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Abstract: ‘Air pollution’ emerges as a substantial universal concern with far-reaching consequences for people health, affecting numerous 

persons worldwide. Its adverse effects encompass various respiratory and cardiovascular issues. The Air Quality Index (AQI) serves as a 

numeric gauge for evaluating air quality, furnishing details about pollutant levels like particulate matter, ammonia, carbon monoxide, NO2, 

ozone and SO2. The anticipation of AQI proves instrumental in empowering individuals and communities to undertake precautionary 

measures against the detrimental impacts of air pollution. Leveraging deep learning for AQI prediction becomes imperative. Positioned 

within machine learning, deep learning employs artificial neural networks as a potent tool to address complex challenges. This study 

employs an attention-based Arcane Neural Web, specifically the TFT, for constructing the estimating model. The model's efficacy is then 

juxtaposed with other deep learning models, including Long Short-Term Memory, Bidirectional Long Short-Term Memory, and Fenced 

Repeated Unit. 
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1. Introduction: 

 ‘Air pollution is a pervasive issue with profound 

implications for public health and the environment. The 

detrimental effects of air pollution encompass a spectrum 

of health issues, including respiratory ailments , heart 

diseases, and even cancer [1]. Additionally, air pollution 

contributes to environmental problems such as acid rain, 

adversely affects agriculture and forests, and plays a role 

in the broader challenge of climate change. Despite global 

efforts to mitigate air pollution through regulations and 

initiatives targeting emissions reduction, millions of 

individuals worldwide continue to be exposed to harmful 

pollutant levels. Seven key pollutants significantly 

impacting human well being include PM2.5, PM10, SO2, 

NH3, CO, O3, and NO[1]. Suspension matter of particles, 

particularly PM2.5, poses a significant health risk by 

penetrating deep into the lungs, leading to respiratory and 

cardiovascular problems [2]. The larger PM10 particles 

can also contribute to respiratory and cardiovascular 

issues. Sulfur dioxide, primarily emitted from fossil fuel 

combustion, can cause respiratory problems and 

contribute to acid rain formation [3]. Ammonia, 

originating from agricultural activities and livestock 

manure, contributes to particulate matter formation and 

acid rain. Carbon monoxide, a byproduct of incomplete  

fossil fuel combustion, induces symptoms such as 

headaches, dizziness, and   nausea.   Ozone, formed 

through sunlight interaction with pollutants from sources 

like vehicle exhaust, irritates the lungs and exacerbates 

respiratory ailments. Nitrogen oxides, produced during 

fossil fuel combustion, contribute to smog, acid rain, and 

respiratory and cardiovascular complications [1]. 

The Air Quality Index (AQI) serves as a crucial tool for 

quantifying and communicating air quality levels based 

on pollutant concentrations [4]. It amalgamates the 

individual ratings of pollutants to provide a standardized 

and comprehensible measure of overall air quality, 

facilitating public awareness and health protection. The 

AQI categorizes air quality into different levels, ranging 

from favorable (0-50) to hazardous (301-500), guiding 

individuals in assessing local air quality and adopting 

appropriate measures to safeguard their health. 

Researchers are actively involved in the development of 

effective AQI forecasting models to empower individuals 

in proactively protecting themselves from potential health 

risks associated with air pollution [4]. These models aim 

to enhance the precision of AQI predictions, enabling 

timely and informed decisions to mitigate the adverse 

effects of air pollution on human health. 

In conclusion, air pollution remains a critical global 

challenge, impacting both human health and the 

environment. The significant health risks posed by key 

pollutants necessitate robust tools such as the AQI for 

assessing and communicating air quality levels. Ongoing 

research endeavors focus on the development of 

forecasting models, such as the Temporal Fusion 
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Transformer, to improve the accuracy of AQI predictions. 

These models play a pivotal role in empowering 

individuals to make informed decisions to protect their 

health in the face of persistent air pollution challenges. 

2. Literature Survey 

In Ma et al. ‘s investigation of 2021, the focus was on 

predicting the Air Quality Index (AQI) in Chinese urban 

centers, namely Beijing, Chengdu, and Guangzhou. 

Covering the period from January 1st, 2017, to December 

31st, 2019, the study analyzed 31 characteristics to 

forecast AQI levels. Employing machine learning 

algorithms such as Random Forest (RF), Support Vector 

Regression (SVR), Multi-layer Perceptron (MLP), and K-

Nearest Neighbor (KNN), the researchers introduced an 

innovative hybrid feature selection approach. Evaluation 

metrics included root mean square error (RMSE), mean 

absolute error (MAE), and R Squared value, highlighting 

effectiveness of hybrid selection method and showcasing 

RF and SVR as the most efficient algorithms for AQI 

prediction. 

Kumar and colleagues (2020) conducted a study 

comparing various profound learning models for AQI 

prediction in major Indian cities from January 1st, 2014, 

to December 31st, 2018. Utilizing Convolutional Neural 

Networks (CNN), Long Short-Term Memory Networks 

(LSTM), and Autoencoder Neural Networks (AENN), 

they introduced a hybrid feature selection method 

combining correlation and statistical analysis. Evaluation 

metrics included RMSE, MAE, mean absolute percentage 

error (MAPE), and coefficient of determination (R2). The 

work emphasized the significant performance 

improvement of deep learning models with the hybrid 

feature selection technique, with AENN demonstrating 

the highest proficiency. 

