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Abstract: Over the last few years, vehicular traffic path recommendation has become one of the important problems in operating road 

traffic networks. The shortest path recommendation across origin destination (OD) pairs is the opportunity which requires researcher’s 

attention to extract traffic parameters like journey time, traffic speed, and traffic flow thereby improving the path recommendation for 

different time periods of the day. Determining conglomerate spatio-temporal correlation of traffic data to precisely predict traffic parameters 

is crucial for traffic path recommendation. For different time periods of a day, there is a demand for traffic situation aware spatio-temporal 

path recommendations. However, previous path studies focus on one-by-one traffic parameters capturing spatial dependencies ignoring 

temporal correlation with other traffic parameters for different time instances of the day.  The paper suggests a time series-based traffic 

data extraction model. Selected traffic data is formulated as time series-based graph-structured (TSBG) traffic data to accommodate spatial 

correlations as well as temporal dependencies. The proposed model learns the edge weight predictions using average and mean square 

values. Simulation results demonstrate the ability to identify all possible paths and recommend optimal ones thereby affirming the 

effectiveness of TSBG algorithm. This paper introduces architecture for historical graph-based traffic data representation, selected traffic 

parameter-based path recommendation, aggregation of selected parameters that significantly improve the accuracy of extracting all possible 

paths and simultaneously recommending the shortest path for OD pair. The proposed method achieves better results compared to traditional 

forecasting methods when tested rigorously. 

Keywords: Dynamic traffic path, Time series, Graph - structured traffic data, Shortest path, Feature aggregation  

1. Introduction 

Recommending the shortest path, in terms of journey 

time, vehicle speed, and traffic flow is a matter of high 

interest for an intelligent transportation system (ITS). It 

also has practical applications at the global level, for 

example assisting the traveler in deciding the path of their 

interest. The recommendation of the fastest route 

generally depends on the traffic parameters during various 

time periods of the day like traffic restriction of a road 

segment, congestion across road segments, and 

uncontrolled accident situations. The nature of the path 

recommendation system is dynamic, as there may exist 

multiple paths across origin destination (OD) pairs. In 

order to predict the cost of each of the paths at a specific 

time instance of a day, the task of traffic collecting 

parameter values during previous times instances is 

required.  Evaluating multiple paths based on selected 

traffic parameters such as journey time, traffic flow, 

traffic density, the distance between OD pair locations, 

speed across adjacent road segments, etc. are important 

for path recommendation. Researchers have tried several 

techniques from time series analysis to recent deep 

learning  algorithms for  vehicular  traffic parameter  

prediction  and one  of  path recommendations for future 

time instances of a day. A newly designed recommendation 

system for mobility-on-demand (MOD) with dynamic 

vehicle routing constraints. The proposed framework was 

evaluated on a 7 by 7 grid network to analyze the impact of 

additional routing impulsion on the recommendation 

algorithm. Testing with the Manhattan data set with a rating 

of 1012 destinations reveals better performance than the 

benchmark of random alternatives. Service disruption of 

request cancellation or pickup-drop off location change 

limits the performance of MOD services [1]. Increasing 

numbers of vehicles have brought many challenges in terms 

of traffic jams, accidents, and frequent infrastructure 

maintenance activities. To overcome the limitations of self-

attention mechanisms of deep time series models, a novel 

deep learning algorithm titled Locality-aware spatio-

temporal joint Transformer elaborate spatio-temporal 

attention. The model was tested on three real-world data sets 

namely England, METR-LA, and PEMS-BAY and 

demonstrated that it achieves better performance than 

forecasting benchmarks [2]. For path planning safety 

problems via geometric constraints of obstacle avoidance, 

roadside constraints, and slide slip angle of wheels are 

elaborated. The concept of a certificate for distance safety 

and multiple object avoidance are incorporated. The 

proposed algorithm was to study usefulness [3]. Traffic path 

recommendation can be considered a modification to the 
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NP-complete problem of traveling salesmen. Existing 

research studies neglect road traffic network integration 

and optimized route recommendation. Instead gives 

priority to stop selection, vehicle scheduling etc. The 

approach of a mixed integer programming scheduling 

scheme proposes a probing algorithm. Such an algorithm 

computes the time lag when recommending a path for 

flexible routes of OD pairs. The simulation of a real-world 

taxi data set shows an effective increase in the delivery 

ratio and reduced waiting time of passengers [4]. The 

accuracy of traffic parameters is important for path 

recommendation. The least squares support vector 

machine (LSSVM) has likelihood for traffic parameter 

prediction. However, limitations in terms of 

understanding meta-heuristic and slowness to achieve 

global optimal solutions. The experimental results of 

LSSVM combined with the fruit fly optimization 

algorithm (FOA) perform better than other single LSSVM 

models [5]. Journey time for OD pairs is correlated with 

incidents across routes and hence varies for different time 

periods of a day. The correlation analysis of principal 

component analysis (PCA) and LASSO-based time 

prediction models was demonstrated for the Pittsburgh 

region. For both prediction models, random forest 

prediction is promising with a root-mean-squared error of 

16.6% and 17.0% each [6]. In order to test hybrid model 

performance, the experimental finding demonstrates that 

under different situations, the hybrid empirical mode 

decomposition - autoregressive integrated moving 

average (EMD–ARIMA) model performs better [7]. Most 

such kinds of data-driven techniques attend to the problem 

of traffic parameter forecasting based on the incoming and 

outgoing flow of vehicles. For path recommendation, 

there exists a recurrent neural network-based non-

deterministic multi-objective algorithm, for future safety 

concerning criminal activities across routes [8]. Different 

travelers can have different priorities about the journey at 

different time periods of a day. Challenges for vehicular 

data processing and corresponding solutions based on 

graph optimization are significant as graph-based data 

processing schemes support machine learning techniques 

for connected vehicular data. Priorities such as fuel 

efficiency, wear and tear of the vehicle, road 

infrastructure utilization, and travel cost can lead to 

different route selections for OD journeys [9 -10]. In such 

a scenario, it is better to recommend a path based on 

analysis of traffic parameters present at adjacent time 

instances. The SAFE PATH problem is a bi-objective 

shortest path problem of urban navigation between source 

and destination location. Experimental finding justifies 

algorithm efficacy and practical applicability. Such 

recommendations may enhance persuasiveness [11].  

