

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 505

RFID Based Attendance System for Department

Ms. Krupali Panchal1*, Ms. Parthvi Jingar2, Mr. Om Vataliya3, Mr. Harshul Rathod4

Submitted: 06/12/2023 Revised: 17/01/2024 Accepted: 27/01/2024

Abstract: On the current digital era, in each and every sectors technology has become the most pioneer need. Also it has become mandatory

to maintain the pace with the fast growing world that’s how the time management is more important. Nowadays to reduce the human

efforts and make the task smoother and easier, Internet of Things with many more sectors is in the market. With the help of Internet of

Things, a proper combination of hardware and software implementation can be proved more helpful. In the class full of students or a

company having good number of employees, has to adapt a technology to track the attendance of the attendees. To be helpful in this way

for time management, RFID based attendance system is designed.

Keywords: IoT, RFID, Arduino based project, Smart Attendance System Project

1. Introduction

The manual management of attendance records can be

arduous and time-consuming. Traditional attendance

systems are susceptible to errors, resulting in the

generation of inaccurate data and the misallocation of

resources. A smart attendance system represents a

modern and technologically advanced approach to

tracking and managing attendance in various settings,

such as schools, universities, businesses, and other

organizations. This innovative system leverages cutting-

edge technology to streamline the traditionally time-

consuming and error-prone task of attendance

management. By combining elements of IoT (Internet of

Things) and data analytics, smart attendance systems

offer a more efficient and accurate way to record and

monitor the presence of individuals. These systems can

range from simple smartphone apps to sophisticated

RFID card scanning devices. Such a system not only

automates the process of attendance-taking but also

provides valuable insights and data for administrators and

educators, facilitating informed decision-making. This

system is designed with the IoT tools with the research

purpose. In this system Arduino code is designed to create

an RFID-based attendance system that integrates with

Google Sheets. The system uses an ESP8266 board

(NodeMCU), an RFID reader (MFRC522), and a Liquid

Crystal Display (LCD) to read RFID tags and record

attendance data in a Google Sheets spreadsheet.

2. Workflow of the System

A smart attendance system using the Internet of Things

(IoT) is a sophisticated and efficient solution for tracking

and managing attendance across different settings. Here's

a general workflow of how such a system operates:

1. Device Enrolment: The process begins with the

enrolment of users or students in the system. Each user is

assigned a unique identifier, which will be the Identity

Card with RFID tag.

2. Sensor Deployment: IoT sensors are strategically

placed in the attendance areas, such as classrooms,

laboratories, offices, or other relevant locations. These

sensors can include RFID readers.

3. Data Collection: When a user wants to enter in an area,

RFID readers will capture the unique identifier from the

user’s RFID tag enabled identity card and collect the data

about user’s presence.

4. Data Transmission: The collected data is then

transmitted to a central IoT gateway. This can occur

wirelessly using protocols like Wi-Fi.

5. Data Processing: The central server processes the data

to identify users and record their attendance. The data will

be stored in a Google sheet so the admin users can access

it remotely from anywhere.

6. Attendance Recording: The system maintains a real-

time attendance record, updating it as users enter or leave

the area. This record can be accessed by authorized

personnel.

7. Data Storage and Analysis: Attendance data is stored

securely in a Google Sheet for future reference and

analysis. Long-term data can be used for trend analysis,

attendance evaluation, and generating attendance reports.

8. Notifications and Alerts: The system is configured to

alert a trespassing of any user without scanning their

identity card administrators. The buzzer will be
1*,2,3,4Department of Computer Applications, Faculty of Science, The

Maharaja Sayajirao University of Baroda Vadodara, Gujarat, India

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 506

constantly producing an alert until the card is scanned.

For the authenticate user, the mark of the attendance will

be displayed on the LED screen.

9. Maintenance and Updates: Regular maintenance and

updates will be taken care to ensure the system's

reliability, security, and compatibility with evolving IoT

technologies.

By implementing a smart attendance system using IoT,

organizations can significantly improve attendance

management, reduce manual errors, enhance security, and

obtain valuable insights from attendance data for better

decision-making.

This project combines RFID technology with Google

Sheets integration to create an attendance system. The

Arduino-based system uses an MFRC522 RFID reader to

read RFID tags and records the attendance data in a

Google Sheets spreadsheet via the ESP8266 (NodeMCU)

board. Additionally, an ultrasonic sensor is employed to

control the attendance system based on proximity.

