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Abstract: Classifying a brain tumour is a crucial first step in establishing whether or not the abnormal tissues present a lethal threat to 

the patient and creating an appropriate treatment strategy for the latter's recovery. The most dangerous and rapidly-growing variety of 

glial tumour, glioblastoma multiforme (GBM) is most commonly referred to by its acronyms, glioblastoma. Most of the time, these 

tumours migrate to neighbouring brain tissue. Those with high grade glioma (GBM), which is highly aggressive and progresses quickly, 

have a poor survival rate compared to those with other tumours. Radiologist clinical decision-making and methodical treatment planning 

for patients can be enhanced by using survival time predictions (also known as OS time). Many imaging features of the brain, including 

the size and shape of the tumour, determine the outcome for the patient as a whole. In this paper, we used Random Forest, Support 

Vector Machines, XgBoost, and the Logistic Regression with Boosting Method (LGBM) to predict the overall survival (OS) period 

based on radiomic features. These radiomic characteristics are a combination of the tumor's deep characteristics and the characteristics 

that were shaped by hand. The prediction's reliability is dependent on the tumour volume being isolated from the various MRI modalities. 

Because of this, the U-Net++ deep model is used to recover the complete tumour and its subtumor from the multi-modal MR images, and 

then the pictures are stacked for deep feature extraction using convolutional neural networks. After feature reduction by principal 

component analysis (PCA) enhanced accuracy, the radiomic feature set was used for OS period forecasting. The accuracy of the forecast 

was examined utilising data from both two- and three-class survival analyses. An experiment was run using the popular BraTS 2017 

dataset, and the findings indicated that several classifiers were able to reach an AUC value of 69% for a 3-class classification and a 67% 

AUC value for a 2-class group. The segmentation DOR is calculated to be 1269.29, which is greater than 2033.99 and lower than 648.00 

for entire tumour, augmenting tumour, and necrotic tumour extraction, respectively. Both the genetic algorithm (GA) and the particle 

swarm optimisation (PSO) are used to the fused feature set to improve accuracy even further. Eventually, the approach achieves an area 

under the curve (AUC) score of 0.66 when employing fused features + SVM + GA (3-class group) and 0.70 when employing fused 

features + SVM + PSO, both of which are better than state-of-the-art methods (2-class group). Both of these results are higher than the 

minimum passing grade of 0.65. 

Keywords: Survival prediction, Glioblastoma multiforme, Brain tumour segmentation, U-Net++, Machine learning 

1. Introduction 

Tumors, or neoplasms, develop when the uncontrolled 

division of aberrant cells goes on for too long [1]. The 

term "cancer" is commonly used to refer to a brain 

tumour, which is a mass of abnormal tissues located in 

either the central canal of the spinal column or the brain 

[2].Nevertheless, within this cluster, a few cells appear 

immune to the mechanisms normally responsible for 

controlling cell growth and division.Our rather inflexible 

skull encloses and shields our brain from any potential 

damage. The rapid growth of the tumour in such a small 

area hampers the brain's capacity to perform its typical 

activities. It's probable that major disorders, including 

prolonged exposure to inorganic compounds or genetic 

issues, are the key drivers of the development of deadly 

malignant cells in the brain.    

Tumors in the brain can be either benign (not cancerous) 

or malignant (cancerous) (cancerous). The pressure inside 

the skull increases as benign tumours, precarcinomas, or 

malignant tumours grow, which can cause a number of 

serious health issues in people. This could cause 

irreversible brain damage and put the patient's life in 

danger. Medical photographs can be challenging to 

interpret and extract meaningful data from due to their 

subjective and complex nature.This is going to be a 

challenging endeavour. From the data collected, we may 

conclude that brain tumours account for between eighty-

five and ninety percent of all primary CNS malignancies. 

Recently affected cases of brain and central nervous 

system (CNS) cancer were identified in [1]. These cancers 

account for about 3% of all other cancers. The number of 
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reported cases is five times higher in European countries 

compared to those in Asia. Automated tumors 

segmentation is critical for early detection and successful 

treatment of brain tumours. The alternative, manual 

segmentation, is prohibitively time-consuming and costly. 

Automatic region of interest and vital information 

extraction has enhanced because to recent developments 

in image processing and computer vision. As a result, 

treatment planning is now easier to execute. 

Brain damage can be caused by the growth of both 

malignant and noncancerous brain tumours. Tumors of 

the brain are solid neoplasms that form inside the brain's 

skull. These tumours form when brain tissue or cells grow 

abnormally and out of control. [3]. One of the most 

rapidly progressing primary tumours is a glioma, which 

develops from glial cells. Gliomas are classified as either 

low grade, which grow more slowly, or high grade, which 

are highly malignant tumours that put the patient's life in 

serious jeopardy. Glioblastoma multiforme, often known 

as GBM or glioblastoma, is the most malignant kind of 

glial tumour and develops rapidly. It is common for these 

tumours to spread to neighbouring brain areas. [4] The 

World Health Organization reports that the survival rate 

for people with HGG tumours is less than two years, but 

those with LGG can live for several years after diagnosis. 

[5] Most patients with these tumours will still die from 

their condition even with the most cutting-edge diagnostic 

tools, radiation therapy, and surgical procedures currently 

available. Survival rates for brain tumours have gained 

prominence in recent years, [6] giving radiologists a new 

point of reference for treatment strategy development. 

Because of the limited availability of labelled training 

subjects, the performance of PS prediction using existing 

approaches is decreasing. 

In this research, we propose an approach to enhance 

glioma diagnosis accuracy. The most significant 

improvement brought about by the proposed plan is as 

follows: 

1. The brain tumour is initially segmented using 

multimodal brain MR images and a U-Net++ model 

equipped with a weighted pooling mechanism. This must 

be completed before moving on to the next phase. Both 

the primary tumour and any augmenting subparts are 

included in this dissection. 

2. The dataset includes 163 patients with at least one day 

of survival information, and a convolutional neural 

network is used to recover both manually-created and 

deep characteristics from all of the sub-tumor regions. 

3. Determining the total amount of time spent alive is 

accomplished by a number of machine learning 

techniques, including the use of a combination of 

manually created features and deep features, to achieve 

higher precision. Finally, the bio-inspired optimisation 

methodologies are put into practice to produce the 

required degree of performance. 

Tumors are classified as either benign (non-cancerous) or 

malignant (cancerous) by the medical community based 

on their severity and degree of cancer. Figure 1 shows an 

example of this classification scheme. Initial brain 

tumours develop in an unaltered brain cell or in one of the 

tissues directly under its skull. This category of tumours 

accounts for the vast majority of malignant brain tumours. 

The majority of malignant brain tumours are gliomas. 

Depending on the circumstances, primary tumours may be 

harmless or malignant. In most cases, secondary tumours 

seen in the brain are malignant tumours that originated in 

another part of the body and metastasized there. [7] 

Almost a dozen types of brain tumours exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Brain tumours are classified into subgroups based 

on their aggressiveness and the site of initial diagnosis. 

Some of the most lethal and aggressive tumours are 

malignant gliomas. The glial cells in the brain are the 

source of many diseases, and they can spread rapidly to 

other organs. The brain is rich in glial cells More than 

60% of all malignant brain tumours found in adults are 

gliomas. Several forms of gliomas exist, with 

oligodendrogliomas, medulloblastomas, oligocytomas, 

and glioblastomas being the most common. 