Above mentioned techniques do not respond to multiple 

routes. The shortest path recommendation is important for 

ITS, logistics, and dispatching problems. In contrast to those 

elaborated techniques, the objectives of this paper are to 

focus on recommending the shortest path which is predicted 

by extracted traffic parameters namely journey time, speed 

across road segments, flow, and fuse the three parameters 

using the L2 norm as it  eliminates biased recommendation. 

Construction of the recommended path is as follows. Starting 

from the origin location, the next adjacent road segment is 

predicted based on historical values of traffic parameters and 

by using a neural network for learning patterns of identified 

road segments and the impact of these three traffic 

parameters during different time periods of a day. The final 

path recommendation is performed using Dijkstra's shortest 

path algorithm. 

The main contribution of the proposed work is summarized 

as follows:  

● Modeling of traffic network as a time series-based graph 

(TSBG) for previous time periods.  

● Edge cost in terms of traffic parameters is calculated 

using training of graph-based traffic networks.  

● Aggregating traffic parameters using L1 and L2 norms 

and thereby predicting edge costs. 

● In order to lessen the training and optimal computation 

time, we introduced a path construction mechanism 

using adjacent nodes and hop by hop.  

● The experimental result on an open-source data set 

shows the proposed TSBG algorithm outran the 

traditional algorithms.  

The following is an overview of this paper's structure: The 

second section offers a comprehensive review of the relevant 

literature for traffic parameter forecasting and traffic path 

recommendation. In section three, the methodology and 

algorithm for path recommendation. The fourth section 

provides results through a real-world data set. The fifth 

section presents the analysis of the results and addresses 

research questions. The paper concludes with a conclusion 

and future work in section six.  

2. Literature Review 

This section provides the review of related literature for 

forecasting of traffic parameter values and traffic path 

recommendation.  

Traffic parameter forecasting: The short-term duration 

traffic data prediction is challenging because of its spatio-

temporal nature. A survey comprising traffic parameter 

values prediction using state-of-the-art, deep learning 

methods, publicly available datasets along with their 

performances with respect to various methods. The classical 
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method includes statistical, traditional machine learning 

methods whereas deep learning methods refer to spatio-

temporal modeling. Prediction performance statistics of 

flow, speed, and travel time prediction for various 

prediction windows are listed out. Studies also highlight 

the limitations that data-intensive solutions are easy to 

implement but for non-recurrent and abnormal situations, 

obtaining data is challenging. Other factors which add to 

the limitation include knowledge fusion, long-term 

prediction, multi-source data, real-time predictions, model 

interoperability, benchmark standardization, processing 

high dimensional data, optimal network architecture, and 

prediction under perturbation. Yin et al [12]. Zhenzhen and 

Gao pointed out that the journey time has become dynamic 

and random, impacting penalty actions on traveling 

activities. Arrival and departure time-based path 

recommendation leads to a 3-parameter log-normal 

distribution. Beijing road network case studies demonstrate 

the effectiveness [13]. Duan et al. presented that the path is 

composed of the linking of road segments. The traffic 

detectors at the road intersection are useful to estimate link 

travel time distributions (TTDs). Three algorithms namely 

K-means, expectation maximization (EM) and C-shortest 

path are used to estimate link travel time.  The 

experimental results prove that if 70% of the intersections 

are equipped with traffic detectors, the link TTDs obtained 

from the proposed model is excellent [14].  Zhou et al. 

identified the challenge of road network-wide speed 

prediction. The speed diagram and allocation sequence of 

detectors along with spatial–temporal dependencies are 

important. The results demonstrate that the spatial-

temporal deep tensor neural networks deliver good 

prediction accuracy during peak as well as off-peak periods 

[15]. Li et al. have employed a public vehicle service 

(PVS), as a promising mechanism for managing and 

sharing large-capacity vehicles. But system efficiency was 

impacted by passengers waiting time and a high percentage 

of low-speed road utilization. Simulation of the closest 

meeting point algorithm shows that the passenger walking 

and the fast-route scheduling strategy improves the total 

vehicle travel distance by 34%  [16]. Fang et al. aimed at 

fine-grained traffic prediction and a graph attention 

network (GAT) to predict traffic parameters at road 

intersections. The proposed methods outperform support 

vector regression (SVR), LSTM, and temporal graph 

convolutional network (T-GCN) for different time 

intervals. Root mean square error (RMSE) and mean 

absolute error (MAE) are used as evaluation matrices. 

Further modeling improvements with the help of traffic 

conditions such as public events and holidays need to be 

considered [17]. Gamboa and Borges suggested that 

temporal dependencies of time series lead to difficulty in 

analyzing different classes of problems. The reviewed 

papers suggest that models of deep learning can contribute a 

lot in the field of time series analysis and forecasting [18]. 