1. The system connects to the WiFi network and the

Google Sheets server during the setup phase.

2. The RFID reader continuously looks for new RFID

cards. When a card is detected, its unique ID is read and

stored.

3. The system waits for user input via the serial monitor,

allowing administrators to toggle the ultrasonic sensor's

functionality.

4. If the ultrasonic sensor is enabled, the system uses it to

detect nearby individuals. When someone is in close

proximity (within a certain range), their attendance is

marked.

5. The system prepares the attendance data along with the

gate/room number and sends it as a JSON payload to the

Google Sheets script.

6. The Google Sheets script processes the data and

updates the attendance record in the corresponding sheet.

7. Real-time feedback is displayed on the LCD, showing

the user's ID and attendance status (e.g., Present).

8. The system ensures a delay before the next attendance

marking to prevent multiple entries for the same

individual.

For setting up and configure this system the Google

Sheets script should be set up separately with the provided

deployment ID and function to handle incoming data.

Also modify the network credentials, Google Sheets

script ID, and other settings in the code to suit the specific

setup. Ensure proper hardware connections, especially for

the RFID reader, LCD, and optional ultrasonic sensor.

Fig 1: Flow diagram of system

In this system some IoT hardware components are used. 1.ESP8266 (NodeMCU) Board: The ESP8266 module,

often used in conjunction with development boards like

NodeMCU, is a popular and versatile microcontroller

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 507

module designed for IoT (Internet of Things) and

embedded systems projects. ESP8266 Module is the heart

of the NodeMCU development board. It is a low-cost,

low-power, and highly integrated system-on-a-chip (SoC)

that includes a microcontroller unit (MCU) and Wi-Fi

capabilities. The ESP8266 module is equipped with a

Tensilica L106 32-bit RISC processor, which can run at

varying clock speeds, typically around 80 MHz. It has

GPIO (General Purpose Input/Output) pins for interfacing

with sensors, displays, and other hardware components.

One of the key features of the ESP8266 is its built-in Wi-

Fi connectivity. It can connect to local Wi-Fi networks,

making it suitable for IoT applications where remote

communication and data exchange are essential. The

ESP8266 module includes both program memory (flash

memory) and RAM. The amount of memory can vary

depending on the specific ESP8266 module variant.

Developers must manage memory effectively to ensure

stable operation. NodeMCU is a popular open-source

development platform that utilizes the ESP8266 module.

It provides a convenient way to program and use the

ESP8266, featuring USB-to-serial communication, a

voltage regulator, and GPIO pin headers for easy

connections to external components. The ESP8266

ecosystem has a large and active community, which

means extensive online documentation, forums, and

community-contributed libraries and projects. This

support network can be very helpful for developers

working with the ESP8266. The NodeMCU board

typically operates at 3.3V, and it provides a convenient

voltage regulator that allows it to be powered via USB or

an external power source. NodeMCU boards feature

GPIO pins that can be used for interfacing with various

sensors, actuators, and other devices. Some of these pins

have additional functionalities like PWM, I2C, and

UART. NodeMCU boards come with a USB-to-serial

interface, making it easy to upload code to the ESP8266

module and monitor serial output.

2. MFRC522 RFID Reader Module: The MFRC522

RFID Reader Module is a popular RFID (Radio-

Frequency Identification) module used to read and

interact with RFID tags and cards. RFID is a generation

that makes use of radio waves to become aware of and

tune objects. RFID systems consist of RFID tags or cards

and RFID readers. The MFRC522 module is used as the

reader component. The MFRC522 operates at the 13.56

MHz frequency with power supply at 3.3V or 5V,

depending on the model and the microcontroller it is

connected to. The MFRC522 module typically includes

an antenna, an RFID chip, and support circuitry for

communication with microcontrollers or other host

systems. The MFRC522 module can read RFID tags or

cards within its proximity. When an RFID tag is brought

near the reader's antenna, it activates a radio-frequency

field and the reader communicates with the tag,

exchanging data and often retrieving a unique identifier

or information stored on the tag. This module supports

various communication protocols, including SPI (Serial

Peripheral Interface) for connecting to microcontrollers

like Arduino and Raspberry Pi. The reading range of the

MFRC522 is typically a few centimetres, which makes it

suitable for applications where proximity-based

identification is required. The MFRC522 module often

provides support for authentication and security features.

