.

Keywords: Elitism, Genetic Algorithm, Real-Valued Encoding, Self-Adaptive, Simulated Binary Crossover

1. Introduction

Global optimization problems are frequently encountered

in everyday life. Complex global optimization problems

cannot be effectively solved using conventional methods

due to their lengthy computational time and various

limitations [1]. Metaheuristics are efficient methods for

solving complex optimization problems [2] that can rapidly

generate solutions close to the global optimum and escape

from local optima. Metaheuristic methods also incorporate

learning strategies during the search process, making them

more efficient in discovering the global optimum solution

[3].

Genetic algorithms are one of the metaheuristic methods

that adopt Darwin's theory of evolution, encompassing

selection, crossover, and mutation. Encoding is the initial

stage of genetic algorithms, which maps the phenotype

space or solutions into the genotype space or code [4].

Binary encoding is the most commonly used encoding due

to its simplicity. However, this encoding has limitations in

the precision of the generated solutions, as the length of the

binary string constrains it [5], and it requires longer

computational time due to the need for solution variable

conversion processes. Using real-valued encoding can

provide a solution as it can work effectively without

requiring conversion processes.

Simulated Binary Crossover (SBX) is a crossover method

in real-valued encoding that adapts the single-point

crossover in binary encoding [6], [7]. SBX is parent-

centric, where two offspring values are generated around

the parent values based on a probability distribution [8].

According to [9], SBX has been successfully applied to

various optimization problems. In SBX, a parameter called

the distribution index η controls the spread of offspring.

This parameter is predetermined and remains constant

during the solution search process. If the η value remains

constant, the distance between offspring solutions is

proportional to the distance between parent solutions.

Thus, if two parent solutions are far apart, the offspring

solutions will also be far apart, and vice versa [10]. It

highlights the significance and criticality of determining

this parameter. Deb, Sindhya, and Okabe [11] propose a

self-adaptive procedure to update the value of η

dynamically. Testing was conducted on three benchmark

functions with one and two objective functions. The results

showed that the proposed procedure outperformed the

original SBX by finding better solutions.

The weakness of GA lies in its inability to maintain good

parents; no matter how good their parent chromosomes are,

they cannot be preserved [12]. Elitism in genetic

algorithms is often utilized to preserve the quality of

individuals within the population. It is because, during

evolution, the extinction of the best individuals is possible,

1 Department of Computer Science, Faculty of Science and Engineering,

Universitas Nusa Cendana, Indonesia

ORCID ID : 0009-0002-8664-0190
2 Department of Computer Science, Faculty of Science and Engineering,

Universitas Nusa Cendana, Indonesia

ORCID ID : 0009-0005-8375-4266
3 Department of Computer Science, Faculty of Science and Engineering,

Universitas Nusa Cendana, Indonesia

ORCID ID : 0009-0008-7844-4580
4 Department of Computer Science, Faculty of Science and Engineering,

Universitas Nusa Cendana, Indonesia

ORCID ID : 0000-0001-9059-3863

* Corresponding Author Email: adrianafanggidae@staf.undana.ac.id

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 175

while they are expected to persist in each generation to

yield better offspring. In the study conducted by Fanggidae

et al. and Singh et al., the performance of GA and elitism

GA was compared, and it was found that the use of elitism

enhances the exploitation capability of GA in searching for

optimal solutions [13], [14]. This research is focused on

enhancing the performance of GA with Self-Adaptive SBX

by incorporating an Elitism stage, referred to as GA with

Self-Adaptive SBX-Elitism. Another objective is

determining the optimal population size for GA with Self-

Adaptive SBX-Elitism. Testing on ten benchmark

functions was conducted to address these research

objectives. The test results demonstrate that GA with Self-

Adaptive SBX-Elitism can effectively reduce relative

error, save computational costs, and perform well with a

population of twenty.

2. Method

2.1. Benchmark Function

Ten benchmark functions are used in the testing [15], [16].

The global optimal solutions are denoted by 𝑥∗, where 𝐷

represents the dimension of the solution, and 𝑓(𝑥∗)

represents the fitness of the global optimal solution. The

specific details of the benchmark functions are presented in

Table 1.