With the help of a landmark model, Zhaosheng Yang et al. 

present a traffic flow prediction model. Based on similarity 

searches of time series, mean absolute percentage error 

(MAPE) of the proposed method reduces to 32.8%, which is 

superior to the other methods under consideration [19]. Li et 

al. discuss an integrated study of temporal connection among 

the traffic time series which are observed at different days 

and point out advantages of principal component analysis. 

The review also covers data related problems of traffic time 

series analysis [20]. Hu et al. address the issue of complex 

problem of path planning in terrain areas. A technique of the 

Voronoi diagram is used for path planning.  As an 

advancement, the author also suggests extension in the form 

of velocity-based planning [21]. Isinkaye et al. discussed the 

importance of the recommendation system, as there exist new 

opportunities for retrieving traffic information. Authors 

explained the characteristics of traditional recommendation 

techniques, strengths, and challenges with diverse kinds of 

hybridization strategies. The highlights of the paper includes, 

the importance of various feedback for information 

collection, recommendation techniques, and evaluation 

metrics of recommendation algorithms [22]. Wang et al. 

suggested that the collaborative filtering approach is 

commonly used by many recommendation systems. A recent 

appealing method of collaborative topic regression (CTR) is 

based on learning from two sources of information [23]. Zhao 

et al. noted the observation that because of the cost 

difference, travelers may change their routes dynamically. A 

method of mapping dynamic routing behavior to day-to-day 

assignment problems is incorporated. It has been observed 

that the traveler’s estimated and expected costs vary 

dynamically according to rerouting weights. The findings of 

the experiments can be extended to the evolution patterns of 

transportation [24].  

Traffic path recommendation: Bohan et al. suggested that 

for supply chain management, a conglomerate road network 

is a challenge for a path recommendation. Proposed 

prediction of optimized route path recommendation based on 

trusted models considers historical, current, and predicted 

traffic conditions [28]. Xu et al. implemented representation 

of road traffic formulation to collect location-based relations 

of traffic parameters at different time instances. The 

discriminating features of traffic data are extracted using 

graph convolutional networks. This approach is about small-

scale space, time, and feature filtering with the help of tucker 

decomposition to reduce computational workload [29].  

Papadopoulos et al. proposed an approach to improve the 

path recommendation. Customized routing instructions are 

provided based on a person's preferences and ensure that the 

recommendation satisfies the budget balance of the total 
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driving cost. Maximum likelihood estimation-based 

clusters are used to separate drivers into various clusters 

[30]. Jiexia Ye et al. has pointed out that in the last couple 

of years, different deep learning architectures consisting of 

deep learning techniques have been proposed to solve 

spatial-temporal dependencies among traffic parameters. 

To utilize the traffic network efficiently, it’s better to 

formulate the same with mathematical graphs. Guidelines 

about formulating graphs from different traffic data sets 

along with shared deep learning techniques have been 

presented. Future directions in terms of applications, 

techniques, and external factors are also mentioned [31].  

However, most of the OD path recommendation models 

tend to avoid the topological formation of vehicular traffic 

networks. Many researchers modeled vehicular traffic 

formulation as a passive graph, which fails to collect the 

dynamic flavor. Such an act limits the traffic prediction 

performance. To address this issue TSBG representation is 

proposed. As there exists road segment interconnection of 

citywide transportation networks, an effective path 

recommendation model should consider traffic parameters 

of earlier time duration associated with adjacent road 

segments. TGSB path recommendation algorithms explore 

routes between vertices, starting at the origin and 

traversing through adjacency relationships, hop by hop 

until the destination has been reached. First, traffic data 

collection locations have been identified. Based on these 

locations, a road traffic network graph is then constructed, 

where nodes are traffic data collection locations and edges 

are road segments across those locations. Inspired by 

graph-structured traffic data representation, two different 

types of edge weights are predicted using L1 and L2 

regularization of traffic parameters, the average and the 

mean square values of traffic parameters respectively. 

State-of-the-art path algorithms are used for multiple 

traffic path identification. For various periods, path 

recommendation across OD pairs is formulated as a 

ranking problem. 

3. Methodology 

In this section, we introduce the path recommendation 

problem and algorithm of our model.  

3.1 Problem Definition 

The path recommendation system aims to extract multiple 

paths across an OD pair by predicting future traffic data 

(speed, journey time, flow) based on previous period 

observations. We define a time-series based weighted 

representation of the road network. G = (V, E, W), where 

V is traffic data collection locations. E is a set of edges 

connecting to adjacent locations. W ∈ R N X N is a 

weighted adjacency matrix of G. Edge weight is predicted 

based on the average (L1 norm) and the mean square (L2 

norm) of extracted traffic parameters. As in Equation 1, edge 

weight prediction aims to learn prediction function f for 

predicting the values for Tp future time  Ý ∈ R, Tp X N X W 

form previously known periods ∈  R Tp X N X W and Graph 

G  

[𝑋1, 𝑋2, . . . . 𝑋𝑇ℎ ∶  𝐺 ] → 𝑓(. )[𝑌𝑇ℎ + 1,. . . 𝑌𝑇ℎ+𝑇𝑝]  (1)  

Vehicular traffic path recommendation at a particular time 

instance of a day is a specific problem of time series. The 

collection of traffic parameters for every 15 minutes, leads to 

the sequence of traffic parameter data which is represented 

by a graph. a TSBG model selects a traffic parameter based 

on forward feature selection and predicts routes based on 

each selected parameter. The model further evaluates shortest 

path recommendation using edge weights based on the 

average (L1 norm) and the mean square (L2 norm) of 

selected traffic parameters. To recommend an optimal path at 

a particular time instance, a TSBG model is proposed as in 

Figure 1. 