This means that RFID tags or cards can be secured with

encryption and authentication mechanisms to prevent

unauthorized access. The MFRC522 RFID Reader

Module is a versatile component for RFID-based projects,

and its ease of use and availability of libraries make it a

popular choice for professionals working on applications

that require RFID technology.

3. 16x2 I2C Liquid Crystal Display (LCD): A 16x2 I2C

Liquid Crystal Display (LCD) is a popular display

module used in electronics and microcontroller-based

projects. The "16x2" in the name indicates the display's

size. It means the LCD has 16 character positions in each

of its two rows. Each position can display a character or

symbol. LCDs are used for displaying alphanumeric

characters, numbers, and simple graphics. They are

commonly used in various electronic devices, including

microcontroller-based projects, to provide visual

feedback and information. The "I2C" (Inter-Integrated

Circuit) interface is a serial communication protocol that

simplifies the wiring and control of the LCD. With the

I2C interface, you only need two wires (SDA and SCL)

to connect the LCD to a microcontroller, reducing the

number of required pins and making it easy to interface

with various platforms. This LCD is having a built-in

LED backlight, which can be controlled to adjust the

display's visibility in different lighting conditions. Most

16x2 LCDs use the HD44780 controller (or compatible

controllers), which simplifies the process of

programming and displaying text on the screen. This

controller is well-supported in libraries for various

microcontroller platforms. The display typically supports

a character set that includes numbers, letters (both

uppercase and lowercase), symbols, and some special

characters. The power supply voltage for 16x2 I2C LCDs

typically ranges from 3.3V to 5V, depending on the

specific module. It is critical to give the optimum voltage

to ensure effective operation. To use the 16x2 I2C LCD,

code is required that sends data and commands to the

display via the I2C interface.

4. Buzzer: The only use of buzzer is to alert the user or

the administrator that the entry has been occurred without

scanning the card.

5. Ultrasonic Sensor: An ultrasonic sensor is a device that

uses ultrasonic sound waves for distance measurement

and object detection. It operates on the principle of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 508

echolocation, much like how bats navigate by emitting

sound waves and listening for the echoes to determine the

distance to objects. Ultrasonic sensors are made up of a

transmitter and a receiver. The transmitter emits high-

frequency sound waves (ultrasonic waves), typically in

the ultrasonic range above 20 kHz. These waves travel

through the air or another medium. In this system

Ultrasonic sensors are used for detecting the presence of

a user in specified range.

In this module, major libraries like arduino.h,

ESP8266WiFi.h, SPI.h, MFRC522.h, HTTPSRedirect.h,

wire.h, liquidCrystal_I2C.h and softwareSerial.h are

used. Arduino.h is a standard Arduino library.

ESP8266WiFi.h is used for handling WiFi connectivity

on ESP8266. SPI.h is used for SPI communication.

MFRC522.h is used for the MFRC522 RFID reader.

HTTPSRedirect.h is used for handling HTTPS

communication. Wire.h is used for I2C communication

with the LCD. LiquidCrystal_I2C.h is used for driving the

I2C LCD. SoftwareSerial.h is used for software serial

communication.

To record all data in Google sheet, it should be sestup

properly. A Google Sheets script should be created with

the deployment ID which is GScriptId. The Google

Sheets script should contain a function to handle

incoming data from the Arduino. The function should

insert or append rows with the data provided by the

Arduino.

The next important key role is of network which allows

communication between all the hardware components.

This setup requires WiFi network credentials (SSID and

password). The code establishes a connection to the

Google Sheets server using HTTPSRedirect and the

provided data (not recommended to leave blank for

production).

With the configuration of a network and a data collection

tool, some variables are used in the code. A gate_number

represents the name of the location or gate, class number

or any laboratory number. A variable ssid and password

to hold WiFi network credentials for connecting the

ESP8266 to the network. Another variable GScriptId to

access the Google Sheet script using Google Sheets script

deployment ID. A payload_base is used for Base JSON

string for creating the payload to be sent to Google Sheets.

A payload variable is used to complete JSON string

containing the data to be sent to Google Sheets. Another

variable blocks [] is an array containing the block

numbers of the RFID card where data is stored. The one

more total_blocks variable shows a total number of

blocks to be read. RST_PIN, SS_PIN, BUZZER used for

pin numbers for the RFID reader's reset, slave select, and

the buzzer. A key variable is an authentication key used

to read the data from the RFID card. A status variable

represents the status of the RFID reader's operations (e.g.,

authentication success/failure). An ultrasonicEnabled

variable is a boolean flag to control the ultrasonic sensor's

functionality (optional).