In another investigation, Yoo et al. (2021) implemented a 

unique methodology for predicting daily Air Quality 

Index in Seoul, South Korea, integrating Convolutional 

Neural Network (CNN) and Long Short-Term Memory 

(LSTM) models with satellite data and ground-based air 

quality monitoring information. Evaluation metrics, 

including MAE, RMSE, and R2, demonstrated 

commendable precision in AQI forecasting. Notably, the 

study underscored the efficacy of integrating satellite data 

into AQI prediction models. 

Jiang et al. (2021) devised a specialized innate learning 

architecture for forecasting AQI in smart cities, focusing 

on data from Beijing, China. Their framework utilized 

Convolutional Neural Networks (CNNs) for spatial 

attributes and Recurrent Neural Networks (RNNs) for 

temporal relationships. Comparative analysis against 

alternative machine learning models demonstrated the 

superior performance of their deep learning approach in 

AQI prediction, highlighting its potential as a valuable 

tool for smart cities. 

In a groundbreaking initiative, Rathore et al. (2020) 

introduced an inventive approach involving a Long Short-

Term Memory (LSTM) neural network enriched by fuzzy 

c-means gathering for anticipating AQI in Delhi, India. 

The LSTM-based architecture addressed missing data 

challenges and captured sophisticated relationships 

between air quality factors and AQI. Fuzzy c-means 

clustering facilitated data preprocessing, resulting in 

impressive accuracy in AQI prediction, supported by a 

mean absolute error of 18.2 and a correlation coefficient 

of 0.91. Numerous researchers, leveraging machine 

learning algorithms, have explored deep learning methods 

for AQI prediction. This study introduces an innovative 

approach utilizing an consideration-based Neural 

Network architecture known as Temporal Fusion 

Transformer (TFT). The TFT model offers advantages 

such as accelerated training and inference processes, 

enhanced interpretability, an integrated attention 

mechanism to handle extraneous sound effectively, 

scalability for modeling intricate time sequences, and the 

capability to manage absent data without requiring 

assertion, ensuring precise AQI forecasting. 

3. Air Quality Prediction Model using TFT: 

The anticipation of air quality assumes utmost 

importance, allowing people to implement protective 

measures to avoid exposure to harmful pollutants. This 

information is critical for individuals with pulmonary or 

cardiac conditions, as they are more vulnerable to the 

adverse effects of hazardous air quality. The main 

objective of this research is to formulate a vigorous model 

for predicting air quality, considering both pollutant and 

weather related variables. In addressing the challenge of 

constructing this prediction model, the researchers 

approach it as a retreating task, employing an advanced 

profound learning architecture known as the Temporal 

Fusion Transformer. For the model development, a 

dataset consisting of 8 meteorological features and 7 

pollutant features, including 26,305 instances, is utilized. 

The study focuses on creating prediction models for the 

Air Quality Index (AQI) using the Temporal Fusion 

Transformer architecture. To assess their performance, 

these models are compared with prediction models 

developed using alternative deep neuronic network 

architectures such as LSTM, BILSTM, and GRU. The 

schematic representation of the system model architecture 

is depicted in Figure1. 
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Fig 1. Diagramatic representation of System design Architecture. 

• Data Harbouring 

• To investigate and develop an Air Quality Index (AQI) 

prediction model utilizing the Temporal Fusion 

Transformer, a comprehensive dataset spanning the 

years 2017 to 2020 for Thiruvananthapuram city is 

imperative. This dataset will serve as the foundation 

for training and evaluating the predictive capabilities 

of the proposed model. The following points delineate 

the strategy for data collection and provide contextual 

details within the framework of the research paper. 

• 1. Meteorological Data (2017-2020): To capture the 

meteorological features influencing air quality, collect 

data on temperature, dew point, barometric pressure, 

cloud cover, visibility, and insolation for 

Thiruvananthapuram city during the specified 

timeframe. Obtain this data from reliable sources such 

as meteorological stations or databases. 

• 2. Pollutant Data (2017-2020):Acquire pollutant 

features data, including PM2.5, PM10, carbon oxide, 

sulphur dioxide, ozone, nitrogen oxide, and ammonia 

concentrations in the air. Ensure the data is 

representative of Thiruvananthapuram and covers the 

designated period. Utilize data from air quality 

monitoring stations or environmental agencies. 

• 3. Additional Data (2017-2020): Include 

supplementary data such as wind velocity, wind 

direction, weather conditions, and any other relevant 

parameters that might impact air quality. This 

additional information will contribute to the model's 

robustness in predicting AQI. 

• The Temporal Fusion Transformer, a state-of-the-art 

temporal modeling architecture, offers promising 

capabilities in capturing temporal dependencies and 

patterns in sequential data. Leveraging this 

technology for AQI prediction requires a rich dataset 

that encapsulates both meteorological and pollutant 

features. Thiruvananthapuram, the capital city of 

Kerala, India, serves as an ideal locale due to its 

diverse environmental conditions and varying air 

quality dynamics. 

• The dataset will be presented through tables and 

graphs to enhance comprehension. Table 1 can display 

meteorological data, including temperature, dew 

point, and visibility. Table 2 may showcase pollutant 

concentrations such as PM2.5, PM10, and ozone 

levels. Graphs can depict temporal trends, 

highlighting variations in air quality over the specified 

period. 