 

Fig 1. Path recommendation model framework of TSBG 

3.2 Historical Graph based information 

Representation of selected traffic features using graph-

structured formulation helped to learn location-based and 

time-front properties of traffic data. This in turn leads to 

identifying multiple paths across OD pairs and 

recommending the shortest path with the support of a 

standard algorithm. Forecasting of traffic parameter values is 

a location-aware services problem. Based on the training of 

previous few time intervals traffic data, prediction of 

subsequent time intervals data is possible using L1 and L2 

regularization. The model proposes a road network 

formulation using a graph. Vehicular traffic data collection 

locations are constructed as nodes of a graph and edge 

models road segments connecting nodes. Edges are 

constructed if there exists a connection between pairs of 

nodes. 

Figure 2 (a) represents a simple graph-structured 

representation of the road network. Let Gt ∈ Rn is an 

observation vector of the number of locations. For a specific 

time instance t, each element of the observation vector 

records the historical traffic parameter for a location. Gt is 

adjacent to other data collection locations. Therefore, the 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(13s), 721–734 |  725 

 

 

traffic parameters value of the road segment is represented 

as non-directed graph edge weight W i j , as shown in 

Figure 2 (b). Gt = (Vt, Et, W), is an observation vector of 

traffic data collection locations at time instant t, E is a set 

of edges to connect adjacent locations; W is the weighted 

matrix for Gt [27]. 

 

 

(a)      (b)  

Fig 2. (a) Simple Graph structured representation of road 

network (b) An observation vector 

3.3 Traffic parameter selection  

For various periods of a day, for the TSBG model, the 

information about the OD pair is requested. Three 

fundamental traffic parameters speed, journey time, and 

traffic flow across various nodes of OD pair are selected 

from an open-source data set. Traffic data collection 

records traffic details over stipulated time intervals. 

Selected features should be processed for feature 

aggregation. As values of parameters vary for different 

times, corresponding edge weights W i j of a graph also 

vary. 

3.4 Traffic parameter aggregation 

Edge weights are predicted using L1 and L2 norms of 

traffic parameters over the previous few time instances. 

The difference between the predicted traffic parameter 

value and corresponding ground truth values should be 

minimal. For each of the selected features, there exists a 

time series data. The set of selected parameters describes 

the nature of a traffic system. For example, flow at instant 

tn, speed of vehicle, and journey time required to traverse 

across road segments at that time instant tn. 

The set of time steps describes discrete values representing 

finite time intervals. For example, 15 minutes, 96 instances 

for 24 hours of a day [26]. One way to aggregate parameter 

time series is to merge multiple times series. Such an 

approach is suitable for spatio-temporal aggregation [25]. 

The proposed TSBG model uses averaging and the mean 

square of traffic parameters at adjacent time instances and 

thereby aggregation of traffic parameters. Traffic 

parameters of a road segment are affected by recent, daily, 

and weekly traffic patterns whereas the degree of influence 

may be different. Therefore, for aggregation of traffic 

parameters,  the L1 norm of Equation (2)  is used,  which 

is the sum of absolute traffic parameter values. Edge weight 

is calculated as follows  

|𝑊𝑖 𝑗 | =  |𝐽𝑇|  + |𝐹𝑙𝑜𝑤|  + |𝑆𝑝𝑒𝑒𝑑|  (2) 

The L1 norm gives edge weight using an average of traffic 

parameters. As another method of traffic parameter 

aggregation, for the same dataset, the L2 norm as shown in 

Equation (3) is used to offset bias of all of the traffic 

parameter values.  

|𝑊𝑖𝑗|  =  √(𝐽𝑇)2   + (𝐹𝑙𝑜𝑤)2  +  (𝑆𝑝𝑒𝑒𝑑) 2 (3) 

3.5 Path recommendation  

There exist multiple paths for OD pairs. All the nodes of the 

graph and corresponding edges are processed hop by hop to 

compute multiple paths of the OD pair. Suppose a TSBG, Ĝ 

= { G(1),G(2)...G(T)} where G(t) = (V(t), E(t)), t = 1,2,...T is a 

graph-structured representation of a road network. Traffic 

parameter information based on previous single period may 

not be sufficient for future traffic parameter value prediction 

and path recommendation. There is a need to analyze a larger 

duration traffic parameter data to predict edge weights across 

OD pair and time series structure. Let’s consider two nodes 

’i’ and ’j’ in a route. There exist multiple edges between 

nodes ’i’ and ’j’ along with traffic data collection nodes. Each 

edge has its own journey time, speed, traffic flow, and 

distance as shown in Figure 3. 

 

Fig 3. Predicted edge cost of different traffic parameters 

across edges of two nodes ‘i’ and ‘j’ 

For example, A5 - A45 is an OD pair of a data set. There exist 

multiple paths going through different data-capturing 

locations. For each of the adjacent locations traffic 

parameters namely speed, journey time, and traffic flow are 

extracted along with distance. Edge weight as assigned as per 

L2 norms of selected parameters. The nodes of the 

recommended shortest path are A5 - A453 - A50 - A46 - A45.  