MRI scans have been shown to be effective in the context 

of clinical practise for documenting gliomas [8,9]. 

Medical image analysis often makes use of magnetic 

resonance imaging (MRI) because it does not require any 

sort of invasive procedure. The work was conducted out 

on the well-known8 dataset for the 2017 Multimodal 

Brain Tumor Segmentation Competition [10].This dataset 

includes MRI scans from 240 patients who were all 
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diagnosed with high-grade glioma. Typical structural 

MRI scans for humans measure 240 mm on the short axis 

(T1), 240 mm on the long axis (T2WI), and 155 mm in 

the transverse direction (T2FLAIR). The tumor's 

enhancing region (ET) is marked with the value 4, 

whereas the necrotic core region (NCR) is identified with 

the value 1, and the rest of the tumour is identified with 

the value 0. Machine learning techniques of various kinds 

were used to make predictions about the PS days based on 

these characteristics. Next to each patient's age in the 

dataset, the prognosis score (PS) is provided in days. 

Genetic algorithms and particle swarm optimisation 

(PSO) are used to improve prediction accuracy, and the 

survivors are divided into three groups based on their 

expected lifespan: a short group (<10 months), a medium 

group (>10 and <15 months), and a long group (>15 

months) and 2-class: short (<12 months) and long (>12 

months) group. 

In this paper, the rest of the sections will be organized as 

follows: Section 2 Provides a summary of the several 

approaches of predicting future survival. In Section 3, 

detailed description of the proposed methodology 

implemented is presented. Section 4 describes 

experimental results analysis of the survival time. Finally, 

in Section 5 describes the conclusion and the future scope 

of the article are shown. 

2. Related Work 

Challenges remain in automatic brain tumour 

segmentation because of the wide variety of brain 

tumours that exist in terms of size, shape, location, and 

appearance. The fact that brain tumours come in so many 

different varieties presents unique difficulties. Both 

supervised and unsupervised methods can be used in the 

segmentation process. Several studies and methods, from 

the more traditional thresholding method to the more 

current deep learning approaches, have been created to 

segment brain tumours. Below, we highlight several 

research that are both very pertinent to the requested topic 

and just published. [11] In this study, we introduced a 

treatment planning tool that integrates multiple image 

processing techniques to improve brain image analysis 

results. Both of these fields could benefit from the use of 

this instrument. The accurate segmentation of vital organs 

from MRI and CT scans has previously been 

accomplished using a wide range of methods. 

Segmentation is a technique used to extract useful 

information from images by first dividing them into 

smaller parts. In the realm of image processing, numerous 

segmentation methods exist, each of which may employ 

unique characteristics. Researchers typically utilise CNN, 

U-Net, and Segnet models, all of which are based on deep 

learning, to segment medical images because of their 

effectiveness and greater level of accuracy. The 

performance of the network was measured across a 

number of benchmark datasets, and it was used in [12] to 

detect and segment brain tumours in MRI image patches. 

Using the HGG and LGG datasets published at the BraTS 

2015 conference, we describe a fully automatic method for 

segmenting brain tumours based on U-Net and evaluate its 

performance. Prior to this work [13, 14], we used a 

cascading CNN deep learning model to segment brain 

tumours. Three learned convolutional layers, each tuned 

for a distinct part of the tumour, form the basis of this 

model. The results from BraTS 2015 and BraTS 2013 

showed that a Dice score of 89% was adequate for full 

tumour segmentation. This segmentation method, which is 

based on RA-U-Net [15], first extracts the volume of 

interest (VOI) of a tumour and then segments the VOI into 

individual tumour cells. The approach's architecture is 

analogous to that of the 3D U-Net, which is based on the 

principle of encoding data in a way that accounts for its 

context. It is crucial in the U-Net design that the high-level 

and low-level feature maps be combined throughout the 

down sampling process. This improves the quality of the 

semantic segmentation. For more precise segmentation, it 

is recommended to employ a nested U-Net structure, 

which can be achieved by redesigning the skip connection 

[16]. 

In this paper, they address the challenges posed by U-Net 

means depth and its limited skip connection design. Some 

papers use transfer learning15 to determine whether a 

brain tumour is malignant or benign by segmenting it into 

individual cells. Two datasets, Ischemic Stroke Lesion 

Segmentation (ISLES) from 2018 and Multimodal Brain 

Tumor Segmentation (BRATS) from 2013-2016, are used 

for the evaluation of the method's efficacy. 

Once the tumour has been segmented, the radiologist has a 

higher chance of saving the lives of patients with glioma 

by providing a precise prognosis of how long the patient 

will have to fight the cancer. Study 16 shows that textural 

elements extracted from MRI data may be useful for 

characterising genetic subgroups of GBM and predicting 

12-month overall survival status for GBM patients without 

requiring procedures. The possibility of using this 

approach to characterise GBM has been considered. In this 

article, we use the rate of change (ROC) as our 

performance indicator for determining a patient's 

prognosis for survival. [17] After making a forecast of 

overall survival, an accuracy of 0.448 was found during 

validation.  

The primary focus of this article is tumour segmentation, 

both as a diagnostic aid and a precondition for treatment 

that relies on accurate tumour segmentation. More than 

one study has investigated survival prediction by 

combining deep learning with carefully created attributes. 

They used 3D U-Net to do the segmentation. [18] We first 

conducted preliminary experiments on a small subset of 
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labelled participants, and subsequently verified our results 

on the BraTS 2019 dataset. Another study [19] uses an 

ensemble of three 3D convolutional neural network 

models to segment the tumour region and then uses that 

information to derive 4524 radiomic parameters. Several 

methods of computing radiomic properties [20] exist, 

each of which accurately describes the problem at hand 

and aids in the resolution of a particular computer vision 

issue. Most researchers supplement the various machine 

learning and deep learning models they try to apply to the 

labelling problem with features they've created by hand. 

There is a dearth of literature devoted to the topic of 

enhancing machine learning algorithm performance by 

extracting deep features and combining them with 

handmade features. 

3. Proposed Methodology 

The proposed method is divided into three main processes 

for automatically segmenting tumours, extracting micro 

and deep characteristics, and overall survival rate of the 

patient based on the severity level of the glioblastoma: 

1. Data collection and preprocessing: The first step 

is to collect medical images (such as MRI or CT scans) 

and corresponding survival data of patients from a 

relevant database or hospital. The data should be 

preprocessed to remove noise, artifacts, and other 

unwanted features using appropriate image processing 

techniques. 

2. Tumor segmentation: After gathering the 

necessary medical images, tumour segmentation software 

is used to remove the tumour. This can be done using 

various techniques such as thresholding, region growing, 

active contours, or deep learning-based approaches like 

U-Net++, Mask R-CNN, etc. 

3. Feature extraction: Once the tumor region is 

segmented, both handcrafted and deep features can be 

extracted from the segmented region. Handcrafted 

features can include texture, shape, and statistical features 

such as mean, variance, skewness, etc. Features extracted 

from medical images can be improved with the use of pre-

trained convolutional neural networks (CNNs) like VGG, 

ResNet, or Inception. With these networks, deep features 

can be retrieved. 