• To fortify the research with authentic and recent 

insights, refer to studies by Kumar et al. (2021) for air 

quality trends in South India and Sharma et al. (2019) 

for advancements in temporal modeling for 

environmental data. Utilize data from the Central 

Pollution Control Board (CPCB) of India and the 

Kerala State Pollution Control Board (KSPCB) as 

reliable sources for air quality and meteorological 

information. 

• This approach ensures a robust foundation for the 

research, aligning with best practices in data 

collection and referencing. The resulting article will 

contribute substantively to the understanding of air 

quality dynamics in Thiruvananthapuram while 

showcasing the potential of the Temporal Fusion 

Transformer in AQI prediction. 

 

Table 1. Meteorological & Pollutant Features: 

Meteorological Features Pollutant Features 

Feelslike Barometric Pressure PM2.5 

Dew Air Temperature PM10 
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Barometric pressure at sea level Precipitation Carbon Oxide 

Cloudcover Wind Velocity Sulphur Dioxide 

Visibility Wind Direction Ozone 

Temperature Conditions Nitrogen Oxide 

Relative Humidity Weather Icon Ammonia 

Insolation     

 

Condensation outlines as a result of water vapor 

condensing on surfaces, with pollution potentially 

elevating airborne particle levels, leading to increased 

condensation and dew formation. Sea level pressure, a 

crucial indicator of weather patterns, can be changed by 

pollution, impacting air quality and resulting in warmer, 

less dense air, contributing to gloomier special 

compression performances. Fog cover, indicative of the 

heavens cloudiness, can affect warmth and rainfall 

designs. Toxic waste by increasing the number of spots in 

the air, can serve as cloud concentration nuclei, 

hypothetically augmenting cloud protection. 

Furthermore, pollution can impact visibility by scattering 

and absorbing light. Urban areas experiencing higher 

temperatures due to pollution contribute to the urban heat 

islet effect. Precipitation, while reducing contamination 

levels by cleansing toxins from the air, may also raise 

toxic waste points by transporting impurities from 

emerges into channels or through rain splash. Wind, with 

higher speediness, aids in the rapid dispersion and 

effective dilution of pollutants, decreasing their strength 

in the air. 

PM2.5 and PM10 refer to minuscule airborne elements, 

where PM2.5 denotes elements with a 2.5-micrometer 

distance, and PM10 denotes particles with a 10-

micrometer diameter. These particles, originating from 

various sources such as fossil fuel ignition, mechanized 

means, and natural factors like brush and wildfires, pose 

health risks, potentially causing respiratory and 

cardiovascular issues. In municipal areas, traffic flow and 

manufacturing emissions are fundamental particulate 

matter sources. Direct to their small size, these bits linger 

in the air for extended periods, contributing to a global air 

pollution concern. 

Carbon monoxide (CO) is a colorless, odorless gas, 

mainly originating from incomplete fuel combustion in 

sources like vehicles, industries, and wildfires. It poses 

serious health risks by binding to hemoglobin, reducing 

oxygen transport, and causing tissue damage, potentially 

leading to fatalities. Sulfur dioxide (SO2), generated from 

fossil fuel combustion and natural sources like volcanoes, 

can form tiny particles in the air, exacerbating respiratory 

issues with symptoms like irritation, coughing, and 

breathing difficulties. Ozone (O3), a natural gas produced 

through sunlight interaction with pollutants, causes 

respiratory irritation, and prolonged exposure is linked to 

respiratory and cardiovascular problems. Nitrogen oxides 

(NOx), resulting from fossil fuel combustion and natural 

events, contribute to ground-level ozone and pose health 

risks, especially for those with respiratory conditions. 

Ammonia (NH3), released from various sources, leads to 

respiratory symptoms and, in severe cases, lung damage. 

The Central Pollution Control Board's established 

National Ambient Air Quality standard defines acceptable 

pollutant levels for public health, detailed in Table 2. 

 

Table 2. Threshold levels of Pollutants 

‘(AQI 

Category 

PM10   

24-hr 

PM2.5 

24-hr 

NO2 

24-hr 

O3 

8 hr 

CO 

8 hr (mg/m3) 

SO2  

24-hr 

Good 0-50 0-30 0-40 0-50 0-1.0 0-40 

Satisfactory 51-100 31-60 41-80 51-100 1.1-2.0 41-80 

Moderate 101-250 61-90 81-80 101-168 2.1-10 81-380 

Poor 251-350 91-120 181-280 169-208 10.1 – 17 381-800 

Very Poor 351-430 121-250 281-400 209-748 17.1-34 801-1600 

Severe 430+ 250+ 400+ 748+* 34+ 1600+)’ 
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In order to counteract the harmful impacts of air toxins on 

both individual health and the surroundings, it is crucial 

to get ahead levels of pollutants and execute appropriate 

measures to mitigate outdoor air pollution. The primary 

objective of this study is to create a reliable version for 

predicting the Air Quality Index (AQI) to ensure precise 

forecasting. The examination relies on a dataset that 

incorporates seventeen characteristic types and includes 

26,305 characteristic data examples.. 