Table 1. Minimization problem benchmark functions

Function name Model Search space

Global

optimum

x* f(x*)

Ackley Function 𝑓(𝑥) = −20𝑒
√𝐷−1∑ 𝑥𝑖

2𝐷
𝑖=1

−0.02

− 𝑒𝐷
−1 ∑ 𝑥𝑖

2 cos(2𝜋𝑥𝑖)
𝐷
𝑖=1

+ 20 + 𝑒

-35 ≤ xi ≤ 35 (0,..,0) 0

Alpine Function 𝑓(𝑥) =∑|𝑥𝑖sin(𝑥𝑖) + 0.1𝑥𝑖|

𝐷

𝑖=1

 -10 ≤ xi ≤ 10 (0,..,0) 0

Exponential Function 𝑓(𝑥) = −exp (−0.5∑𝑥𝑖
2

𝐷

𝑖=1

) -1 ≤ xi ≤ 1 (0,..,0) -1

Griewank Function 𝑓(𝑥) =∑
𝑥𝑖
2

4000

𝐷

𝑖=1

−∏cos (
𝑥𝑖

√𝑖
)

𝐷

𝑖=1

+ 1
-100 ≤ xi ≤

100
(0,..,0) 0

Rastrign Function 𝑓(𝑥) = 10𝐷 +∑[𝑥𝑖
2 − 10 cos(𝜋𝑥𝑖)]

𝐷

𝑖=1

-5.12 ≤ xi ≤

5.12
(0,..,0) 0

Rosenbrock Function 𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝐷−1

𝑖=1

 -5 ≤ xi ≤ 10 (1,..,1) 0

Salomon Function 𝑓(𝑥) = 1 − cos

(

 2𝜋√∑𝑥𝑖
2

𝐷

𝑖=1
)

 + 0.1√∑𝑥𝑖
2

𝐷

𝑖=1

-100 ≤ xi ≤

100
(0,..,0) 0

Schaffer F6 Function 𝑓(𝑥) = ∑ 0.5 +
sin2(√𝑥𝑖

2 + 𝑥𝑖+1
2)−0.5

[1 + 0.001(𝑥𝑖
2 + 𝑥𝑖+1

2)]2

𝐷−1

𝑖=1

-100 ≤ xi ≤

100
(0,..,0) 0

Schwefel 2.4 Function 𝑓(𝑥) =∑(𝑥𝑖 − 1)
2 + (𝑥𝑖 + 𝑥𝑖

2)2
𝐷

𝑖=1

 0 ≤ xi ≤ 10 (1,..,1) 0

Sphere Function 𝑓(𝑥) =∑𝑥𝑖
2

𝐷

𝑖=1

-5.12 ≤ xi ≤

5.12
(0,..,0) 0

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 176

2.2. Selection

The selection operator chooses two chromosomes from the

population to be parents in the crossover stage [17], [18].

A chromosome can be selected as a parent in the selection

process based on its fitness. Chromosomes with better

fitness are more likely to be selected as parents [19], [20].

Equations (1) to (3) describe that each chromosome has a

selection probability 𝑝𝑘 and cumulative probability 𝑞𝑘,

where 𝑓𝑘 is the fitness of the 𝑘-th chromosome, 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒

is the population size, 𝑘 = 1,2, … , 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒, and 𝐹 is the

total fitness.

𝐹 = ∑ 𝑓𝑘
𝑝𝑜𝑝_𝑠𝑖𝑧𝑒
𝑘=1 (1)

𝑝𝑘 =
𝑓𝑘

𝐹
 (2)

𝑞𝑘 = ∑ 𝑝𝑗
𝑘
𝑗=1 (3)

If 𝑟𝑘 satisfies the condition 𝑞𝑘−1 ≤ 𝑟𝑘 < 𝑞𝑘, then the 𝑘-th

individual is selected. Here, 𝑟𝑘 is a uniformly distributed

random number between [0,1] generated as many times as

the population size.

2.3. Crossover

The selected parents are subsequently mated to produce

offspring as replacements for their parents.

The SBX algorithm [19]:

− Generate random numbers uniformly distributed in the

range [0,1].

− Perform crossover if the randomly generated number is

smaller than the crossover probability, 𝑝𝑐.