4. Survival time prediction: The final step is to 

predict how long a given patient will live based on the 

extracted attributes. Machine learning methods such as 

logistic regression, random forest, and support vector 

machine can help with this (SVMs). Some deep learning 

models that can be used to estimate a patient's expected 

lifespan are convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs). Another kind of neural 

network is a recurrent neural network (RNN). 

Many other metrics, such as accuracy, precision, recall, 

and the F1 score, can be used to assess the proposed 

approach. The methodology's value can also be assessed 

by comparing its findings to those of alternative 

approaches. Two-class and three-class prediction tasks 

were conducted using the BraTS 2017 dataset in this 

experiment. When the feature matrix is complete, the 

following step is feature reduction so that principal 

component analysis (PCA) can be used to prioritise the 

features (PCA). Afterward, many classifiers, including 

Random Forest, XgBoost, SVM, and LGBM, are 

considered for the survival time prediction utilising each 

feature set separately. Then, the classifier is updated to 

take into account the combined information from both 

attributes in order to provide more accurate predictions 

about the patients' low, medium, and high survival rates. 

Figure 2 provides a visual representation of the proposed 

framework, and then detailed descriptions of each step are 

provided. In this section, we cover different approaches to 

tumour segmentation, feature extraction from tumour 

segments, and overall survival period prediction. 

 

Fig 2. The proposed framework for total survival time 

period prediction. 

a. Tumor Localization and Classification 

The term "tumour segmentation" refers to the procedure of 

recognising and delimiting a tumour in medical imaging 

data like MRI, CT, or PET scans. Positron emission 

tomography (PET), computed tomography (CT), and 

magnetic resonance imaging (MRI) are just a few of the 
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many imaging modalities that fall under this umbrella. 

Accurate segmentation of a tumour is crucial for making a 

diagnosis, formulating a treatment strategy, and following 

the tumor's progression. Physical tumour segmentation is 

possible and is performed by radiologists; however, this 

procedure is time-consuming and subject to radiologists' 

own interpretation. Therefore, there is a growing interest 

in developing computer-aided tumor segmentation 

algorithms that can automate and standardize this task. 

There are various techniques used for tumor 

segmentation, including thresholding, region growing, 

edge detection, active contour models, machine learning, 

and deep learning.  

Thresholding involves selecting a threshold value to 

separate the tumor from the surrounding tissue based on 

its intensity. Region growing involves starting with a seed 

point and growing the region until it reaches the tumor 

boundary. Edge detection techniques use gradient 

information to detect the tumor boundary. Active contour 

models use an energy minimization approach to deform a 

contour towards the tumor boundary. Support vector 

machines (SVMs) and random forests, two types of 

machine learning algorithms, can be trained to segment 

tumours using tagged data. In addition, the use of CNNs 

and other deep learning techniques has improved the 

accuracy of cancer segmentation. Tumor segmentation 

has numerous applications in medical imaging, including 

radiation therapy planning, surgical planning, and disease 

monitoring. Accurate tumour segmentation is a key step 

towards improving the precision of these applications and 

consequently patient outcomes. All of the tumour, 

necrotic areas, and augmenting areas are considered for 

attribute extraction in this task of tumour prediction. Data 

preprocessing is required for automatic tumour 

segmentation in order to remove biases and normalise the 

given MRI dataset. After that, a customised U-net model 

must be used for tumour segmentation. 

i. Preprocessing of Data 

This study's analysis was performed using data from the 

High Grade Glioma MRI of BraTS 2017 dataset. Artifacts 

in these MRIs include motion and intensity 

inhomogeneity, and they were acquired utilising a wide 

range of scanners. The algorithm and its output cannot be 

validated until the artefact has been removed by 

normalisation and bias correction. The training issue of 

class imbalance was overcome, and the time and memory 

requirements for training were much reduced, all thanks 

to these preprocessing processes. In a first step, median 

filtering is used to each patient's 3D MRI scans to reduce 

the amount of noise in the image by normalising the 

intensity of neighbouring pixels. The pictures from all 

modalities are then corrected using the N4ITK bias field 

[21, 22]. This is done to improve performance by getting 

rid of any artefacts that might be holding it back. In order 

to account for the fact that the intensity values of the 

images vary from patient to patient, a normalisation phase 

is necessary. In this stage, the photo intensities are 

normalised so that they are uniform across the set. To do 

this, the intensity distribution is normalised such that the 

mean valueis close to zero and the standard deviation is 

close to one. As a result, the model is better equipped to 

generalise to new data without picking up any unwanted 

bias. Using the normalisation equation, where T is the 

original image's intensity value and 𝜇 are the mean and 𝜎 

is the standard deviation of T respectively, we can write 

down the normalised intensity value for a given slice as: 

Tn =        (1) 

In each patient's slices, the great majority of masks were 

either blank or provided very little information on the 

tumour, making it more probable that the model would 

learn irrelevant background or noise rather than the 

tumour itself. To make sure everyone is playing on a level 

playing field, we set a threshold value [23] that needs at 

least 0.007% of the total pixels in the image to include 

information concerning tumours. We can now compete on 

an even playing field. This means that for each patient, 

only the picture slices containing at least 400 of the 57,600 

total pixels of information about the tumour are used in 

the training and evaluation phases. To further reduce file 

size, 1% of the border was automatically cropped off all 

four sides of each image, resulting in a reduction in slice 

size from 240x240 to 192x192. These preprocessing 

methods not only reduced the time spent training and the 

amount of data stored in memory, but they also helped to 

address the issue of class imbalance.  

The input image slice is automatically reduced in size to 

192 by 192 pixels after the necessary data preparation 

steps have been carried out. This happens once everything 

that has to happen has taken place. Based on the findings 

of the data preparation phase, only those picture slices are 

used for training that include at least 0.1% of the 

information of the tumor's 3D volume. The dataset is 

comprised of 240 patients and is broken down as follows: 

Eighty percent are utilised for instruction, and twenty 

percent for evaluation: The patient data used for training 

totaled 170, while the patient data used for testing totaled 

40. Once again, we use a random 8:2 split between 

training and validation data for dividing our image 

datasets. Information on the number of picture slices is 

gathered so that a model may be trained for each 

subtumor. After generating separate training and testing 

datasets for each modality, the U-Net model was used to 

teach the system how to distinguish between the various 

tumour locations. Further information on the model 

architecture used in this study will be provided below. 

ii. Segmentation of U-Net++ 

When it comes to biomedical picture segmentation, 
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specifically tumour segmentation, the original U-Net 

architecture, a convolutional neural network, was 

constructed; this architecture's successor, U-Net++, is an 

expansion of the original. Another meaning for U-Net++ 

is "universal neural network plus." The original U-Net 

architecture is built upon in order to create U-Net++, 

which is better able to capture features across several 

scales and abstraction levels. It's built with extensive skip 

links and nesting. U-layered Net++'s skip connections 

allow the network to capture features functioning at 

varying scales by transmitting feature maps with high 

resolution from the encoder to the associated decoder 

blocks. The finer points can be preserved while the 

broader picture can be captured. By linking all of the 

feature maps from the encoder to the blocks of the 

relevant decoder, dense skip connections allow the 

network to learn a more comprehensive representation of 

the input. This improves the network's ability to 

comprehend the information it is given. The enhanced 

feature reuse and network-wide dissemination ultimately 

leads to better segmentation accuracy. 