Algorithm 1 shows TSBG formulation. Graphs were 

processed to calculate the distance of reachable nodes from a 

source node. 
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Algorithm 1: Time Series Based Graph (TSBG) 

formulation 

 

Input Data: Time series based traffic data, time instance, 

data collection location, M previous time instances 

Result: TSBG representing spatial and time instance 

context at data collection location  

1. i ← 1  // Current time instance 

2. while (i < M)  // ∀ previous training time instances 

3. Identify each edge (u,v) of the graph at a specific   time 

instance of data collection location,  

∀(u,v)ϵE,||Wuv|| = Sqrt (JT2+Speed2+Flow2+Length2) 

//  Calculate edge weight based on predicted traffic data 

specific time instance  

4.  i ← i + 1 

5. end while // Edge weights of previous time instances for 

training  

 

Algorithm 2 describes the reachable node computation 

starting from the source location. For calculating hop-by-

hop reachable nodes, a queue data structure is used. 

enqueue(x): operation puts a traffic information collection 

location ’x’ at the end of the queue and dequeue (x): returns 

the first data collection location of the queue. For each of 

the data collection locations, adjacent data collection 

locations are identified and inserted in a queue. Traffic 

parameters are selected across edges for time instances. 

Auto regressive integrated moving average (ARMA), 

vector auto-regression, (VAR), support vector regression 

(SVR), bayesian and k-nearest neighbor (KNN) bench-

marking methods along with Dijkstra’s shortest path 

technique are used to compare the performance of 

recommendation.  

 

Algorithm 2: Training procedure and multiple path 

computation of TSBG 

 

Input Data: Time series based traffic data related graph G 

(V,E), time instance, OD pair 

Result: Return Optimal path across OD pair 

Data: ∀ nodes t, reachable from origin, distance[t] ← the 

weight of the smallest path from origin to node t. 

Otherwise, distance[t] ← ∞,  ∀ nodes not reachable from 

origin. 

1. Path cost = 0, distance[origin] = 0, ∀ V ∈ Gt not adjacent 

to the origin, distance[vi] = ∞ // Initialization 

2.  Q.enqueue (origin) // Initialize queue, add adjacent 

vertices of Origin 

3. While (Q ̸= ∅) do // Check for adjacency 

4. u ← Q.dequeue() // Adjacent data collection location 

5. ∀ (u,v) ∈ E do // Identify all adjacent vertices of the current 

vertex  

6. Q.enqueue(v) // Add adjacent data collection locations of 

v  

7. if distance[v] = ∞ then distance[vi] ← distance[u] + ||Wuv||    

// Here ||Wuv|| calculated using L2 norm, average and mean 

square value of traffic parameters 

8.  Repeat for all adjacent vertices of u  // Edge weights ∀ 

adjacent vertices  

9. else 

10. distance[vi]←Minimum ( distance[vi],distance[u] + 

||Wuv||) // If required, calculate modified distance  

11. Compute distance for processing of ∀ vertices and ∀ 

edges belonging to graph G(V,E) // Compute all edges 

weights 

12. Calculate all possible paths across OD pair // Multiple 

paths may exist across OD pair 

13. Return Optimal path cost across OD pair = 

MINpath∈OD(Path1, Path2, ..., nth Path) for specific time 

instance ti // Minimum cost 

 

A significant addition of the paper is to represent vehicular 

traffic data across traffic networks as graph-structured traffic 

data, a unique representation of spatial and temporal context 

distribution. This approach provides interpretative inference 

over changing graph elements (time instances, vertices, edge 

weights). To achieve this goal, our framework of Figure 1 

needs to be capable of learning traffic parameters for context 

sampling (e.g. training window of length M, data collection 

time-frequency) to atomically train on different graphs. Next, 

to obtain a suitable representation of the graph-structured 

traffic data, we jointly model the spatial and temporal 

context. Finally, the end-user can investigate graph context 

distribution by aggregating the traffic parameter values for 

edge weight calculations and recommending the shortest 

path.  

4. Result Analysis  

To analyze the performance of traffic path recommendation, 

an experiment on open source traffic data set is carried out 

and compared with standard methods.  
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4.1 Data Set  

We evaluate TSBG on England traffic data set which 

records traffic parameters of England highway from 1st 

January 2015 to 31st December 2015. The data set 

aggregates traffic parameters observation into 15-minute 

windows. 70% of the data set is used for training, 10% for 

validation, and 20% for testing. The distribution of sensors 

for the data set is as shown in Figure 4. 

 

Fig 4. Distribution of Sensors for data set [26] 

4.2 Experimental settings  

Training of 180 minutes as the historical time window, 

which is nothing but the observed traffic parameter over 

the 15-minutes interval. These records were used to 

construct graph-structured traffic data, as shown in Figure 

2 (b), and to forecast traffic parameter values for future 15-

minute time intervals. An experimental setup includes 

implementation with Python 3.6, and TensorFlow 1.9.0 on 

the Linux platform. Intel Core i7-7700HQ CPU with 16 

GB RAM, GeForce GTX 1070/PCle/SSE2 of 6 GB RAM. 

From a data set an OD-pair A6006-A61 link referenced 

as UKHN8135, having 16 data collection locations 

across it. Every node of the road network graph 

contains 96 data points per day.  

4.3 Baselines  

We compared our TSBG model with those of five well-

known baseline models. A brief introduction to these is 

shown in Table 1. 

Table 1 Brief introduction to the baseline models 

Name Description 

ARMA Forecasting model in which the methods of 

auto regression (AR) analysis and moving 

average (MA) are both applied to time-series 

traffic data 

VAR Vector auto-regression, to capture the pairwise 

relationship among multiple time series of 

traffic data for vehicular traffic networks 

SVR Support vector regression to iteration wise 

perform multi step prediction 

Baysian For feature selection and the distribution of the 

unobserved (future) data given the observed 

data 

KNN Estimating the likelihood that an edge will 

become a member of shortest path group or 

another based on what group the data points 

nearest to it belong to 

4.4 Model Training  

To train the TSBG model, MAE is used as a loss function. As 

shown in Equation (4) where ‘n’ is the number of data points, 

y(i) is the ith measurement, and y (̂i) is its corresponding 

prediction. Traffic parameter values of different time 

instances are divided into a training set, a validating, and a 

testing set.   