With these variables some functions are also used.

1. setup(): Initializes the necessary components, connects

to WiFi and Google Sheets, and sets up the RFID reader.

2. loop(): The main loop function, reads the RFID tags,

retrieves data from the RFID card, prepares the payload,

and sends it to Google Sheets.

3. ReadDataFromBlock(): Reads data from the RFID card

block using authentication.

Fig 2: Components diagram

The code initializes the components and connects to the

WiFi network. It establishes a connection to the Google

Sheets server. It waits for an RFID tag to be scanned by

the RFID reader. Upon scanning, it reads the data from

the RFID card and stores it in the 'values' string. It creates

a JSON payload using the 'values' and 'gate_number'. The

payload is sent to the Google Sheets script via HTTPS

request. If the data is published successfully, it displays

the student's ID and 'Present' on the LCD and optionally

toggles the ultrasonic sensor state based on the student's

ID. The code uses 'SoftwareSerial' to communicate with

the ultrasonic sensor, which may require additional

hardware connections.

3. Ultrasonic Sensor Control with Nodemcu

(ESP8266) and Serial Communication

The ESP8266 can be programmed using a variety of

programming languages, including Arduino IDE (using

the ESP8266 core), MicroPython, Lua, and more. This

versatility allows developers to choose the language that

best suits their project requirements and familiarity. The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 509

Arduino code allows the control of an ultrasonic sensor

connected to a NodeMCU (ESP8266) board. The code

uses the SoftwareSerial library to establish

communication between the Arduino board and the

NodeMCU over serial communication (TX, RX pins).

The ultrasonic sensor measures distance, and the code

toggles the sensor's functionality based on commands

received from the serial monitor.

To make this operational some hardware components are

used which includes Arduino Board (e.g., Arduino Uno),

NodeMCU (ESP8266) Board, HC-SR04 Ultrasonic

Sensor and LED (connected to pin 7). A SoftwareSerial.h

library is used with all these for software serial

communication between Arduino and NodeMCU. Along

with all these another variables are used. An

ESP8266Serial variable is used to communicate

SoftwareSerial object with the NodeMCU. A trigPin

variable is used for Arduino pin connected to the

ultrasonic sensor's trigger pin. Another variable echoPin

where Arduino pin connected to the ultrasonic sensor's

echo pin. A ultrasonicEnabled variable is a boolean flag

to control the ultrasonic sensor's functionality.

The code sets up the serial communication for both the

Arduino and NodeMCU, and the pin modes for the

ultrasonic sensor and LED. In the loop function, the

ultrasonicEnabled flag is checked. If it is true, the

ultrasonic sensor is enabled, and the code proceeds with

distance measurement. The code sends a brief HIGH

pulse to the ultrasonic sensor's trigger pin and measures

the echo's duration to calculate the distance. If the

measured distance is less than or equal to 30 cm, the LED

is turned on. The code then checks for commands from

the serial monitor (input from the user) using

Serial.available() and Serial.parseInt(). If the command

"1" is received, the ultrasonicEnabled flag is set to false,

and the ultrasonic sensor is disabled. Additionally, the

LED blinks twice as feedback. If the command "0" is

received, the ultrasonicEnabled flag is set to true, and the

ultrasonic sensor is enabled. The LED is turned off as

feedback. The loop continues to measure distance and

wait for commands from the serial monitor.

4. RFID Data Writing and Reading with

MFRC522 RFID Reader

This Arduino code enables the reading and writing of data

to an MIFARE 1K RFID card using the MFRC522 RFID

reader. The code allows the user to enter various data,

here Student ID, First Name, Last Name, and PRN which

a unique identifying number generated for each student,

via the serial monitor and writes this data to specific

blocks on the RFID card. Additionally, the code reads and

displays the data stored on the card to verify successful

writing.

Fig 3: Prototype of working system

In this module certain hardware components, libraries,

variables and functions are used. As the hardware

components Arduino Uno, MFRC522 RFID Reader

Module and MIFARE 1K RFID Card are used. The

MFRC522 RFID (Radio-Frequency Identification)

Reader Module is a popular RFID module that is often

used for reading and interacting with RFID cards and

tags. The MFRC522 module uses radio waves to

communicate with RFID cards or tags. When an RFID

card or tag is brought into close proximity to the module,

it sends out radio signals to activate the card's or tag's

microchip. The module then communicates with the

microchip to read the stored information. The MFRC522

module typically operates at a frequency of 13.56 MHz.