Several state-of-the-art segmentation algorithms, 

including U-Net itself, have been shown to be inferior to 

U-Net++ when it comes to the task of segmenting a wide 

range of biomedical images, including those with 

tumours. Fine-tuning the network on different datasets 

and applying data augmentation techniques like rotating, 

flipping, and scaling the data can further improve the 

performance of the design. U-Net++ has been shown to 

be effective in a number of trials, making it a viable 

technique for the segmentation of tumours in biomedical 

images. In conclusion, U-Net++ offers a robust system for 

disentangling images from a biological context. 

Recently, the U-Net++ architecture has been put into use 

in cutting-edge medical applications. Like U-Net, it is a 

tightly supervised contraction-expansion network, but it 

uses a series of nested skip connections in place of the U-

jump Net's interconnections between the encoder and 

decoder segments. Hence, it resembles U-Net quite 

closely yet is not identical to it. When we delve deeper 

into the encoder, we find not one, but four additional 

convolution and mixed pool levels, including a bottleneck 

convolution layer. After the initial encoding layer, all 

successive encoding levels provide a scaled-up block that 

is used to generate the hidden layers. Iteratively replacing 

them with better blocks is done until the last block's size 

matches that of the first.  

Also, all of the nodes in this network offer skip 

connections to their immediate neighbours. Each 

convolutional layer employs a ReLu activation function 

[24] and a batch normalisation layer with a kernel size of 

to generate its final output (3, 3). Within each 

convolutional block is a convolutional layer, and each of 

these layers consists of three layers. Moreover, the 

ConvTranspose layers' kernel size is set to (3, 3), strides 

are set to (2, 2), and padding is set to "same." For our 

segmentation challenge, we look at and analyse a loss 

function called the BCE Dice loss function (Equation 2). 

Just by adding the binary cross entropy to the Dice loss 

function, we can obtain this function. This is done so that 

convergence can be reached faster and overall 

performance can be enhanced. 

BCE Dice Loss =  + (1 − gi)log(1 − pi)                    

(2) 

This model interacts with the U-Net++ model by trying 

out various pooling algorithms, which improves the 

model's accuracy when used to tumour segmentation. The 

level of similarity between the retrieved tumour parts and 

the real world is evaluated. The number of "survival days" 

is calculated based on this factor. Weighted pooling is a 

technique used in machine learning to summarize a set of 

values, giving more importance to some values than 

others. The Equation 3 for weighted pooling is: 

 

Weighted pooling = (w1 * v1 + w2 * v2 + ... + wn * vn) / (w1 

+ w2 + ... + wn)              (3) 

Where v1, v2, ..., vn are the values being pooled, and w1, 

w2, ..., wn are their corresponding weights. The results of a 

weighted pooling calculation are the values' weighted 

average. In this way, the weights of the various factors can 

be properly considered. In other words, each value is 

multiplied by its weight, and the resulting products are 

added together. To calculate the weighted average, the 

sum is then divided by the total number of weights. This 

formula can be used for various applications, such as 

summarizing the scores of different features in a neural 

network or computing the average rating of a product 

based on user reviews with different weights. 

To prevent overfitting caused by insufficient training 

images, the complete dataset is augmented with additional 

data. Before being utilised to build the augmented dataset, 

the photographs are flipped horizontally, rotated, resized, 

and zoomed. The model is trained with a new set of 

randomly combined image slices at each epoch. Algorithm 

1 provides a comprehensive breakdown of the 

segmentation procedure. 

Algorithm 1: Weighted pooling function with Tumor 

extraction using U-Net++ 

Input: M: corresponding ground truth segmentation 

masks. 

            I: Load the input MRI image data 

            TI: Total number of MRI images 

            FT: Fraction of data used for training 
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            NE: number of Epochs, BS: Size of Batch 

Output: The final output is the segmented MRI images 

with the extracted tumors 

1.  normalize I with N41TK bias normalization 

2.  Reform I, M is to 240×240 Pixel size of cropping 

boundary regions 

3.  IF Brain Tumor = Complete do: 

4.  Then Return Mask 

5.  IF Brain Tumor = NECROTIC do:  

6.  Then Return Mask 

7.  IF Brain Tumor = ENHANCING do: 

8.  Then Return Mask 

9.  Training: Train the model using the augmented 

dataset and binary cross-entropy loss. Optimize model 

parameters using the Adam optimizer 

10.  Evaluation: Evaluate the trained model using the 

validation dataset to measure segmentation 

performance 

11.  Testing: Segment tumors in the test dataset using 

the trained model 

12.  For NE epochs do: 

13.  Update U-Net++ weights 

14.  Prediction  Predict Segmented Mask for MRI 

images shape 

15.  Extracted Brain Tumor  Image Shapes * 

Prediction 

 

b. Feature Extraction 

Feature extraction in survival prediction for glioblastoma 

multiforme (GBM) using radiomic features is a method 

for identifying and quantifying imaging biomarkers from 

medical images that can predict patient survival. Here's an 

overview of the algorithm: 

1. Image acquisition: Collect and pre-process magnetic 

resonance (MR) images of patients with GBM. 

2. Region of interest (ROI) segmentation: Segment the 

tumor region using manual or automated methods. 

3. Feature extraction: Extract radiomic features from 

the segmented tumor region using feature extraction 

methods. These features may include shape, texture, 

intensity, and gradient features. 

4. Feature selection: Select the most important features 

using statistical or machine learning-based feature 

selection methods. 

5. Survival prediction model: Train a survival 

prediction model using the selected radiomic features 

and the survival time of each patient. The model can 

be a Cox proportional hazards model, a random 

survival forest, or another survival analysis method. 

6. Model evaluation: Evaluate the trained model's 

performance using a validation dataset, measuring 

the model's accuracy, sensitivity, and specificity. 

7. Testing: Apply the trained model to a new set of MR 

images to predict survival times. 

8. Clinical translation: Translate the radiomic features 

and the trained model into a clinically useful tool for 

survival prediction in GBM patients. 

The segmented ROI is the source of the handcrafted 

elements employed in this work. Although the human-

created features characterise the projected tumor's texture 

and shape, the deep features take characteristics from the 

input using a convolutional operation, providing a 

response critical to the model's ultimate output. This 

research employed the recovered ROI segment to identify 

the artisanal qualities. In order to determine the volumes 

of the entire tumour, the necrotic portion, and the 

augmenting portion, all of the relevant pixel values are 

added up. To further understand the tumor's structure, its 

perimeter is calculated at several levels. The texture 

features that are produced by the grey level co-occurrence 

matrix have also been considered (GLCM). Here, we offer 

a strategy for extracting the texture's second-order 

statistical features from a sample of image pixels. [25] 

One of the numerous potential uses of GLCM in the field 

of medical image processing is the analysis of fine-grained 

texture data. Hence, 12 features, one each from the tumor's 

location, size, and grade, are considered. Six other factors 

in addition to incidence and energy are considered when 

employing GLCM.  