− The spreading factor 𝛽 is a non-negative variable that

determines the distance between the offspring

generated and the parent. The rules derived from the

value of 𝛽 are as follows:

1. 𝛽 = 1, the distance between offspring and parent is

zero; in other words, the offspring generated is identical to

the parent.

2. 𝛽 > 1, the distance between offspring and parent is

distant.

3. 𝛽 < 1, the distance between offspring and parent is

close.

The value of 𝛽 can be computed using (4).

𝛽(𝑢) = {
(2𝑢)

1

𝜂+1 , 𝑢 ≤ 0.5

[
1

2(1−𝑢)
]

1

𝜂+1
, 𝑢 > 0.5

 (4)

Where 𝑢 is a random uniform [0,1], and 𝜂 is a non-

negative constant distribution index.

− The value of 𝛽 generates two offspring using (5),

where 𝐶1 is offspring 1, 𝐶2 is offspring 2, 𝑃1 is

parent 1, and 𝑃2 is parent 2. The generated offspring

chromosomes replace the parental chromosomes.

𝐶1 =
1

2
[(1 + 𝛽)𝑃1 + (1 − 𝛽)𝑃2]

𝐶2 =
1

2
[(1 − 𝛽)𝑃1 + (1 + 𝛽)𝑃2]

 (5)

In Self-Adaptive SBX, the value of 𝜂 is dynamically

adjusted by comparing offspring quality to their parent

[11], as shown in (6).

𝑖𝑓 𝑚𝑒𝑎𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶1), 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐶2)) 𝑤𝑜𝑟𝑠𝑒 𝑡ℎ𝑎𝑛

 𝑚𝑒𝑎𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃1), 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑃2))

 𝜂 = 𝛼(1 + 𝜂) − 1
𝑒𝑙𝑠𝑒

 𝜂 =
1+𝜂

𝛼
− 1

 (6)

Where 𝛼 is a factor satisfying 𝛼 > 1, the value of 𝜂 is

bounded within the range [0, 50].

2.4. Mutation

The mutation alters the value of a single gene within a

chromosome in a population. Mutation facilitates the

population to achieve diversity more rapidly, thereby

preventing premature convergence. In the case of random

mutation, gene values are altered by introducing a random

number. The random mutation algorithm:

− Generate random uniform numbers in the range

[0,1].

− If the randomly generated number is smaller than

the mutation probability 𝑝𝑚, then randomly select

one gene within the chromosome for mutation.

− Perform mutation using (7).

 𝑔′ = 𝑔 + 𝑟(𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) (7)

Where 𝑔𝑚𝑎𝑥 is the maximum value of the gene in the

population, 𝑔𝑚𝑖𝑛 is the minimum value of the gene in

the population, r is a random number uniformly

distributed within the range [-0.1, 0.1] [21], 𝑔

represents an allele of the selected gene, and 𝑔′ is a

novel allele for the selected gene. The illustration of

mutations can be observed in Figure 1.

Fig. 1. Illustration of mutations

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 177

2.5. Elitism

The evaluation process can result in losing the best

chromosome within a population. Elitism is a process

where the best chromosome is retained in the population.

Classical elitism duplicates the best chromosomes from the

previous generation's population to replace the worst

chromosomes in the new population [22]. Algorithm 1

illustrates the implementation of Self-Adaptive SBX-

Elitism in a genetic algorithm.

Algorithm 1. Genetic Algorithm with Self-Adaptive SBX-Elitism

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

max_generation = 1000

convergence_threshold = 0.9

Generate population

Evaluation

Find best_fitness {chromosome with the best fitness in one generation}

Calculate population_convergence

global_fitness = best_fitness {chromosome with the best fitness from all generations}

While (population_convergence <= convergence_threshold && generation <= max_generation)

For i = 1 to population

 Selection {selecting two chromosomes}

 Crossover

End for

For i = 1 to population

 Mutation

End for

Elitism {replace worst_fitness with best_fitness}

Evaluation

Find best_fitness

Calculate population_convergence

 If global_fitness worse than best_fitness

 global_fitness = best_fitness

 End if

generation++

End while

solution = global_fitness

3. Result and Discussion

The genetic algorithm with Self-Adaptive SBX and Self-

Adaptive SBX-Elitism was implemented in C# on a

computer with the configuration of AMD Ryzen 3 3250U,

CPU @2.6GHz - Up to 3.5GHz, 8 GB RAM, and a 64-bit

operating system. The testing was conducted on ten

benchmark functions, as presented in Table 1. The

predetermined parameters were 𝜂 initial = 2 and 𝛼 = 2 [11],

𝑝𝑐 = 0.9, 𝑝𝑚 = 0.2, and 𝑡𝑟𝑖𝑎𝑙 = 100. The testing results

included the average best, mean, and execution time.