It uses the SPI (Serial Peripheral Interface)

communication protocol to communicate with

microcontrollers like Arduino, Raspberry Pi, or other

microcontroller platforms. The MFRC522 module is

capable of reading and interacting with various RFID

cards and tags, including MIFARE cards. MIFARE is a

widely used type of RFID technology, and many access

control cards and public transportation cards use

MIFARE technology. The typical operating range for the

MFRC522 module is a few centimeters to a couple of

inches. The exact range may vary depending on the

specific antenna used and environmental factors. The

module typically comes with an integrated antenna, but it

can also be connected to an external antenna for extended

range or specific applications. The libraries provide

functions for reading and writing data on RFID cards or

tags.

With this module two libraries are used: SPI.h - Library

for SPI communication and MFRC522.h - Library for the

MFRC522 RFID reader.

The variables used in this module are RST_PIN, SS_PIN:

GPIO pins connected to the MFRC522 RFID reader (reset

and slave select); key: An authentication key used to

read/write data to the RFID card; blockNum: The block

number to which data will be written or read; bufferLen:

The length of the buffer to read data from the RFID card;

readBlockData: An array to store data read from the RFID

card; and status: Represents the status of the RFID

reader's operations (e.g., authentication success/failure).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 510

#include <Arduino.h>

#include <ESP8266WiFi.h>

#include <SPI.h>

#include <MFRC522.h>

#include <HTTPSRedirect.h>

#include<Wire.h>

#include<LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 16, 2);

#include<SoftwareSerial.h>

SoftwareSerial abc(3,1);

// Enter Google Script Deployment ID:

const char *GScriptId =

"AKfycbyDcafjQZF6fesQScbiNmJ3kb3TcyoHg53Daqx

35-ZV8Kf3p7O9kCe8ny9OJq04hb5d";

String gate_number = "Lab-3";

// Enter network credentials:

const char* ssid = "BCA-Lab3";

const char* password = "c94469446a";

// Enter command (insert_row or append_row) and your

Google Sheets sheet name (default is Sheet1):

String payload_base = "{\"command\": \"insert_row\",

\"sheet_name\": \"Sheet1\", \"values\": ";

String payload = "";

// Google Sheets setup

const char* host = "script.google.com";

const int httpsPort = 443;

const char* fingerprint = "";

String url = String("/macros/s/") + GScriptId + "/exec";

HTTPSRedirect* client = nullptr;

// Declare variables that will be published to Google

Sheets

String student_id;

int blocks[] = {4,5,6,8,9};

#define total_blocks (sizeof(blocks) / sizeof(blocks[0]))

#define RST_PIN 0 //D3

#define SS_PIN 2 //D4

#define BUZZER 4 //D2

MFRC522 mfrc522(SS_PIN, RST_PIN);

MFRC522::MIFARE_Key key;

MFRC522::StatusCode status;

/* Be aware of Sector Trailer Blocks */

int blockNum = 2;

/* Create another array to read data from Block */

/* Legthn of buffer should be 2 Bytes more than the size

of Block (16 Bytes) */

byte bufferLen = 18;

byte readBlockData[18];

bool ultrasonicEnabled = true;

void setup() {

 Serial.begin(9600);

 delay(10);

 Serial.println('\n');

 abc.begin(9600);

 SPI.begin();

 //initialize lcd screen

 lcd.begin();

 // turn on the backlight

 lcd.backlight();

 lcd.clear();

 lcd.setCursor(0,0); //col=0 row=0

 lcd.print("Connecting to");

 lcd.setCursor(0,1); //col=0 row=0

 lcd.print("WiFi...");

 // Connect to WiFi

 WiFi.begin(ssid, password);

 Serial.print("Connecting to ");

 Serial.print(ssid); Serial.println(" ...");

 while (WiFi.status() != WL_CONNECTED) {

 delay(100);

 Serial.print(".");

 }

 Serial.println('\n');

 Serial.println("WiFi Connected!");

 //Serial.print("IP address:\t");

 Serial.println(WiFi.localIP());