Each segmented portion of the tumour is characterised by 

six different characteristics. Maximum and minimum pixel 

values, mean and standard deviation, area, perimeter, and 

volume are all part of this set of statistics. We employ the 

patient's age feature from the dataset in conjunction with a 

total of 12 created characteristics to accomplish the 

classification objective. Deep features, also known as 

network-generated features, are features that are 

developed in response to a task by the networks 

themselves. More complicated input patterns, such as 

textures, forms, or versions of previously processed 

features, can be handled by the "deeper" layers of a deep 

learning model's ability to learn and produce its own 

feature filters. The "deeper" layers can then use this 

information to learn how to handle increasingly complex 

inputs. Specifically, we apply the technique of 

reinforcement learning to reach our goal.  
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One of the most often used deep models for the various 

medical imaging-related applications is convolutional 

neural networks [26, 27]. The CNN representation 

depicted in Figure 3 has been our primary model of 

choice when computing deep features. When CT, ET, and 

NT are separated, the data is stacked to create 128 by 128 

by 3 dimensions before being fed into the CNN model. 

The model consists of a layer for data flattening and three 

layers for convolutional processing. Each convolutional 

layer appends a three-by-three-dimensional kernel to the 

input data, together with an equal amount of padding, 

resulting in a single complicated feature map. Two-by-

two pools are the maximum allowed for pooling purposes. 

The output of a CNN's flatten layer is often taken as a 

proxy for the network's deep feature matrix. After running 

the model, we obtain an estimated total of 5120 deep 

features. 

 
Fig 3. Architecture of Deep CNN for feature extraction 

i. Fusion of features and Feature reduction using PCA 

Principal component analysis (PCA) can be used to 

decrease the dimensionality of a dataset, while combining 

features can improve the accuracy with which machine 

learning models classify data. These two methods both 

use feature reduction. Follow these guidelines when 

implementing any of these methods. The term "PCA" 

refers to the statistical method known as principal 

component analysis, which reduces a dataset's unique 

characteristics to a smaller number of linearly 

independent variables. The dimensionality of the dataset 

can be reduced using this method. Each of these key 

components is responsible for describing a certain amount 

of the overall variance in the dataset, and this variance is 

used to rank them from most to least important. To reduce 

the number of features in a dataset without losing sight of 

the most important information, principal component 

analysis (PCA) can be used. Feature dimensions for both 

the manually constructed features and the CNN model-

generated features can be reduced using principal 

component analysis (PCA). The combined benefits of 

these two approaches are substantial. When dealing with 

massive datasets, principal component analysis (PCA) 

[28] is often used since it reduces the number of 

dimensions without losing too much information.  

The purpose of the method known as "feature fusion" is to 

improve classification precision by merging different 

types of features gathered from the same or other datasets. 

The most common fusion techniques include early, late, 

and hybrid fusion. Early fusion combines features at the 

input level before the model's processing, late fusion 

combines the predictions of multiple models, and hybrid 

fusion combines the features at the input level and the 

models' predictions. Although there is a correlation 

between NCSV and the number of major components, it 

has been demonstrated that 96% of the cumulative 

variance can be kept with just eight specially chosen 

features. As NCSV is inversely proportional to the number 

of principal components, this was theoretically feasible. A 

closer look at the graph proves the validity of this 

assertion. Similarly, [22] deep characteristics have been 

selected as the primary features to use while classifying 

data. These 30 features are utilised to make a prediction, 

and several trials showed that a minimum of 9 features 

was sufficient for an accurate prediction to be made (8 

fused features plus age). These feature matrices are used 

as an input by several distinct machine learning algorithms 

employed in the larger survival prediction task. 

c. Prediction of overall survival period  

Predicting overall survival (OS) period in medical 

applications, such as cancer prognosis, is a crucial task 

that can aid in the development of personalized treatments 

and improve patient outcomes. Machine learning 

algorithms, such as regression and survival analysis 

models, can be used to predict OS based on clinical and 

molecular features. Collect clinical and molecular data 

from patients, including demographic information, clinical 

measurements, biomarker expression levels, and genomic 

profiles. Preprocess the data by normalizing, scaling, and 

imputing missing values. Select relevant features using 

statistical tests, feature ranking methods, or domain 

expertise. Extract additional features using dimensionality 

reduction techniques, such as principal component 

analysis (PCA) or feature fusion. Use the trained model to 

predict OS for new patients based on their clinical and 

molecular features. Deploy the model in a clinical setting 

by integrating it into a decision support system or 

electronic health record. 

In this article, Algorithm 2 discusses the forecasting 

method in greater depth. A brief summary of the following 

is provided in the next paragraph: Support vector 

machines (SVMs), random forests (RFs), linear boosting 

machines (LBMs), and xgBoost are the four machine 

learning techniques used for operating system prediction. 
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Machine learning methods are combined with bio-

inspired optimisation algorithms to further enhance the 

final product. In order to illustrate the effectiveness of the 

optimisation technique, the authors of this work consider 

the genetic algorithm and the PSO. This allows the 

algorithms to quickly filter out irrelevant characteristics 

and focus on those that have promise. Because of this, GA 

and PSO can provide comparable performance to 

traditional approaches while taking a lot less time to 

implement. "SVM," short for "support vector machine," 

are a form of method that is computationally costly, 

robust, and accurate [29,30]. The possibility for good 

results exists even with little amounts of training data. 

The Random Forest algorithm is an ensemble approach 

that uses several decision trees to reach a single 

conclusion.  

The shape of the woods provided the inspiration for the 

name. Due to its accuracy and speed when applied to 

huge datasets, it has become one of the most used 

machine learning algorithms [31,32]. This is because it is 

one of the most widely used machine learning algorithms. 

Lite GBM is an efficient and scalable method of gradient 

boosting [33,34]. It employs decision trees similar to 

those in Random Forest. It differs from other boosting 

algorithms in that it employs the best fit approach while 

splitting the tree. This technique trains swiftly and 

efficiently, while using far less memory than competing 

methods. This has resulted in the algorithm's widespread 

use. As an alternative to LGBM, XgBoost [35,36], a 

gradient boosting decision tree approach, may be able to 

deal with parallel tree boosting in a similar fashion (such 

as GBDT and GBM).As a result of its high precision and 

negligible impact on resources like CPU time and RAM, 

the method has gained significant use. 

Algorithm 2: Survival days Prediction using PCA and 

radiomic features  

Input: ET : Extracted Brain Tumor Region 

            TS : Total number of Slices in each MRI image = 

256  

            FT : Fraction of total Slice to be taken 

            NC1 : Number of Components for PCA1  

            NC2 : Number of Components for PCA2 

Output: The final output is the survival days of each 

patient from survival rate 

1.  Collect a dataset of patients with known 

survival times and radiomic features extracted from 

their medical images. 

2. For I  0 to N do: 

3. Compute volume = sum of tumor pixels 

4. Divide the data into two groups: a training set 

and a test set. 

5. ET complete append, necrotic and 

enhancing ET in RGB fashion 

6. ET  extract TS * FT slices having Brain 

tumor region 

7. If necessary, apply PCA to the radiomic 

features to reduce the dimensionality of the data 

8. Standardize the data to have a mean of 0 and a 

standard deviation of 1 

9. Compute deep features of OT by CNN flatten 

layers 

10. PCA1 apply PCA to deep features with 

components = N1 

11. PCA2 apply PCA to deep features with 

components = N2 

12. X  Append PCA1, PCA2 

13. Train a machine learning algorithm, such as 

linear regression, logistic regression, or support vector 

machines, on the training set using the radiomic 

features as input. 