Tables 2 and 3 display the testing results for the benchmark

functions across ten populations. Additionally, testing was

performed on populations of twenty and thirty for the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 178

benchmark functions, and the results are presented in Table

4 and Figures 2 to 4.

The results of testing on ten populations, as shown in

Tables 2 and 3, indicate that GA with Self-Adaptive SBX-

Elitism successfully reduced the average relative error by

99.99% with an average computation time that is 19.40%

faster compared to GA with Self-Adaptive SBX. It proves

that elitism in GA with Self-Adaptive SBX-Elitism can

provide solutions that approach the global optimum. Figure

2 demonstrates that GA with Self-Adaptive SBX-Elitism,

when tested on functions 5, 6, and 9, encountered difficulty

finding solutions within populations of sizes 20 and 30.

Table 2. Testing of minimization benchmark functions across ten populations

Functi

on

GA with Self-Adaptive SBX GA with Self-Adaptive SBX-Elitism

Worst Best Mean Time Worst Best Mean Time

D = 10

F1 7.12 0.00 3.11 49.64 0.77 0.00 0.37 44.39

F2 49.96 0.00 8.74 47.94 0.13 0.00 0.00 33.93

F3 -0.86 -1.00 -0.99 43.46 -1.00 -1.00 -1.00 35.59

F4 11.98 0.00 2.22 50.32 0.42 0.00 0.05 36.80

F5 171.23 0.00 72.68 48.44 11.02 0.00 0.84 35.27

F6
3359956.5

0
9320.22

132764.3

5
42.57

8.85
7.78 8.55 36.69

F7 13.38 0.00 4.60 46.88 0.60 0.00 0.29 35.53

F8 4.49 0.00 3.34 58.57 2.63 0.00 0.99 44.22

F9 10341.27 7.50 4887.45 71.05 0.03 0.00 0.00 59.23

F10 141.06 0.00 11.37 43.16 0.00 0.00 0.00 20.51

D = 20

F1 6.68 0.00 2.88 62.92 3.13 0.00 0.79 56.72

F2 75.98 0.00 15.50 63.01 0.54 0.00 0.09 54.11

F3 -0.90 -1.00 -0.99 50.44 -1.00 -1.00 -1.00 52.02

F4 20.83 0.00 3.29 66.32 0.44 0.00 0.02 44.38

F5 577.57 0.00 148.60 60.36 38.87 0.00 12.92 57.29

F6
3039372.3

0

25700.7

4

249437.0

4
52.72

18.99
17.95 18.67 51.80

F7 16.61 0.00 6.89 54.22 1.30 0.00 0.94 51.03

F8 9.48 0.00 7.16 71.93 6.47 0.00 3.64 64.31

F9 30712.66 5551.60 10831.78 95.56 1.14 0.00 0.17 92.75

F10 524.29 0.00 28.73 53.31 0.00 0.00 0.00 32.18

D = 30

F1 6.75 0.00 3.00 78.83 2.98 0.00 1.33 70.54

F2 85.29 0.00 21.46 90.21 1.70 0.00 0.36 67.77

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 179

F3 -0.88 -1.00 -0.98 73.26 -1.00 -1.00 -1.00 59.34

F4 23.77 0.00 4.26 92.35 0.18 0.00 0.00 47.69

F5 679.44 0.00 210.32 75.36 83.98 0.00 29.11 67.72

F6
11695568.