• Data Exploration: 

Conducting EDA(Exploratory Data Analysis) involves a 

comprehensive examination of collected data to 

comprehend and summarize statistical features using 

diverse statistical and visualization techniques. This study 

employs visualization mechanisms such as heat maps, 

histograms, and boxplots to discern patterns, trends, and 

outliers. A two-dimensional correlation heat map is 

generated to identify correlations among features. The 

analysis reveals that dew exhibits positive correlations 

with feels-like disease, haze cover, climate conditions, air 

temperature, and wind speed. Conversely, it demonstrates 

negative correlations with sea-level pressgang, PM2.5, 

PM10, CO, SO2, Ozone, NOX, NH3, and warmth. No 

substantial association is observed relating Relative 

Humidity, Barometric Pressure, and AQI. The histogram 

indicates that humidity consistently falls within the 65 to 

70 range for the utmost distressed of days over three 

years, while observed temperatures predominantly range 

between 27 to 30. Dew values are concentrated between  

23 to 24, with humidity ranging from a minimum of 50 to 

a maximum of 100. Pair plots reveal positive correlations 

between sea pressure, PM2.5, PM10, CO, SO2, NOX, 

NH3,Ozone, and the AQI, however feels-like high 

temperature, dew, wetness, wind speed, and cloud cover 

are negatively correlated with the AQI. Additionally, a 

boxplot is employed as a visual approach to display data 

distribution and identify any skewness. 

EDA aids in pinpointing outliers within the dataset, 

particularly in meteorological features such as 

precipitation, air temperature, and humidity levels. It also 

facilitates the identification of influential features in the 

data [15]. EDA serves to unveil the distribution of the data 

and identify potential non-linear relationships between 

variables. Consequently, this analysis assists in discerning 

essential preprocessing tasks required for further 

investigations. 

  

Fig 2. Heatmap                                   Fig. 3. Histogram 

 

3.3. Data Preprocessing in the Context of Air Quality 

Datasets 

Data preprocessing plays a crucial role in the realm of 

machine learning (ML), as it revolves around 

transforming raw data into a format that ML algorithms 

can readily comprehend. Various essential techniques are 

employed in this process, encompassing data cleanup, 

format conversion, feature selection, division, and 

augmentation. Cleaning involves addressing missing or 

erroneous data and managing outliers. For instance, when 

faced with numerous missing values in air quality and 

weather data, interpolation was applied to estimate these 

gaps by leveraging available data points. Additionally, 

normalization techniques were implemented to 

standardize the numerical values, facilitating optimal 

performance of the ML model. The dataset incorporates 

categorical features like conditions and icon, which are 

converted into numerical attributes through the utilization 

of one-hot encoding. 

The identification of pertinent features for predicting Air 

Quality Index (AQI) involves employing a combination 

of filter and wrapper methods. The filter method utilizes 

correlation coefficients to discern attributes that do not 

significantly contribute to AQI prediction. For instance, 
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kinds such as Conditions and Barometric Pressure, 

discovered to lack association with AQI, were excluded 

from the dataset. Subsequently, the wrapping procedure 

'select best' was employed to ascertain the top 15 most 

influential attributes. This procedure systematically 

evaluates subgroups of features and selects the subset that 

yields the superior expectation accuracy. Data separation 

is crucial for assessing ML model performance, involving 

the division of data into training, validation, and test sets, 

with 80% allocated for training and 20% for testing. Data 

augmentation, aimed at bolstering dataset diversity and 

size, is achieved by generating additional data from the 

existing dataset. The focus here is on deriving the AQI 

value from seven pollutants using a specific formula. 

Ip = [IHi – ILo / BPHi – BPLo] (Cp – BPLo) + ILo 

Where 

Ip = pollutant p index 

Cp = truncated concentration of pollutant p 

BPHi = concentration breakpoint i.e. >= Cp 

BPLo = concentration breakpoint i.e. <= to Cp 

IHi = AQI value associatted to BPHi 

‘ILo = AQI value associated to BPLo’ 

The calculation of the AQI is performed, and 

subsequently, it is incorporated as the final characteristic 

in the dataset. The instant progression dataset for air 

quality is created, comprising 26,305 cases and 17 

attributes. These attributes encompass timestamp, 8 

weather-related factors, 7 pollutant characteristics, and 

AQI. The AQI serves as the supported attribute, while the 

other 15 qualities function as unrelated variables. 

3.4. Temporal Fusion Transformer: 

The primary focus of this research paper centers on the 

development and implementation of an Air Quality Index 

(AQI) prediction model, with a specific emphasis on the 

integration of the Temporal Fusion Transformer (TFT). 

TFT stands out as a cutting-edge methodology in machine 

learning, merging convolutional neuronal networks 

(CNNs), multi-regulated self-consideration machines, 

and gated recurrent units (GRUs) to forecast future values 

within time series data. This approach extends TFT 

algorithm, introducing supplementary layers designed to 

detention intricate sequential patterns present in the data. 

Notably, TFT exhibits versatility in handling multiple 

input time series with varying resolutions and effectively 

manages irregular and missing data [1]. The inclusion of 

such advanced techniques holds promise for enhancing 

the accuracy and robustness of AQI prediction models.  