𝐿𝑜𝑠𝑠 = 𝑀𝐴𝐸 =
1

𝑛
∑𝑛

𝑖=1 |𝑦𝑖 − 𝑥𝑖|   (4)  

4.5 Evaluation metric  

To measure and evaluate the accuracy of the performance for 

all experiments on the data set, RMSE, MAE and MAPE as 

in Equations (4) -  (6) are used.  

 

𝑅𝑀𝑆𝐸 =  √1/𝑛 ∑𝑛
𝑡 = 1 (𝑦̂𝑖  −  𝑦𝑖)

2 (5)  

Where n is the number of data points, yi is the ith measurement 

and 𝑦̂𝑖 is its corresponding predicion.  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑𝑛

𝑖=1 |
𝐴𝑡−𝐹𝑡

𝐴𝑡
|  (6)  

Where n is the number of times the summation iteration 

happens. At is the actual value of the traffic parameter and Ft 

is the predicted value of traffic parameter. 

 

4.6 Experimental Results  

Figure 5 illustrates a representation of graph-structured 

traffic data for learning spatial and temporal property across 

OD pair A181-A135 at time instance 25 (6:15 am ) of a day. 

A node represents vehicular traffic data collection locations 

and edges are road segments connecting those nodes. Based 

on the training of a single traffic parameter, average of 

selected traffic parameters as in Equation (2) and mean 
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squares of selected traffic parameters Equation (3) , TSBG 

predicts traffic parameter values for subsequent time 

intervals. Extraction of multiple paths for OD pairs using 

brute force approach and Dijkstra’s algorithm is used to 

recommend the shortest path. The edge cost of the 

recommended shortest path may vary depending on traffic 

data of specific period, thereby demonstrating the dynamic 

path recommendation ability of TSBG. Recommended 

shortest path edges for OD pair A181-A135 are A181, 

A19, A1130, A66, A135.  

 

Fig 5.  OD pair A181-A135 at time instance 25 

Figure 6 illustrates a representation of graph-structured 

traffic data for OD pair A181 - A135 for time instance 50 

of a day. Recommended edges of the shortest path are 

A181, A1068, A1, A66, and A135 demonstrating the 

dynamic path recommendation ability of TSBG.  

 

Fig 6.  OD pair A181-A135  at time instance 50 

5. Discussion  

For baselines, if their accuracy is not known for a data set, 

execute the corresponding codes for selected traffic 

parameters and recommended configuration. This section 

aims to address the following questions. 

Q1. How does the TSBG framework perform as compared 

to various standard algorithms? 

Q2. How do different parameters affect the results of 

TSBG? 

Q3. How efficient is TSBG for parameter prediction? 

Q4. What is the influence of forecasting time frames in 

TSBG?  

Q5. Can TSBG provide interpretation ability concerning 

spatial and temporal dimensions? 

5.1 Performance Comparison (Q1)   

We list the evaluation results of standard methods in Table 2. 

In general, the experience is that TSBG outperforms baseline 

techniques for different time window predictions. Along with 

that, we have the following observations about experimental 

results. Firstly, a good representation ability of Bayesian and 

KNN on non-linear traffic data is compared with statistical 

techniques of ARMA, VAR, and SVR. The results of TSBG 

further show the robust generalization performance and 

effectiveness of spatial-temporal correlation in Table 2. 

5.2 Ablation Study (Q2) 

We tested TSGB to verify the effectiveness of path cost and 

the edges prediction with individually forecasted parameter 

values namely traffic flow, speed, and journey time. We also 

study the effect of averaging and weight square mean for path 

cost and edge prediction for path recommendation. Table 2 - 

7 shows the shortest recommended path edges, shortest path 

cost, and number of paths across OD pairs based on the 

selected feature. The performance of a single parameter 

based recommendation indicates that just one parameter is 

not sufficient for an optimal recommendation. Thus, Weight 

square mean based (L2 norm) edge cost prediction proves the 

optimal path.   

5.3 Computation Needs (Q3) 

The computational demand of TSGB for training time, 

inference time, and memory usage with baselines is 

compared. With the help of overlapping time windows of the 

training period, TSGB achieves better time and memory 

utilization with baseline algorithms.     

5.4 Effect of time forecasting frame (Q4) 

Concerning Table 2, for prediction assessment of the 

proposed method, we observed that for small forecasting 

horizons of 15 min, MAE and MAPE were small. As the 

prediction horizon increases, MAE and MAPE also increase. 

5.5 Parameter relations (Q5) 

Experimental results indicate that our model can better 

dynamically relate relations of traffic data. For example 

speed and journey time, flow and speed, flow and journey 

time, etc. The relation of selected parameters also depends on 

the sparse or dense placement of sensors to collect traffic 

data. For sparsely located sensors traffic flow is more 

fluctuating than the traffic speed resulting in a larger standard 

deviation.  

In order to verify whether the TSBG model could capture 

traffic parameters from the data set, we compare TSBG with 

ARMA, VAR, SVR, Bayesian, and KNN. Comparison 
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involves the prediction of individual feature-based as well 

as mean and square mean-based traffic path 

recommendation for 15 minutes, 30 minutes, and 45 

minutes.  

Prediction capability: For 15-minutes predictions TSBG 

reported MAPE of 20.92%, for 30 minutes MAPE of 

26.10% and for 45 minutes 32.28% indicating that TSBG 

can capture correlation with earlier time instances.  