96

39505.5

6

703246.6

6
63.21 28.98 28.30 28.73 61.56

F7 27.48 0.00 7.94 67.44 2.80 0.00 1.54 58.89

F8 14.42 0.00 9.66 105.09 11.28 0.00 7.12 87.54

F9
35339.22 10013.2

1
14999.14 167.33 10.90 0.04 2.18 127.50

F10 688.87 0.00 40.24 75.49 0.00 0.00 0.00 42.08

Table 3. Summary of benchmark function testing across ten populations

Dimension

Mean of

global optimum

for ten benchmark

functions

GA with Self-Adaptive SBX GA with Self-Adaptive SBX-Elitism

Average
Relative

error

Average
Relative

error Mean Time Mean Time

10 -0.10 13775.69 50.20 137757.90 1.01 38.22 11.10

20 -0.10 26048.09 63.08 260481.90 3.62 55.66 37.20

30 -0.10 71854.17 88.86 718542.70 6.94 69.06 70.40

Average -0.10 37225.98 67.38 372260.83 3.86 54.31 39.57

Table 4. Testing of minimization problem benchmark functions using GA with Self-Adaptive SBX-Elitism

Function Solution with population = 20 Solution with population = 30

 Worst Best Mean Time Worst Best Mean Time

D = 10

F1 0.72 0.00 0.39 118.71 0.87 0.00 0.38 187.87

F2 0.04 0.00 0.00 100.24 0.15 0.00 0.03 186.59

F3 -1.00 -1.00 -1.00 95.09 -0.98 -1.00 -1.00 173.99

F4 0.25 0.00 0.03 103.48 0.30 0.00 0.01 188.88

F5 9.35 0.00 1.74 105.43 9.95 0.00 2.71 188.34

F6 9.00 8.41 8.95 98.45 9.26 8.80 9.00 173.83

F7 0.60 0.00 0.29 95.15 0.83 0.00 0.26 169.81

F8 2.03 0.00 0.05 106.64 0.00 0.00 0.00 187.33

F9 0.68 0.00 0.06 132.15 12.33 0.01 7.71 215.77

F10 0.00 0.00 0.00 95.20 0.00 0.00 0.00 169.18

D = 20

F1 1.57 0.00 0.66 134.13 1.26 0.00 0.54 232.72

F2 0.38 0.00 0.08 130.25 0.46 0.00 0.13 226.62

F3 -1.00 -1.00 -1.00 121.58 -1.00 -1.00 -1.00 208.38

F4 0.95 0.00 0.02 137.83 0.00 0.00 0.00 239.57

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 180

F5 39.44 0.00 10.84 134.52 29.21 0.00 7.44 234.66

F6 19.00 18.77 18.98 125.09 19.28 18.95 19.00 208.65

F7 1.50 0.00 0.66 120.41 1.90 0.00 0.58 202.26

F8 6.45 0.00 0.39 147.61 7.47 0.00 0.14 239.59

F9 3.34 0.23 1.13 192.47 21.63 5.22 18.01 291.67

F10 0.00 0.00 0.00 119.02 0.00 0.00 0.00 206.18

D = 30

F1 1.89 0.00 0.87 169.26 1.50 0.00 0.64 281.15

F2 2.50 0.00 0.29 169.23 1.20 0.00 0.32 276.24

F3 -1.00 -1.00 -1.00 144.60 -1.00 -1.00 -1.00 246.32

F4 1.10 0.00 0.01 174.34 0.00 0.00 0.00 290.83

F5 76.88 0.00 22.78 167.19 90.70 0.00 16.55 285.24

F6 29.00 28.75 28.99 147.98 29.00 28.99 29.00 250.14

F7 2.50 0.00 1.20 146.42 2.81 0.00 0.85 242.53

F8 5.34 0.00 0.18 181.99 0.00 0.00 0.00 298.09

F9 10.91 1.41 4.60 239.50 36.19 17.47 28.39 366.23

F10 0.00 0.00 0.00 138.72 0.00 0.00 0.00 243.17

(a)

(b)

(c)

Fig. 2. Mean of minimization problem benchmark functions using GA with Self-Adaptive SBX-Elitism: (a) Dimension 10;

(b) Dimension 20; (c) Dimension 30

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 181

However, in a population of size 10, GA with Self-

Adaptive SBX-Elitism faced challenges in finding

solutions for functions 5, 6, and 8. Testing was conducted

on populations of sizes 20 and 30 for dimensions 10, 20,

and 30 to obtain the optimal population size. Figures 3 and

4 show that GA with Self-Adaptive SBX-Elitism

performed well with a population size of 20 across all

tested dimensions, while the computation time ranked

second.