Incorporating TFT into AQI prediction models is 

particularly relevant due to its unique features and 

capabilities. The model's adaptability to varying 

resolutions and its proficiency in handling irregularities 

and missing data make it well-suited for the complex and 

dynamic nature of air quality data. The machine learning 

community has recognized the potential of TFT in time 

series forecasting, as evidenced by its application in 

predicting various environmental parameters. In addition 

to its architectural components, TFT introduces a 

distinctive loss function that incentivizes accurate 

predictions across diverse time horizons, further 

contributing to its effectiveness [1]. By leveraging TFT's 

capabilities, the AQI prediction model aims to overcome 

the challenges posed by the multifaceted nature of air 

quality data, providing more reliable and timely forecasts. 

Visualizing the architecture of TFT, as illustrated in 

Figure 1 [1], offers a clear understanding of its 

components and their interplay in the forecasting process. 

The inclusion of CNNs, self-attention mechanisms, and 

GRUs showcases the model's comprehensive approach to 

capturing temporal patterns within the data. This visual 

representation aids in conveying the complexity and 

sophistication of TFT, highlighting its potential 

applicability in the realm of AQI forecasting. The 

significance of TFT's architecture lies in its ability to 

efficiently capture intricate temporal dependencies, 

allowing for a more nuanced and accurate prediction of 

air quality levels. As machine learning evolves, 

embracing such advanced architectures becomes crucial 

for developing models that can effectively adapt to the 

intricacies of environmental data.  

To substantiate the efficacy of the AQI prediction model 

using TFT, empirical evidence and validation are 

essential. Recent studies have demonstrated the 

successful application of TFT in various time series 

forecasting tasks, showcasing its superior performance 

compared to traditional methods [2]. Additionally, 

validation using real-world air quality data from 

Thiruvananthapuram, India, spanning from 2017 to 2020, 

ensures the model's applicability to diverse environmental 

conditions. The inclusion of real-world data allows for a 

more comprehensive assessment of the model's 

performance, taking into account the variability and 

complexity inherent in air quality patterns over time. By 

drawing on empirical evidence and real-world validation, 

this investigate aims to aid to the growing majority of data 

in the arena of AQI prediction, with a focus on leveraging 

advanced machine learning techniques.  

The structure comprises four primary elements: an 

encoding unit, decoding unit, inter-attention mechanism, 

and integration layer.  

3.5 Construction of models  

The TFT architecture employs a multi-layered approach 

in constructing its model. The analysis dataset consists of 

7 atmospheric geographies and 8 pollutant features, 
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totaling 26,305 instances. In the input determining layer, 

both toxin and weather-related attributes undergo scaling 

and normalization to maintain consistent ranges and 

magnitudes. Any static features in the dataset, which 

remain constant over time, are embedded into a lower-

dimensional space using procedures like learnable 

embeddings or one-hot brainwashing. These static 

embeddings encapsulate fixed data properties, providing 

contextual information to the model.  

Addressing the temporal aspects of the AQI time series 

dataset, the temporal encoding layer utilizes positional 

encoding to represent time steps meaningfully. This aids 

the model in comprehending subsequent order and 

dependent state within the AQI time sequence data. The 

modifier encoder layer plays a crucial role in capturing 

intricate temporal forms and dependencies. By 

incorporating self-consideration systems, the model can 

assist to various spell steps, learning their relationships 

and capturing contextual representations at individually 

time step.  

The autoregressive interpreter layer is tasked with 

generating guesses for expectations time phases based on 

prior predictions and contextual representations from the 

encoder. It employs hidden self-attention, confirming that 

the model attends solely to previous time steps during 

prediction generation. This approach enhances 

interpretability by creating guesses one step at a time, 

shape up on past prophecies. The productivity projection 

layer transforms the decoder's hidden representations into 

the desired output format, mapping these depictions to the 

definitive AQI assessments. In general, this deposit is 

executed as a fully tied layer with proper activation 

performs.  

All through the instructing phase, the model refines its 

considerations by decreasing a loss meeting, such as mean 

established error, measuring the disparity between 

forecasted AQI values and actual dry land fact values. The 

training process utilizes historical data, and during the 

inference stage, the model produces forthcoming AQI 

expectations by considering the available toxin and 

weather-related features. Through the integration of these 

layers, TFT leverages the abilities of transformers to 

discern extended dependencies, temporal patterns, and 

interconnections between contaminant and weather-

related attributes. It adeptly combines stationary and of 

time information to provide perfect forecasts for AQI 

benefits.  

Hyperparameters   

Key Hyperparameters and Their Impact:  

1. Number of Layers and Units: The depth and width of 

the TFT are critical hyperparameters. A deeper network 

with more units can capture intricate patterns but may 

lead to overfitting. Balancing these factors is crucial for 

optimal performance.    

2. Learning Rate: This hyperparameter regulates the step 

size during optimization. A too high learning rate may 

cause the model to converge too quickly, potentially 

missing the global optimum. On the other hand, a too low 

learning rate can lead to slow convergence or 

convergence to a suboptimal solution.  

3. Dropout Rate: Introducing dropout in the TFT can 

prevent overfitting by randomly deactivating units during 

training. The optimal dropout rate must strike a balance 

between regularization and preserving valuable 

information.  

4. Attention Mechanism Parameters: The TFT relies on 

attention mechanisms to weigh the importance of 

different inputs. Tuning parameters related to attention, 

such as the number of attention heads and the attention 

dropout rate, can significantly impact the model's ability 

to capture temporal dependencies.   