 // Use HTTPSRedirect class to create a new TLS

connection

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 511

 client = new HTTPSRedirect(httpsPort);

 client->setInsecure();

 client->setPrintResponseBody(true);

 client->setContentTypeHeader("application/json");

 lcd.clear();

 lcd.setCursor(0,0); //col=0 row=0

 lcd.print("Connecting to");

 lcd.setCursor(0,1); //col=0 row=0

 lcd.print("Google ");

 delay(100);

 Serial.print("Connecting to ");

 Serial.println(host);

 // Try to connect for a maximum of 5 times

 bool flag = false;

 for(int i=0; i<5; i++){

 int retval = client->connect(host, httpsPort);

 if (retval == 1){

 flag = true;

 String msg = "Connected. OK";

 Serial.println(msg);

 lcd.clear();

 lcd.setCursor(0,0); //col=0 row=0

 lcd.print(msg);

 delay(100);

 break;

 }

 else

 Serial.println("Connection failed. Retrying...");

 }

 if (!flag){

 lcd.clear();

 lcd.setCursor(0,0); //col=0 row=0

 lcd.print("Connection fail");

 Serial.print("Could not connect to server: ");

 Serial.println(host);

 delay(1000);

 return;

 }

 delete client; // delete HTTPSRedirect object

 client = nullptr; // delete HTTPSRedirect object

}

void ReadDataFromBlock(int blockNum, byte

readBlockData[]);

void loop() {

 //Serial.println("[TEST] loop() starts");

 static bool flag = false;

 if (!flag){

 client = new HTTPSRedirect(httpsPort);

 client->setInsecure();

 flag = true;

 client->setPrintResponseBody(true);

 client->setContentTypeHeader("application/json");

 }

 if (client != nullptr){

 //when below if condition is TRUE then it takes more

time then usual, It means the device

 //is disconnected from the google sheet server and it

takes time to connect again

//NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNN

 if (!client->connected()){

 int retval = client->connect(host, httpsPort);

 if (retval != 1){

 Serial.println("Disconnected. Retrying...");

 lcd.clear();

 lcd.setCursor(0,0); //col=0 row=0

 lcd.print("Disconnected.");

 lcd.setCursor(0,1); //col=0 row=0

 lcd.print("Retrying...");

 return; //Reset the loop

 }

 }

 }

 else{Serial.println("Error creating client object!");

Serial.println("else");}

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 512

 lcd.clear();

 lcd.setCursor(0,0); //col=0 row=0

 lcd.print("Scan your Tag");

 delay(1000);

 //Serial.println("[TEST] Scan Your Tag");

 /* Initialize MFRC522 Module */

 mfrc522.PCD_Init();

 /* Look for new cards */

 /* Reset the loop if no new card is present on RC522

Reader */

 if (! mfrc522.PICC_IsNewCardPresent()) {return;}

 /* Select one of the cards */

 if (! mfrc522.PICC_ReadCardSerial()) {return;}

 /* Read data from the same block */

 Serial.println();

 Serial.println(F("Reading last data from RFID..."));

 String values = "", data;

 //creating payload - method 2 - More efficient

 for (byte i = 0; i < total_blocks; i++) {

 ReadDataFromBlock(blocks[i], readBlockData);

 if (i == 0) {

 data = String((char*)readBlockData);

 data.trim();

 student_id = data;

 values = "\"" + data + ",";

 int num = 0;

 if (student_id == "000") {

 // num = random(9)-1;

 abc.write("0");

 // Serial.println("0"); // Print '0' to the serial monitor

 } else {

 abc.write("1");

 // Serial.println(num);

 }

 } else {

 data = String((char*)readBlockData);

 data.trim();

 values += data + ",";

 }

}

 values += gate_number + "\"}";

 //--

 // Create json object string to send to Google Sheets

 // values = "\"" + value0 + "," + value1 + "," + value2 +

"\"}"

 payload = payload_base + values;

 //--

 lcd.clear();

 lcd.setCursor(0,0); //col=0 row=0

 lcd.print("Publishing Data");

 lcd.setCursor(0,1); //col=0 row=0

 lcd.print("Please Wait...");

 delay(100);

 // Publish data to Google Sheets

 Serial.println("Publishing data...");