Prediction ability: As shown in table 2, TSBG can handle 

temporal correlation well. Compared to ARMA, VAR, 

SVR, Bayesian, and KNN for 15-minutes, the RMSE of 

TSBG is 52.77, for 30 minutes RMSE is 60.53 and for 45 

minutes 70.81. The main reason for ARMA’s worse 

prediction accuracy is that it is difficult to deal with long 

series of non-stationary traffic data. The RMSE of various 

models is as shown in Table 2.  

Traffic parameter forecasting results show that the error and 

prediction accuracy of TSBG change little with time, 

indicating that the proposed model has certain stability. No 

matter how much a time frame for a recommendation will be, 

the model can obtain the best prediction results. Therefore, 

TSBG can be used not only for short-term traffic path 

recommendation but also for medium-term and long-term 

traffic path recommendation. 

Table 2 Traffic parameter forecasting performance on the data set 

Algorithm 15 minutes 30 minutes 45 minutes 

MAE RMSE MAPE 

(%) 

MAE RMSE MAPE (%) MAE RMSE MAPE (%) 

ARMA 60.23 85.79 42.15 92.17 155.39 75.68 142.59 225.19 85.45 

VAR 50.14 78.72 36.46 82.66 122.82 60.57 105.21 150.72 83.10 

SVR 54.42 85.88 53.23 91.02 152.44 70.12 139.35 223.89 74.75 

Bayesian 34.87 59.97 25.14 41.02 71.92 30.10 46.45 83.21 34.59 

KNN 34.11 59.13 25.92 48.30 83.83 34.18 65.25 117.96 42.02 

TSBG 29.16 52.77 20.92 33.20 60.53 26.10 38.44 70.81 32.28 

 

For various OD pairs, traffic flow-based 

recommendations are shown in Table 3. For example, for 

OD pair A181 - A135 there exist 6 paths, and the 

recommended path cost via A1068, A1, and A66 edges is 

181.50 units. We have tested TSBG with 10 different OD 

pairs. Other pairs and related cost of the recommended 

shortest path is also shown in Table 3.  

Table 3 Traffic flow based recommended path for different OD pairs 

Origin Destination  Shortest recommended path edges Shortest 

path cost  

Number of non 

dominant paths 

A181 A135 A181, A1068, A1, A66, A135 181.500 6 

A386 A1130 A386, A38, A511, A52, A1,A1068, A19, A1130 288.500 1260 

A5 A45 A5, A38, A50, A46, A45 198.630 426 

A1166 A5094 A1166, A63, A1079, A64, A19,A1068, A1, A66, A595, A5094 258.250 12 

A55 A135 A55, A51, A5, A453, A52,A1, A66, A135 334.380 2334 

A31 A66 A31, A3, A423, A45, A46,A1, A66 324.500 1296 

M23J11 A591 M23J11, A23, A272, A3, A423,A45, A46, A6, A590, A591 591.000 217 

A388 A591 A388, A36, A303, A34, A500,A50, A6, A590, A591 364.300 217 

A1033 A597 A1033, A63, A1079, A64, A19, A1068, A1, A66, A595, A597 270.750 12 

A6055 A1018 A6005, A52, A1, A1068, A19, A1018 207.000 636 
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For various OD pairs, traffic speed-based 

recommendations are as shown in Table 4. For example, 

for OD pair A1166  - A5094 there exist 12 paths, and the 

recommended path cost via A1166, A63, A1079, A64, 

A19, A1130, A66, A595, and A5094 edges is 686.680 

units. Other pairs and related cost of the recommended 

shortest path is also shown in Table 4.  

 

 

Table 4 Traffic Speed based recommended path for different OD pairs 

Origin Destination  Shortest recommended path edges Shortest 

path cost  

Number of non 

dominant paths 

A181 A135 A181, A19, A1130, A66, A135 405.340 6 

A386 A1130 A386, A38, A511, A52, A1, A1068, A19, A1130 539.440 1260 

A5 A45 A5, A453, A50, A46, A45 374.080 426 

A1166 A5094 A1166, A63, A1079, A64, A19, A1130, A66, A595, A5094 686.680 12 

A55 A135 A55, A51, A5, A453, A52, A1, A66, A135 646.920 2334 

A31 A66 A31, A3, A423, A45, A46, A1, A66 469.620 1296 

M23J11 A591 M23J11, A23, A272, A3, A423, A45, A46, A6, A590, A591 818.26 217 

A388 A591 A388, A36, A303, A34, A500, A50, A6, A590, A591 710.470 217 

A1033 A597 A1033, A63, A1079, A64, A19, A1130, A66, A595, A597 640.370 12 

A6055 A1018 A6005, A52, A1, A184, A19, A1018 423.620 636 

 

For various OD pairs, traffic journey time-based 

recommendations are as shown in Table 5. For example, 

for OD pair A181 - A135 there exist 6 paths, and the 

recommended path cost via A19, A1130, and A66 edges 

is 349.310 units. Other pairs and related cost of the 

recommended shortest path is also shown in Table 5.  