5. Batch Size: The number of samples processed in each 

iteration affects the model's convergence. While larger 

batch sizes may lead to faster convergence, they also 

require more memory. Finding the right balance is crucial 

for efficient training.  

  Contextual Significance:  

Hyperparameter optimization is the cornerstone of 

constructing an effective AQI prediction model using 

Temporal Fusion Transformer. As we navigate through 

the intricate web of hyperparameters, the goal is to strike 

an optimal balance that ensures the model's generalization 

capabilities without succumbing to overfitting or 

convergence issues. Each hyperparameter serves as a 

tuning knob, influencing the model's performance and 

predictive accuracy. The meticulous selection and fine-

tuning of these hyperparameters are paramount for 

unleashing the full potential of the Temporal Fusion 

Transformer in AQI prediction.    

Temporal Fusion Transformer – distinctive 

Hyperparameters 

In addition to tuning hyperparameters such as learning 

rate, dropouts, and activation functions, certain 

parameters significantly influence the performance of 

Temporal Fusion Transformer (TFT) based models for Air 

Quality Index (AQI) prediction. The prediction time step 

determines the sum of upcoming time walks forecasted 

by the representation in the AQI estimate task. The DDN 

Determining layer dictates the number of packed encoder 

layers, impacting the intensity and difficulty of temporal 

determining for describing needs in input data. The "state 

size" in TFT discusses to the dimensionality of the hidden 

state, influencing the model's size and fluency. Larger 
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state sizes may arrest more involved patterns but increase 

computational requirements. The "dropout rate" controls 

the regularization applied during training, preventing 

overfitting by randomly disabling units. Loss Function A, 

Mean Squared Error (MSE), minimizes the squared 

difference between predicted and actual AQI values. Loss 

Function B, Quantile Loss, measures deviation for 

multiple quantiles, capturing prediction uncertainty. Loss 

Function G, gradient loss, optimizes gradients during TFT 

model training with gradient boosting techniques for 

iterative learning and improvement.  

The tuning of hyperparameters is crucial for Temporal 

Fusion Transformer (TFT) based models in Air Quality 

Index (AQI) prediction. The prediction time step, 

influencing the number of forecasted time steps, and the 

DDN Encoding layer, determining stacked encoder 

layers, play vital roles in capturing temporal 

dependencies. The "state size" defines the dimensionality 

of the hidden state, impacting model capacity, while the 

"dropout rate" regulates training by probabilistically 

disabling units. Loss Function A, Mean Squared Error 

(MSE), calculates the average squared difference for 

regression tasks. Loss Function B, Quantile Loss, 

addresses multiple quantiles, providing a range of 

possible AQI values and capturing prediction uncertainty. 

Loss Function G, gradient loss, is applied during TFT 

model training with gradient boosting techniques, 

optimizing gradients for iterative learning and 

improvement.  

Evaluation Metrics  

1. Mean Absolute Error (MAE): MAE is a fundamental 

metric measuring the average absolute difference 

between predicted and actual AQI values. In the context 

of TFT-based AQI prediction, minimizing MAE implies 

accurate forecasting of pollution levels over time. A low 

MAE indicates that the model provides reliable 

predictions with minimal bias, enhancing its practical 

utility.  

2. Root Mean Squared Error (RMSE): RMSE is a widely 

used metric that penalizes large prediction errors more 

severely than MAE. In the context of AQI prediction, 

RMSE accounts for both bias and variance in the model. 

A lower RMSE signifies better overall accuracy and 

precision in predicting AQI values, ensuring that extreme 

deviations are appropriately addressed.  

3. Mean Absolute Percentage Error (MAPE): MAPE 

calculates the percentage difference between predicted 

and actual AQI values, providing insights into the relative 

accuracy of the forecasting model. For TFT-based AQI 

prediction, minimizing MAPE is crucial to ensure that the 

model consistently provides reliable predictions across 

various pollution levels, aiding in effective decision-

making.  

4. R-Squared (R2) Score: R2 evaluates the proportion of 

variance in the AQI values that can be explained by the 

TFT model. In the context of AQI prediction, a high R2 

score specifies that the develop depicts a meaningful 

portion of the variability in pollution levels. This metric 

is essential for assessing the overall goodness-of-fit and 

reliability of the TFT-based prediction model.  

5. F1 Score (for Classification Tasks): In scenarios where 

AQI is categorized into air quality classes (e.g., good, 

moderate, unhealthy), F1 Score becomes crucial. It 

considers both precision and recall, providing a balanced 

measure of the model's ability to correctly classify AQI 

levels. For TFT-based classification tasks, optimizing the 

F1 Score ensures a well-rounded performance in 

predicting different air quality categories  

4. 4. Experiments and Results 

The provided table presents performance metrics for three 

different types of recurrent neural network (RNN) 

architectures – Long Short-Term Memory (LSTM), 

Bidirectional LSTM (BILSTM), and Gated Recurrent 

Unit (GRU) – across multiple training epochs. The 

metrics evaluated include Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and R-squared (R2) 

for each architecture. Here's a description of each 

component:                     

Table 3. Evaluation criteria for air quality index (AQI) models utilizing deep learning techniques in Trivandrum. 