 Serial.println(payload);

 if (client->POST(url, host, payload)) {

 // do stuff here if publish was successful

 Serial.println("[OK] Data published.");

 lcd.clear();

 lcd.setCursor(0, 0); //col=0 row=0

 lcd.print("Student ID: " + student_id);

 lcd.setCursor(0, 1); //col=0 row=0

 lcd.print("Present");

 delay(100);

 if (student_id == "000") {

 if (ultrasonicEnabled) {

 abc.write("1"); // Send '0' to Arduino to disable

ultrasonic sensor

 ultrasonicEnabled = false; } else {

 abc.write("0"); // Send '1' to Arduino to enable

ultrasonic sensor

 ultrasonicEnabled = true; }

 }

 else{

 delay(100);

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 513

 abc.write("0");

 ultrasonicEnabled = true; }

 }

 else{

 // do stuff here if publish was not successful

 Serial.println("Error while connecting");

 lcd.clear();

 lcd.setCursor(0,0); //col=0 row=0

 lcd.print("Failed.");

 abc.write("1");

 lcd.setCursor(0,1); //col=0 row=0

 lcd.print("Try Again");

 }

 // a delay of several seconds is required before

publishing again

 Serial.println("[TEST] delay(1000)");

 delay(1000);

}

void ReadDataFromBlock(int blockNum, byte

readBlockData[])

{

 /* Prepare the ksy for authentication */

 /* All keys are set to FFFFFFFFFFFFh at chip delivery

from the factory */

 for (byte i = 0; i < 6; i++) {

 key.keyByte[i] = 0xFF;

 }

 /* Authenticating the desired data block for Read access

using Key A */

 status =

mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_M

F_AUTH_KEY_A, blockNum, &key, &(mfrc522.uid));

 if (status != MFRC522::STATUS_OK){

 Serial.print("Authentication failed for Read: ");

 Serial.println(mfrc522.GetStatusCodeName(status));

 return;

 }

 else {

 Serial.println("Authentication success");

 }

 /* Reading data from the Block */

 status = mfrc522.MIFARE_Read(blockNum,

readBlockData, &bufferLen);

 if (status != MFRC522::STATUS_OK) {

 Serial.print("Reading failed: ");

 Serial.println(mfrc522.GetStatusCodeName(status));

 return; }

 else {

 readBlockData[16] = ' ';

 readBlockData[17] = ' ';

 Serial.println("Block was read successfully"); }

}

The code sets up the serial communication, SPI bus, and

MFRC522 RFID reader module. It waits for a new RFID

card to be detected by calling the function

'mfrc522.PICC_IsNewCardPresent()'. When a card is

detected, it reads its UID (unique identifier) and the type

of card (e.g., MIFARE 1K) and prints this information to

the serial monitor. The code then waits for the user to

input data (Student ID, First Name, Last Name, and PRN)

via the serial monitor. The input data is read until the user

enters '#' to signify the end of data entry. The data is

written to specific blocks on the RFID card using the

'WriteDataToBlock()' function. The code then reads and

displays the data from the RFID card using the

'ReadDataFromBlock()' and 'dumpSerial()' functions to

verify successful writing.

Future expansion

To make this system working more accurately and more

secure, the user survey will be conducted with their

feedback. Also an integration of biometric inputs of a user

will provide more security to the system.

5. Conclusion

This project presents a versatile RFID-based attendance

system that integrates with Google Sheets for streamlined

attendance management. Additionally, the optional

ultrasonic sensor control adds an extra layer of

convenience and versatility to the system. With this

system, accurate and real-time attendance data can be

efficiently recorded and accessed, making it suitable for

various educational and organizational applications.

References

[1] M. Y. I. Idris, E. M. Tamil, Z. Razak, N. M. Noor,

and L.W. Km, “Smart parking system using image

processing techniques in wireless sensor network

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(14s), 505–514 | 514

environment,” Information Technology Journal,

Vol 8, pp. 114–127, 2009.

[2] Sam Polniak, “RFID case study book: RFID

application stories from around the globe”

Abhisam software, 2007.

[3] S. Shepard, (2005), “RFID Radio Frequency

Identification”, (2005), USA, ISBN:0-07

144299-5.

[4] Frederick E Terman, Radio Engineers Handbook,

McGraw Hill, 1943, pages 785 - 786

[5] Fei Hu, Laura Celentano, and Yang Xiao,

“Errorresistant RFID-assisted wireless sensor

networks for cardiac telehealthcare,” Wireless

Communications and Mobile Computing, Vol 9,

120 Davinder Parkash, Twinkle Kundu & Preet

Kaur pp. 85–101, 2009

[6] Ray Cronin, “RFID versus Barcode,” Pharmaceutical

Technology, Vol. 32, pp177-178, 2008. S. P.