Fig. 3. Average of mean minimization problem benchmark functions using GA with Self-Adaptive SBX-Elitism in

dimensions 10, 20, and 30

Fig. 4. Average computation time of ten minimization problem benchmark functions using GA with Self-Adaptive SBX-

Elitism in dimensions 10, 20, and 30

4. Conclusion

This study tested the genetic algorithm with Self-Adaptive

SBX and Self-Adaptive SBX-Elitism on ten benchmark

functions. The test parameters were set as 𝜂 initial = 2, 𝛼 =

2, 𝑝𝑐 = 0.9, 𝑝𝑚 = 0.2, and 𝑡𝑟𝑖𝑎𝑙 = 100. The testing results

across ten populations in dimensions 10, 20, and 30

demonstrated that GA with Self-Adaptive SBX-Elitism

was able to reduce the average relative error by 99.99%

with an average computation time that was 19.40% faster

compared to using GA with Self-Adaptive SBX. GA with

Self-Adaptive SBX-Elitism performed well with a

population size of 20 across all tested dimensions and

ranked second in computation time. GA with Self-

Adaptive SBX-Elitism ensures convergence toward the

global optimum. For further research, the performance of

the GA algorithm with Self-Adaptive SBX-Elitism on

functions 5, 6, and 9 can be improved through experiments

involving the utilization of different selection operators

and elitism strategies.

Acknowledgements

The authors would like to thank the Department of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 182

Computer Science, Faculty of Science and Engineering,

Universitas Nusa Cendana for funding this publication.

Author contributions

The contributions of each author are described as follows:

"conceptualization and methodology, Fanggidae, Prasetyo,

and Polly; implementation of methodology, Prasetyo; data

validation, Fanggidae and Prasetyo; formal analysis,

Fanggidae, Polly, and Boru; investigation, Fanggidae,

Prasetyo, Polly, and Boru; writing—original draft

preparation, Fanggidae; writing—review and editing,

Fanggidae, Polly and Boru; supervision, Fanggidae, Polly

and Boru".

Conflicts of interest

The authors declare there are no conflict interest in this

work.

References

[1] H. Wu, Z. Ni, and L. Ni, “Solving Roots of Complex

Functional Equation Based on Improved Ant Colony

Algorithm,” in 2010 International Conference on E-

Product E-Service and E-Entertainment, IEEE, Nov.

2010, pp. 1–4. doi: 10.1109/ICEEE.2010.5661471.

[2] I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on

optimization metaheuristics,” Inf. Sci. (Ny)., vol. 237,

pp. 82–117, Jul. 2013, doi:

10.1016/j.ins.2013.02.041.

[3] Z. Beheshti and S. M. H. Shamsuddin, “A review of

population-based meta-heuristic algorithm,” Int. J.

Adv. Soft Comput. its Appl., vol. 5, no. 1, pp. 1–35,

2013.

[4] T. T. Tanyimboh, “Redundant binary codes in genetic

algorithms: multi-objective design optimization of

water distribution networks,” Water Supply, vol. 21,

no. 1, pp. 444–457, Feb. 2021, doi:

10.2166/ws.2020.329.

[5] M. V. Pathan, S. Patsias, and V. L. Tagarielli, “A

real-coded genetic algorithm for optimizing the

damping response of composite laminates,” Comput.

Struct., vol. 198, pp. 51–60, Mar. 2018, doi:

10.1016/j.compstruc.2018.01.005.

[6] K. Deb and R. Bhushan Agrawal, “Simulated Binary

Crossover for Continuous Search Space,” Complex

Syst., vol. 9, pp. 115–148, 1995.

[7] K. Deb and A. Kumar, “Real-coded Genetic

Algorithms with Simulated Binary Crossover :

Studies on Multimodal and Multiobjective

Problems,” Complex Syst., vol. 9, pp. 431–454, 1995.

[8] J. Chacon and C. Segura, “Analysis and Enhancement

of Simulated Binary Crossover,” in 2018 IEEE

Congress on Evolutionary Computation (CEC),

IEEE, Jul. 2018, pp. 1–8. doi:

10.1109/CEC.2018.8477746.