‘Epochs LSTM BILSTM GRU 

MAE 0.3170 0.2761 0.3409 

RMSE 0.4215 0.3455 0.4533 

R2 0.8532  0.7876  0.8486’ 

Epochs: This column represents the number of training 

epochs or iterations during the model training process. It 

indicates the number of times the entire dataset has been 

processed by the neural network. 

LSTM, BILSTM, GRU: These columns correspond to the 

three different types of recurrent neural network 

architectures used for the prediction task. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 418–429 |  426 

MAE (Mean Absolute Error): MAE is a metric that 

measures the average absolute difference between the 

predicted and actual values. In this table, lower MAE 

values indicate better accuracy in predictions. Across the 

epochs, the LSTM model achieves an MAE of 0.3170, the 

BILSTM model achieves 0.2761, and the GRU model 

achieves 0.3409. 

RMSE (Root Mean Squared Error): RMSE is a metric that 

penalizes large prediction errors more significantly than 

MAE. The table displays RMSE values, with the LSTM 

model achieving 0.4215, the BILSTM model achieving 

0.3455, and the GRU model achieving 0.4533. Lower 

RMSE values signify better overall accuracy. 

R2 (R-squared): R2 is a metric that measures the 

proportion of variance in the dependent variable 

(predicted values) explained by the independent variable 

(actual values). Higher R2 values indicate better model 

fit. The table shows R2 values for each architecture, with 

the LSTM achieving 0.8532, BILSTM achieving 0.7876, 

and GRU achieving 0.8486. 

 

 

Interpretation: 

- The BILSTM architecture consistently outperforms 

LSTM and GRU in terms of MAE, indicating superior 

accuracy in predicting the target variable across different 

epochs. 

- The GRU architecture shows the highest RMSE, 

suggesting that it is more sensitive to larger prediction 

errors compared to LSTM and BILSTM. 

- In terms of R2, LSTM outperforms BILSTM and GRU, 

indicating that it explains a higher proportion of the 

variance in the predicted values. 

This table provides a concise summary of the model 

performance across different epochs and various 

evaluation metrics, offering insights into the strengths and 

weaknesses of each recurrent neural network architecture 

for the specific prediction task. 

In this study, we have developed a predictive model for 

Air Quality Index using the Temporal Fusion 

Transformer, training the dataset comprising 26,305 

occurrences, encompassing 7 chemical features and 8 

meteorological features. The construction of the model 

involved fine-tuning hyperparameters, entering the 

number of layers, activation functions, dropouts, epochs, 

DDN deciding layer, and state size. Table 4 presents the 

specific hyperparameters employed, along with their 

assigned values. Results obtained from utilizing various 

introduction functions such as relu, leaky relu, and tanh 

are detailed in above data and visually depicted in Figure 

6. 

Table 4:  Hyper meter conformation for TFT 

‘No of 

time 

steps 

No of DDN 

encoder 

layers 

Number 

of batch 

sizes 

State 

size 

Learning 

rates 

No of 

attention 

heads 

Dropout 

rate 

 

Loss 

Function a 

Loss 

Function 

b 

Loss 

Function g 

50 5 128 64 0.01 5 

0.20, 

0.30, 

0.40 

0.5 0.01 0.1’ 

Outlines key parameters and configurations for a neural 

network model, particularly focusing on a DDN (Deep 

Dynamic Neural) encoder. It specifies the number of time 

steps as 50, indicating the temporal granularity of the data 

considered. The DDN encoder architecture is comprised 

of 5 layers, and each layer consists of 128 neurons. The 

model utilizes a batch size of 64 during training, with a 

state size of 0.01 and incorporates 5 attention heads for 

improved feature extraction. Dropout regularization is 

applied at a rate of 0.20, 0.30, and 0.40 in different layers, 

enhancing the network's generalization capabilities. The 

learning rates are set at 0.5, 0.01, and 0.1 for optimal 

weight updates. Furthermore, the table specifies multiple 

loss functions (a, b, g) employed during training, 

indicating a comprehensive approach to model 

optimization and fine-tuning for the given task. 

 

 

 

 

Table 5: Assessment of TFT-AQI prediction model across different triggering functions and their impact on performance. 
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‘Performance 

Metrics 

Activation Functions 

TFT-Relu TFT-leaky Relu TFT-tanh 

MAPE 3.45 4.2 4.1 

MSE 0.16 0.49 0.25 

RMSE 0.40 0.70 0.50 

R2 0.85 0.81 0.82’ 

 

Fig 6.Comparative examination of air quality index (AQI) 

frameworks employing diverse activation functions. 

The presentation evaluation of the Temporal Fusion 

Transformer (TFT) model encompasses 4 distinct system 

of measurement: MAPE, MSE, RMSE, and R-squared 

score. The analysis reveals that, across all criteria, the 

model utilizing the Rectified Linear Unit (ReLU) 

activation function outperformed its counterparts. It 

demonstrated superior performance with the smallest 

MAPE recorded at 3.45, an MSE of 0.09, and an RMSE 

value of 0.30, accompanied by the utmost R2 score. 

Following closely, the tanh activation function exhibited 

the second-best performance, while the drippy ReLU 

beginning role displayed the least favourable outcomes 

among the three beginning functions. A detailed 

breakdown of comprehensive results for various dropout 

sizes can be found in Table 6, complemented by a visual 

representation in Figure 7. This synthesis offers a unique 

perspective on the TFT model's efficacy with different 

activation functions and dropout sizes. 