Singh, M. Mccartney, J. Singh, And R. Clarke,

“RFID Research And Testing For Packages Of

Apparel, Consumer Goods And Fresh Produce

In The Retail Distribution Environment,”

Packaging Technology and Science, Vol. 21,pp. 91–

102, 2008.

[7] Kashif Ali and Hossam Hassanein, “Passive RFID

for ntelligent transportation systems,” 6th IEEE

Consumer Communications and Networking

Conference, CCNC 2009, January 10 - January

13, 2009.

[8] A. Kumar, D. Parkash, M.V. Kartikeyan, “Planer

antennas for passive UHF RFID tag,” Progress in

Electromagnetics Research, Vol 91, pp. 95–212,

2009.

[9] Basar Oztaysi, Serdar Baysan and Fatma Akpinar,

“Radio Frequency Identification, (RFID) in

Hospitality,” Technovation, Vol 29,pp. 618–624,

2009.

[10] Kamran Ahsan, Hanifa Shah and Paul Kingston

“RFID Applications: An Introductory and

Exploratory Study,” IJCSI International Journal of

Computer Science Issues, Vol. 7, Issue 1, No. 3,

January 2010.

[11] K. Ahsan, H. Shah, P. Kingston, “Context Based

Knowledge Management in Healthcare: An EA

Approach”, AMCIS 2009, Available at AIS library.

[12] Elisabeth Ilie-Zudor, Zsolt Kemeny, Peter Egri,

Laszlo Monostori, “RFID technology and its

current application,” The Modern Information

Technology in the Innovation Processes of the

Industrial Enterprises-MITIP 2006, ISBN 963

86586 5 7, pp.29-36.

[13] B. H. Jeong, C. Y. Cheng, V. Prabhu, and B. J. Yu,

“An RFID application model for surgerypatient

identification,”IEEE Symposium on Advanced

Management of Information for Globalized

Enterprises,AMIGE 2008, September 28 -

September 29,pages 304–306, 2008.

[14] K. Ahsan, H. Shah, P. Kingston, “Role of

Enterprise Architecture in healthcare IT”,

Proceeding ITNG2009, IEEE.

[15] Martin Brandl, Julius Grabner, Karlheinz

Kellner,Franz Seifert, Johann Nicolics, Sabina

Grabner, and Gerald Grabner, “ A low-cost

wireless sensor system and its application in

dental retainers,” IEEE Sensors Journal, Vol 9,pp.

255–262, 2009.

[16] Anuran Chattaraj, Saumya Bansal, and Anirudhha

Chandra, “An intelligent traffic control system using

RFID,”IEEE Potentials, Vol. 28, pp. 40–43, 2009.

[17] Yunus A. Kathawala and Benjamin Tueck, “The

use of RFID for traffic management,

”International Journal of Technology, Policy and

Management, Vol. 8, pp.111–125, 2008

[18] Agarwal, S.K., Singh, A., Aniraj, V., Pandey, A.,

Prasad, D., Nath, V. (2020). RFID (MF-RC522) and

Arduino Nano-Based Access Control System. In:

Nath, V., Mandal, J. (eds) Nanoelectronics, Circuits

and Communication Systems. NCCS 2018. Lecture

Notes in Electrical Engineering, vol 642. Springer,

Singapore. https://doi.org/10.1007/978-981-15-

2854-5_50

[19] Anusha, PV., Atul, K., Kshama, PM. & Menita, C.,

(2016) “Web service for student attendance

management system”, Int J Adv Resh Sci and Engr,

Vol. 5, pp319-323.

[20] Shih-Sung Lin, Min-Hsiung Hung, and Ding-Rong

Lai, “ Development of a RFID-based missile

assembly and test management system,” Chung

Cheng Ling Hsueh Pao/Journal of Chung Cheng

Institute of Technology, Vol. 37,pp. 185–195, 2009.

[21] Ayu, MA. & Ahmad, BI., (2014) “TouchIn: an NFC

supported attendance system in a university

environment”, Int J Inf Educ Tech, Vol. 4, pp448-

453

[22] A Review of RFID Sensors, the New Frontier of

Internet of Things - PMC (nih.gov)

[23] David Grau Torrent and Carlos H. Caldas,

“Methodology for automating the identification and

localization of construction components on

industrial projects,”Journal of Computing in Civil

Engineering, Vol 23,pp. 3–13, 2009.