14. Train models of X-train, Y-train 

15. Evaluate the performance of the algorithm on 

the testing set using metrics such as the mean squared 

error, the area under the ROC curve, or the 

concordance index. 

 

4. Experimental Result Analysis 

U-Net++ was used to carry out the proposed segmentation 

for the BraTS 2017 dataset, and many classifiers, 

including SVM, Random Forest, Light GBM, and 

XgBoost, were put to use for prediction. We validated and 

evaluated these processes. The test is run on a Windows 

10 PC with 4 GB of RAM, a Google Collaborator 

platform, an Nvidia Tesla GPU back end, and the latest 

version of the Tesla graphics processing unit driver. The 

ages of patients and their overall survival rates are both 

included in this dataset (OS). A total of 163 patients are 

split in two: the first 80 are utilised for training, while the 

second 20 are used for evaluation. An additional 8:2 split 

is made between the training and validation halves of the 

dataset.  

With the data preprocessing steps completed as described 

earlier, the input image slice's original 240 by 240 pixel 

resolution will be automatically decreased to 192 by 192. 

Metrics37 that are widely accepted as helpful for image 

segmentation are used to assess the segmentation's 
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effectiveness. Several criteria such as sensitivity, 

specificity, F1 score, Dice score, and accuracy are used. 

An algorithm's efficacy can be demonstrated with a 

confusion matrix, and the matrix can also be used to 

calculate segmentation and classification accuracy. The 

TP, FP, FN, and TN values of these matrices can each be 

represented by one of the four possible entries. All of the 

sub-tumor segmentations' confusion matrices are 

generated during training. The purpose of doing this is to 

improve the model's precision. 

Each of the aforementioned measures of efficiency has 

been defined below: 

• The following is a definition of accuracy (equation 4): 

Accuracy = (Number of Correct Predictions) / (Total 

Number of Predictions)               (4) 

• In order to get the genuine negative rate, or specificity, 

we use equation 5 to determine the percentage of non-

tumor class pixels that were accurately recognised. 

Specificity = True Negatives / (True Negatives + False 

Positives)                   (5) 

• Sensitivity is a metric that evaluates at the proportion 

of foregrounds that were correctly predicted. In other 

contexts, the term "recall" may be used instead. It 

shows (with the help of Equation 6) what percentage 

of the background was accurately predicted. 

Sensitivity = True Positives / (True Positives + False 

Negatives)                 (6) 

• The F1-score, defined in Equation 7, is a common 

metric used to categorise different types of imbalance. 

You can read about it in terms of Precision and Recall. 

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)                   

(7) 

a. Brain Tumor Segmentation Results 

The success of the suggested technique hinges on the 

accuracy with which an area of interest can be retrieved 

from MR images. Several "modalities" of magnetic 

resonance imaging (MRI) disclose different intrinsic 

features of the tumour portion. The algorithm utilised to 

compute the features is decided based on the essential 

properties of the tumour subregion. T1-weighted contrast-

enhanced (T1ce) imaging is useful for highlighting 

tumour features and removing necrotic ones [19]. When 

compared to other imaging modalities, a high intensity 

signal in T1ce implies a high-intensity region, therefore 

this is made achievable. For comprehensive tumour 

segmentation, the T2 weighted modality is used. The 

segmentation outcomes are presented in Table 1. The 

significant improvement in precision was made possible 

by the U-Net++ model, which makes use of a weighted 

pooling function. Overall, our tumour segmentation 

accuracy was 98.76%, tumour enhancement segmentation 

was 99.15%, and necrotic tumour region segmentation 

was 99.21%. 

 Brain tumour segmentation is a crucial 

aspect of medical image processing that helps doctors 

pinpoint the exact location of tumours in the brain and 

assess their size. Several measures can be used to assess 

the efficacy of brain tumour segmentation such as: 

• Dice coefficient: evaluates how much the ground-truth 

tumour region overlaps with the segmented tumour 

region. 

• Jaccard index: evaluates how closely the segmented 

cancer region matches the ground truth tumour region. 

• Sensitivity and specificity: examines how effectively 

the segmentation method can tell the difference 

between false-positive and false-negative occurrences. 

• Positive predictive value (PPV) and negative 

predictive value (NPV): provides an estimate of the 

proportion of "true positive" and "true negative" cases 

relative to the total number of positive and negative 

samples. 

The performance of brain tumor segmentation methods 

can vary depending on various factors such as the imaging 

modality used (e.g. MRI, CT), the type and location of the 

tumor, the quality of the images, and the segmentation 

algorithm used. Deep learning-based methods, such as U-

Net and Mask R-CNN, have shown promising results in 

brain tumor segmentation, achieving high dice coefficients 

and Jaccard indices. 

Using the BraTS 2017 dataset, Figure 4 displays a few 

visual segmentation results for HGG patients. Both the 

expected tumour subregions and the ground-truth picture 

are shown in this diagram. Many patients' original T1ce 

and T2 MRI slices are shown on the left, each with a 

unique volume of tumour in the axial plane that is 

connected to the ground. In reality, the whole tumour is a 

beautiful shade of blue, while the necrotic subtumor is 

depicted in red and the promoting part of the tumour is 

shown in yellow. There are 192 minute parts that make up 

each picture. Third, fourth, and fifth rows on the 2D plane, 

respectively, display the segmented enhancing volume, the 

total necrotic volume, and the overall volume of the 

tumour. Thanks to the images, we can easily make sense 

of how the experimental findings relate to the real world. 

The volume of the segmented tumour part is comparable 

to the volume of the original tumour, and this is reflected 

in the many metrics used to measure it. 
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cy 
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F1 
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re 
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te brain 

tumor 

0.992 0.997 0.867 
0.94

3 

Enhanci

ng brain 

tumor 

0.991 0.999 0.805 
0.93

3 

Necroti

c brain 

tumor 

0.987 0.998 0.671 
0.93

2 

Table 1. The results of tumour segmentation with the 

proposed U-Net++ algorithm for various MRI modalities 

 

Fig 4. The visual results of segmenting augmenting, 

necrotic, and complete tumours, along with the 

corresponding ground truths 

b. Results Prediction 

After the tumours have been segmented from the original 

MRI scans, the same methods used in computing the deep 

features and the produced features can be applied. The 

term "survival" refers to the time a patient spends alive 

after receiving a pathology diagnosis and before dying. 

All 163 patients are used in the prediction task, with each 

patient's survival days being assigned to one of three 

groups at various points in the surgical process. 

Procedures performed on the two groups that made it 

through the experiment are as follows: 

• T

hree class survival group: People are divided into long-

term survivors, short-term survivors, and those who have 

survived for an interval period of time. Those who have 

managed to hang on for longer than 15 months are 

considered long-survivors. People with short survival 

times have been alive for fewer than ten months (survive 

period between 10 and 15 months). 

• Two class survival group: As evidenced by the 

existence of both long-term survivors (those who have 

made it this far after more than a year) and short-term 

survivors (those who have made it this far after a year or 

less), the zombie apocalypse left behind a diverse group of 

victims (survive period less than 12 months). The duration 

of this period is determined by examining the median 

amount of life and labour represented in the data set. 

For the first stage, we employ SVM, RF, LGBM, and 

XgBoost alongside a total of 37 handcrafted features. The 

prognosis for the patient can then be categorised 

accordingly. As such, the survival day's projection makes 

use of all 5120 estimated deep qualities independently. 