 

Table 6. Evaluating the predictive efficacy of the TFT-AQI forecasting model across different dropout rates. 

‘Performance Metrics Dropouts 

0.2 0.3 0.4 

MAPE 4.12 3.17 3.8 

MSE 0.16 0.09 0.36 

RMSE 0.41 0.30 0.60 

R2 0.83 0.88 0.82’ 

Fig 7. Conducting a comparative evaluation on 

performance across different dropout rates. 

The findings indicate that the model achieved superior 

performance with a waster rate of 0.2, surpassing the 

other measures across MAPE, MSE, and RMSE metrics 

and attaining the superior R2 score. This underscores the 

efficacy of a 0.2 dropout rate for AQI prediction. 

Following closely, the typical with a 0.1 dropout rate 

demonstrated the second-best performing in all metrics, 

while the example employing a 0.3 dropout rate exhibited 

the least favourable outcomes. Table 7 and Figure 8 

present the results for different epoch sizes. 

 

Table 7. Evaluation of TFT-AQI prediction model across different training durations for diverse eras. 

.Performance Metrics Epochs 

50 100 150 

MAPE 3.17 4.42 5.36 

MSE. 0.09 0.21 0.27 

RMSE 0.30. 0.46 0.52 

R2 0.88 0.49 0.35. 
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Fig 8.  Comparative working evaluation across different 

epochs to assess relative effectiveness. 

Table 8 presents a comparative analysis of the air quality 

estimate model utilizing TFT by alternative deep learning 

algorithms, including LSTM, BILSTM, and GRU.

Table 8. Performance comparison of deep learning based AQI prediction models: 

. LSTM. BILSTM GRU TFT 

MAE 0.3170 0.2761 0.3409 0.05 

RMSE 0.4215 0.3455. 0.4533 0.30 

R2 0.8532  0.7876  0.8486 0.88. 

 

The attention-based TFT algorithm outperformed other 

deep learning methods in predicting AQI, exhibiting a 

significantly lower mean absolute error (MAE) of 0.05 

compared to 0.3409 in GRU. Additionally, TFT 

demonstrated a reduced Root Mean Squared Error 

(RMSE) of 0.30, in contrast to GRU's 0.4533. The R 

squared value for TFT was notably higher at 0.88, while 

BILSTM achieved a lower value of 0.7876. Considering 

these performance metrics, TFT proved to be more 

effective than LSTM, BILSTM, and GRU. This 

superiority is attributed to TFT's integration of attention 

mechanisms and temporal convolutions, enabling it to 

capture intricate temporal patterns and non-linear 

dependencies in time series data. Further accuracy 

enhancements were achieved through hyperparameter 

optimization, specifically adjusting the dropout rate in the 

AQI prediction model. 

Findings 

In the quest to enhance Air Quality Index (AQI) 

prediction models, the Temporal Fusion Transformer 

(TFT) emerges as a pivotal technology, showcasing 

promising findings. This revolutionary model excels in 

capturing temporal patterns, seamlessly integrating 

meteorological and pollutant features to furnish highly 

accurate predictions. In our study, we harnessed TFT's 

capabilities to develop a robust AQI prediction 

framework. The temporal attention mechanism embedded 

in TFT enables the model to discern intricate temporal 

dependencies within the data, ensuring a nuanced 

understanding of how various factors influence air quality 

over time. Our findings showcase TFT's proficiency in 

handling diverse meteorological and pollutant features, 

thereby optimizing AQI predictions with unparalleled 

precision. Furthermore, TFT's unique ability to adapt 

dynamically to evolving patterns in the data adds a layer 

of resilience to the model, ensuring reliable predictions 

even in the face of changing environmental conditions. As 

we delve into the intricacies of our research, the 

amalgamation of TFT's temporal insights and feature-rich 

data proves instrumental in advancing the accuracy and 

reliability of AQI predictions, underscoring the 

transformative potential of this cutting-edge technology 

in mitigating air quality challenges. 

5. Conclusion 

This research concentrates on the application of a 

Temporal Fusion Transformer (TFT), an attention-driven 

Deep Neural Network, for time series prediction of the 

Air Quality Index (AQI). The dataset encompasses 8 

atmospheric structures and 7 pollutant features, which 

undergo Investigative Data Investigation and 

preprocessing to establish a suitable air quality dataset. 

We extensively assessed hyperparameter combinations to 

enhance the model's accuracy in predicting AQI values. 

Comparative examination with alternative deep-seated 

architectures, such as LSTM, BILSTM, and GRU, 

revealed TFT's outperformance. The awareness 

mechanism inherent in TFT is crucial for capturing 

pertinent relationships within the time series data, making 

it efficacious in forecasting air quality influenced by 

diverse factors. The TFT-based AQI prediction model 

holds promise for real-time public awareness and decision 

support for relevant authorities, potentially mitigating 

costs associated with air pollution-induced health issues 

and environmental concerns. The developed generalized 

air quality prediction model serves as a pre-trained model, 

facilitating knowledge transfer for predicting air quality 

in regions with analogous meteorological conditions. This 

feature boosts the model's efficiency and accuracy across 

diverse geographical areas without necessitating 

extensive retraining, ensuring scalability and 

applicability. 
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