[9] S. Gunasekaran and M. W. Iruthayarajan, “Contour

optimization of suspension insulators using real

coded genetic algorithm with simulated binary

crossover,” in 2013 International Conference on

Pattern Recognition, Informatics and Mobile

Engineering, IEEE, Feb. 2013, pp. 360–364. doi:

10.1109/ICPRIME.2013.6496501.

[10] L. Pan, W. Xu, L. Li, C. He, and R. Cheng,

“Adaptive simulated binary crossover for rotated

multi-objective optimization,” Swarm Evol. Comput.,

vol. 60, p. 100759, Feb. 2021, doi:

10.1016/j.swevo.2020.100759.

[11] K. Deb, K. Sindhya, and T. Okabe, “Self-adaptive

simulated binary crossover for real-parameter

optimization,” in Proceedings of the 9th annual

conference on Genetic and evolutionary computation,

New York, NY, USA: ACM, Jul. 2007, pp. 1187–

1194. doi: 10.1145/1276958.1277190.

[12] S. S. Pabboju and T. Adilakshmi, “An Improved

Approach for Scheduling in Cloud Using GA and

PSO,” J. Theor. Appl. Inf. Technol., vol. 100, no. 18,

pp. 5298–5307, 2022.

[13] A. Fanggidae and E. S. Y. Pandie, “Elitisme

algoritma genetika pada fungsi nonlinear dua

peubah,” J. Komput. dan Inform., vol. 8, no. 2, pp.

145–148, Oct. 2020, doi: 10.35508/jicon.v8i2.2894.

[14] V. K. Singh and V. Sharma, “Elitist Genetic

Algorithm Based Energy Balanced Routing Strategy

to Prolong Lifetime of Wireless Sensor Networks,”

Chinese J. Eng., vol. 2014, pp. 1–6, Mar. 2014, doi:

10.1155/2014/437625.

[15] M. Jamil and X. S. Yang, “A literature survey of

benchmark functions for global optimisation

problems,” Int. J. Math. Model. Numer. Optim., vol.

4, no. 2, p. 150, 2013, doi:

10.1504/IJMMNO.2013.055204.

[16] S. Surjanovic and D. Bingham, “Virtual Library of

Simulation Experiments: Test Functions and

Datasets.” Accessed: Mar. 22, 2023. [Online].

Available: http://www.sfu.ca/~ssurjano

[17] B. Farah, M. Awad, and A. Rutrot, “Prediction for

Non-Revenue and Demand of Urban Water Using

Hybrid Models of Neural Networks and Genetic

Algorithms,” J. Theor. Appl. Inf. Technol., vol. 100,

no. 21, pp. 6537–6551, 2022.

[18] Y. P. Makimaa and R. Sundarmani, “Genetic

Algorithm Based Energy Efficient Cluster Head

Selection and Cluster Formation and Establishment

for Hierarchical Wireless Sensor Networks,” Int. J.

Intell. Syst. Appl. Eng., vol. 10, no. 4, pp. 173–178,

2022.

[19] E. Wirsansky, Hands-on genetic algorithms with

Python : applying genetic algorithms to solve real-

world deep learning and artificial intelligence

problems. Birmingham: Packt Publishing Ltd, 2020.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 174–183 | 183

[20] S. Kadam and T. Srinivasarao, “ElitGA: Elitism

Based Genetic Algorithm for Evaluation of Mutation

Testing on Heterogeneous Dataset,” Int. J. Intell.

Syst. Appl. Eng., vol. 11, no. 4s, pp. 509–516, 2023.

[21] D. David, T. Widayanti, and M. Q. Khairuzzahman,

“Performance Comparison of Cat Swarm

Optimization and Genetic Algorithm on Optimizing

Functions,” in 2019 1st International Conference on

Cybernetics and Intelligent System (ICORIS),

Denpasar, Indonesia: IEEE, Aug. 2019, pp. 35–39.

doi: 10.1109/ICORIS.2019.8874901.

[22] Z. Avdagic, A. Smajevic, S. Omanovic, and I. Besic,

“Path route layout design optimization using genetic

algorithm: based on control mechanisms for on-line

crossover intersection positions and bit targeted

mutation,” J. Ambient Intell. Humaniz. Comput., vol.

13, no. 2, pp. 835–847, Feb. 2022, doi:

10.1007/s12652-021-02937-z.