Classification was performed for both the 2 and 3 class 

survival groups, and comparisons were made using the 

stated reference measures in Tables 2 and 3. In 

comparison, the best results you can get out of XgBoost 

include a 3-class group classification, where it achieves an 

F1 score of 56% and an accuracy of 59%. SVM's best 

results from manually produced features are 59% accuracy 

and 53% F1 score. For two-class classification, LGBM's 

highest accuracy is 68% and F1 score is 67% when using 

manually built features. In contrast, when deep features 

are used, both Support Vector Machines and Random 

Forest achieve 66% accuracy, with RF having a slightly 

higher F1 score. The research also calculates the area 

under the curve (AUC value) and compares the ROC 

curve performance to the TP rate to assess the pixel 

classification performance. Also, the TP success rate is 

compared to the ROC curve's performance. The area under 

the curve (AUC) is a common statistic used to evaluate the 

efficacy of various classifiers. As AUC rises, 

segmentation and classification accuracy improves. We 

found that when classifying data into three categories, we 

could get an AUC of up to 69% and 70% throughout the 

experiment using handcrafted and deep features, 

respectively; however, while classifying data into two 

categories, we could only achieve an AUC of up to 68% 

and 66%, respectively. 

You can see the outcomes in Tables 2 and 3, and they 

indicate that the accuracy of manually constructed features 

is better than that of deep features when used alone.  

Features that take into account a person's age are among 

the most valuable ones you can make for a categorization 

process. By incorporating deep features, however, the 

CNN model itself is tasked with computing the features in 

question. The convolutional and max pooling techniques 

help with this. Hence, we have employed the radiomic 

features, which are the best features fused from both 

feature sets, and conducted trials to see how well they 
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predict the survival group. We performed a series of 

experiments with the aim of identifying the most effective 

features to utilize, and we discovered that using a total of 

nine features—eight radiomic variables and one that is the 

age that is provided in the dataset—gave us the greatest 

results.  

In order to choose the features shown here, the PCA 

algorithm is employed, which was previously described. 

Table 4 shows the outcomes of using radiomic qualities to 

categorise survival groups into three groups, while table 5 

shows the outcomes of using radiomic characteristics to 

categorise survival groups into two groups. To ensure the 

categorization approach is reliable, a five-fold cross 

validation is performed. Using XgBoost to three-class 

classification results in an accuracy of 62% and an AUC 

of 73%, much outperforming alternative approaches. 

After this change, the classification's efficiency increased 

by 4%. By using the LGBM algorithm, we can raise the 

accuracy by 6% and the AUC by 73% when classifying 

data into two groups. 

 

 

Prediction performance of survival rate (three 

classes) 

SVM 
Random 

Forest 

XgBoo

st 
LGBM 

Accuracy (in %) 

 

featur

es 

Hand 

crafte

d  

0.5714 0.5058 0.5141 0.5206 

Deep 

featur

es 

0.5434 0.5790 0.5450 0.5242 

Sensitivity 

featur

es 

Hand 

crafte

d 

0.5161 0.5390 0.5321 0.5317 

Deep 

featur

es 

0.5001 0.5122 0.5451 0.5728 

Specificity 

featur

es 

Hand 

crafte

d 

0.5577 0.5651 0.5533 0.5939 

Deep 

featur

es 

0.5140 0.5806 0.5285 0.5114 

F1 score 

featur

es 

Hand 

crafte

d 

0.5396 0.5396 0.5986 0.5309 

Deep 

featur

es 

0.4781 0.4522 0.5012 0.5621 

ROC (AUC) 

featur

es 

Hand 

crafte

d 

0.5001 0.5938 0.5985 0.5973 

Deep 

featur

es 

0.5680 0.5805 0.5939 0.6192 

Table 2. Survival rate predictions for BraTS 2017, 

separated into three groups (low, medium, and high) based 

on the use of both hand-crafted features and deep features. 

 Prediction performance of survival rate 

(two classes) 

SVM 

Rando

m 

Forest 
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M 

Accuracy (in %) 

 

feature

s Hand 
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7 
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feature

s 

0.615
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8 
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feature

s Hand 

crafted 

0.658
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0.8066 0.6458 

0.585

2 

Deep 

feature

s 

0.672

7 
0.6117 0.6617 

0.622

7 

Specificity 

feature 0.703 0.5183 0.6558 0.668
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8 

F1 score 

feature

s Hand 

crafted 

0.678
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0.6521 0.6472 
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7 

Deep 

feature
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0.611

9 
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1 

ROC (AUC) 

feature

s Hand 

crafted 

0.680

8 
0.6625 0.6507 

0.626

8 

Deep 

feature

s 

0.615

0 
0.6639 0.6658 

0.653

3 

Table 3. Predictions of survival rates for BraTS 2017 are 

split into two groups (low and high) based on the use of 

hand-crafted features and deep features. 

 

SVM 
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m 
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st 

LGB
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Accuracy (in %) 

Averag

e 

0.604

1 
0.5902 0.5926 

0.626

1 

standar

d 
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n 𝜎 

(SD) 

2.23 2.5 2.32 2.21 

Sensitivity 

Averag

e 
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4 
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d 
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2.7 2.1 2.81 2.82 
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9 
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d 
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n 𝜎 

(SD) 

F1 score 

Averag

e 

0.470

6 
0.3612 0.4170 
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2 

standar

d 

deviatio

n 𝜎 

(SD) 

2.4 2.56 2.21 2.1 

ROC (AUC) 

Averag

e 

0.613

2 
0.5778 0.6024 

0.636

3 

standar

d 

deviatio

n 𝜎 

(SD) 

3.11 3.3 3.21 3.12 

Table 4. Survival rate prediction using proposed radiomic 

characteristics for BraTS 2017: mean and standard 

deviation from five separate runs (σ [SD]) three groups of 

survivors were identified by a different radiomic feature. 

Figure 5 shows how ROC curves were built to verify the 

quality of results received from different radiomic feature 

classifiers. A genetic algorithm is a type of optimization 

search method; it is built to enhance search efficiency 

even for difficult problems, and it does so without 

requiring any kind of local optimal solution. [32] Each 

solution in a GA is updated over time as the population 

evolves under the guidance of a fitness function to achieve 

population optimization. We go to such lengths to ensure 

the highest quality outcomes. Particle swarm optimization 

(PSO), another bio-inspired optimization method, is 

employed to compare the results. Using an iterative 

process that compares a potential solution to one that has 

already been optimized, PSO can locate the best option.  

In this study, we combine these two optimisation 

procedures with a machine learning-based strategy to 

enhance the accuracy of our survival prediction model. 

Each of SVM-GA, LGBM-GA, XgBoost-GA, and RF-

GA, as well as SVM-PSO, LGBM-PSO, XgBoost-PSO, 

and RF-PSO, are evaluated for their performance. Here, 

we use genetic algorithms and particle swarm optimisation 

to maximise the accuracy of our forecasts in accordance 

with a predetermined set of standards. As can be shown in 

Table 6, the GA method outperforms PSO in the 3-class 

survival group, whereas PSO offers more accurate results 

in the 2-class classification. With the RF-Fused feature-

GA method, the proposed scheme's accuracy went up from 
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59% to 67%, and the AUC went up from 69% to 74%, 

both for 3-class survival classification. Using the Lite 

GBM-Fused feature-PSO method to the 2-class survival 

group classification increases accuracy from 68% to 79% 

and area under the receiver operating characteristic curve 

(AUC) from 68% to 80%. 