 

Table 5 Traffic journey time based recommended path for different OD pairs 

Origin Destination  Shortest recommended path edges Shortest 

path cost  

Number of non 

dominant paths 

A181 A135 A181, A19, A1130, A66, A135 349.310 6 

A386 A1130 A386, A38, A511, A52, A1, A184, A19, A1130 542.330 1260 

A5 A45 A5, A453, A52, A500, A50, A46, A45 439.650 426 

A1166 A5094 A1166, A63, A1079, A64, A19,A1130, A66, A595, A5094 1038.850 12 

A55 A135 A55, A51, A5, A453, A52,A1, A66, A135 630.449 2334 

A31 A66 A31, A3, A423, A45, A46,A50,A500,A52, A1, A66 900.650 1296 

M23J11 A591 M23J11, A23, A272, A3, A423,A45, A46, A6, A590, A591 1313.180 217 

A388 A591 A388, A36, A303, A34, A500,A50, A6, A590, A591 2871.979 217 

A1033 A597 A1033, A63, A1079, A64, A19, A1130, A66, A595, A597 797.540 12 

A6055 A1018 A6005, A52, A1, A184, A19, A1018 453.549 636 
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For various OD pairs, weight square mean-based 

recommendations are as shown in Table 6. For example, 

for OD pair A181 - A135 there exist 6 paths, and the 

recommended path cost via A19, A1130, A66 edges is 

61.220 units. The advantage of a square mean of traffic 

parameters is to restrict the biasing of any one traffic 

parameter and over-fitting of edges for the recommended 

path. 

 

 

Table 6 Weight square mean  based recommended path for different OD pairs 

Origin Destination  Shortest recommended path edges Shortest path 

cost  

Number of non 

dominant paths 

A181 A135 A181, A19, A1130, A66, A135 61.220 6 

A386 A1130 A386, A38, A511, A52, A1, A66, A1130 92.508 1260 

A5 A45 A5, A453, A50, A46, A45 66.700 426 

A1166 A5094 A1166, A63, A1079, A64, A19, A1130, A66, A595, A5094 126.353 12 

A55 A135 A55, A51, A5, A453, A52, A1, A66, A135 106.253 2334 

A31 A66 A31, A3, A423, A45, A46, A1, A66 108.104 1296 

M23J11 A591 M23J11, A23, A272, A3, A423,A45, A46, A6, A590, A591 151.415 217 

A388 A591 A388, A36, A303, A34, A500, A50, A6, A590, A591 165.363 217 

A1033 A597 A1033, A63, A1079, A64, A19, A1130, A66, A595, A597 116.659 12 

A6055 A1018 A6005, A52, A1, A184, A19, A1018 79.130 636 

 

For various OD pairs, weight mean-based 

recommendations are shown in Table 7. For example, for 

OD pair A181 - A135 there exist 6 paths, and 

recommended path cost via A19, A1130, and A66 edges 

is 238.442 units.  

 

Table 7 Weight mean based recommended path for different OD pairs 

Origin Destination  Shortest recommended path edges Shortest path 

cost  

Number of non 

dominant paths 

A181 A135 A181, A19, A1130, A66, A135 238.442 6 

A386 A1130 A386, A38, A511, A52, A1, A66, A1130 362.00 1260 

A5 A45 A5, A453, A50, A46, A45 287.910 426 

A1166 A5094 A1166, A63, A1079, A64, A19, A1068, A1,  A66, A595, 

A5094 

504.319 12 

A55 A135 A55, A51, A5, A453, A52,A1, A66, A135 406.832 2334 

A31 A66 A31, A3, A423, A45, A46, A1, A66 533.694 1296 

M23J11 A591 M23J11, A23, A272, A3, A423, A45, A46, A6, A590, A591 689.549 217 

A388 A591 A388, A36, A303, A34, A500, A50, A6, A590, A591 1003.280 217 

A1033 A597 A1033, A63, A1079, A64, A19, A1130, A66, A595, A597 433.522 12 

A6055 A1018 A6005, A52, A1, A184, A19, A1018 315.697 636 
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Figure 7 illustrates traffic path cost based on different 

parameters of traffic along with the mean and square mean 

of the same parameters. The horizontal axis represents the 

various order pairs and the vertical axis represents the 

optimal cost of the recommended shortest path for 

respective order pairs using parameters under 

consideration. The selection of parameters determines the 

forecasting effect for the recommendation. It has been 

observed that path recommendations based on traffic 

parameter aggregations are more cost-effective than 

individual traffic parameter-based recommendations.   

 

Fig 7. Forecasted shortest path cost for selected traffic parameters along with mean and square mean  weight 

 

6. Conclusion and Future Scope 

In this paper, the contribution is about representing traffic 

data using a time series graph. Edge weights are predicted 

based on previous time instances of selected traffic 

parameters. Dijkstra's algorithm is used for the shortest 

path recommendation. TSBG’s approach of modelling 

vehicular traffic network as a graph and edge weights 

prediction using traffic flow, speed, journey time, mean of 

these three traffic parameters, and mean square value of 

three selected parameters, is the first one to the best of our 

knowledge. To reduce the dimensions of records 

processing, and to exploit pattern likeliness among 

adjacent time instances, we have used a 15-minutes traffic 

data set. The focus of the recommendation is for specific 

time instances, extracting a relevant list of paths across OD 

pairs, and comparing the same with ground truth baseline 

methods. The extracted list of OD pair paths is validated 

with the help of weight bounds on paths. A path having 

minimum cost is recommended and other paths are ranked 

based on increasing path cost. The proposed TSBG method 

could be adequate to handle the congestion problem and 

the operational level utilization of the road network. 

Further scope of exploring different traffic features and 

algorithms for aggregation to maintain a portfolio of routes 

for traffic path recommendation across OD pairs. A probable 

set of indicators for sustainable transportation-related 

activities of proposed work include economical optimization 

of traffic congestion, infrastructure costs, paths with 

minimum accident spots. Further scope of work can be 

enhanced by considering the environmental aspects like a 

recommendation of a path with less noise and air pollution.  
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