 

 
Fig 5. ROC Curves for different models with 3 class and 2 

class prediction 
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3 
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4.12 4.3 4.25 4.18 

Table 5. The average and standard deviation of the results 

from five separate iterations of a survival rate prediction 

model using the proposed radiomic properties for BraTS 

2017 (σ [SD]). 

c. Statistical Analysis 

Table 7 displays the results of a statistical analysis 

performed using the ANOVA test, where the area under 

the curve (ROC) value is considered and the significance 

level (𝛼) is set to 0.05. To be more specific, the null 

hypothesis claims that the results obtained by multiple 

machine learning algorithms using different sets of 

characteristics are not significantly different from one 

another. That's in contrast to the competing theory, which 

posits a very sizable variation. Each of these requirements 

must be met before we can accept that this hypothesis is 

true. The larger p-value in this case (0.370986762 for 3-

class and 0.942262483 for 2-class) shows that there is 

little to no difference in the performance of the three 

strategies, making the suggested survival prediction 

generalised and algorithm-agnostic. Again, the fact that 

the p-value for 2-class is greater shows that the overall 

performance of the various approaches is virtually same. 

In a similar vein, the study is performed to learn how the 

attributes impact the reliability of the forecast. It was 

determined that the p-value for the 3-class was 
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0.172210523, and that for the 2-class it was 0.187646728. 

While this may imply that there is not a huge difference 

between the feature sets, the fact that the significance 

level was slightly above 0.05 shows that it does effect 

performance. 

Another statistic that evaluates the prognosis's accuracy in 

a clinical setting is the diagnostic odds ratio (DOR). The 

utility of a diagnostic test can be calculated with its help. 

[38] The probability of a positive test result for a given 

class can be defined as the ratio of the probabilities of a 

positive result for that class to the probabilities of a 

negative result for that class. To put it another way, it 

assesses the likelihood of a favorable result in each 

scenario. Equation 8 shows that DOR's specificity and 

sensitivity are independent variables (8). A DOR greater 

than 1 indicates a more successful test, while a DOR less 

than 1 suggests the technique should be improved. The 

results of the provided approach cannot be inferred from 

the fact that the DOR value is one. Whole tumour 

extraction has a DOR of 1269.29 CT, improved tumour 

extraction of 2033.99, and necrotic tumour extraction of 

648.00 for the segmentation job. The tumor's modest and 

complete spread makes is difficult to distinguish the 

necrotic area from the remainder of the tumour. Using 

fused features for a 2-class classification, the LGBM 

classifier's maximum DOR value is equal to 2.9595. The 

current value, obtained using XgBoost's 3-class classifier, 

is 1.1201. Predicting the overall survival rate is helpful in 

the clinic, as indicated by the number, but doing so 

remains a challenge for scientists due to the wide 

variation in tumour types and patient overall survival. 

Diagnostic odds ratio (DOR) =                    

(8) 

Table 6. Optimization algorithm and the median survival 

rate prediction using fused features in a 5-fold cross-

validation study 

  SVM 
Random 

Forest 
XgBoost LGBM 

Genetic algorithm (%) 

Two classes prediction 

Accuracy 

(in %) 
0.7508 0.7575 0.7843 0.7524 

F1 Score 0.7667 0.75 0.7772 0.7481 

(AUC) 

ROC 
0.7675 0.7554 0.7791 0.7508 

Three class prediction 

Accuracy 

(in %) 
0.7407 0.7124 0.6719 0.6234 

F1 Score 0.6116 0.5355 0.6123 0.5922 

(AUC) 

ROC 
0.7403 0.707 0.7492 0.726 

Optimization of PSO (%) 

Two classes prediction 

Accuracy 

(in %) 
0.7363 0.7969 0.7363 0.7363 

F1 Score 0.736 0.7966 0.7278 0.736 

(AUC) 

ROC 
0.7388 0.8 0.7277 0.7388 

Three class prediction 

Accuracy 

(in %) 
0.6102 0.5855 0.5731 0.604 

F1 Score 0.5857 0.4996 0.4466 0.5364 

(AUC) 

ROC 
0.726 0.677 0.6547 0.7034 

Table 7. Analysis of the p-value (significance level = 

0.05) significance level of the impact of various factors on 

the prediction of survival days and Effect of different 

algorithm 

  

Features 

Hand 

crafted 

   Deep 

feature

s 

Radiomi

c 

p-value 

(α= 0.05) 
Features

/ 

Algorith

m 

features 

prediction 

of Three 

Class 

survival  

    

SVM 0.5985 0.589 0.6324 
0.172210

5 

Random 

Forest 
0.5985 0.5978 0.6143  

XgBoost 0.5974 0.6456 0.6879   

LGBM 0.6745 0.657 0.7234  

p-value 

(α= 0.05)  

0.370986

8 
      

prediction 

of two 

Class 

survival  

    

SVM 0.5873 0.5879 0.5764 
0.187646

7 

Random 

Forest 
0.5786 0.5987 0.6234  

XgBoost 0.5768 0.5723 0.6287   

LGBM 0.5908 0.5654 0.6983  

p-value 

(α= 0.05)  

0.942262

5 
      

5. Conclusion   

This article delves into the topic of how many days on 

average an HGG person can expect to survive for. If the 

brain tumour is successfully segmented, then this 

prognosis will be accurate. The proposed method starts 

with an initial period of time spent on preparing the data. 

When applied to a collection of MRI scans from different 

locations, this method helps standardise the pixel 

intensities. Spending less on computers is another  
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benefit of this technique. Both the deep features computed 

by CNN and the manually produced attributes, such as 

texture and volume, are extracted from the segmented 

parts of the tumour. Hence, tumour segmentation is a 

crucial stage [39,40] that needs to be completed prior to 

feature extraction, and the efficiency of survival rate 

prediction is dependent on the accuracy of the 

segmentation. The ability of deep models to automatically 

extract essential characteristics from the data using highly 

effective convolutional and pooling operations has given 

them a significant advantage on their more traditional 

ones in a number of medical imaging applications. 

Getting an F1score reveals how precise the segmentation 

performed. Then, the prediction task is executed taking 

the feature extraction, the deep features, and the 

integrated radiomic characteristics into account, and the 

performance is thoroughly investigated. The purpose of 

using principal component analysis (PCA) during 

merging is to reduce the number of dimensions in order to 

select those that yield the maximum accuracy with the 

lowest increase in computational cost. By using a wide 

variety of machine learning algorithms for prediction, the 

proposed method has been improved and made algorithm 

independent. These algorithms include RF, SVM, LGBM, 

and XgBoost. Algorithm independence in terms of the 

scheme's accuracy is further demonstrated through 

statistical analysis. The model's superior performance is a 

result of the bio-inspired optimisation algorithm's 

combination of the inherent extraction of deep features 

with more conventional, hand-crafted features. But 

nevertheless, due to the limited number of individuals 

available at this time, there is a great deal of space for 

investigation and improvement of the survival days 

forecast. Adding a large dataset for performance and 

robustness verification, as well as a cutting-edge deep 

learning methodology for classification, would be great 

steps forward for this strategy. 
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