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Abstract: The operational timeline of a Wireless Sensor Network (WSN) spans from the initiation of sensing activities until a 

predetermined proportion of nodes deplete their power reserves, with the "critical node" being the specific device undergoing power 

depletion. Optimizing WSN longevity, particularly of these critical nodes, is pivotal for overall network sustainability. The network 

involves relay nodes communicating with a central hub through intermediary nodes, extending longevity, enhancing accessibility, and 

efficiently managing traffic distribution in alignment with sensor network design principles. 

To extend network operational lifespan, we propose a strategy utilizing a Genetic Algorithm embedded with Fuzzy Logic (FLbGA) to 

orchestrate relay nodes' data collection schedules. Relay nodes, acting as hand-off hubs, aggregate information within their groups or 

neighboring transfer hubs. This data is transmitted to the base station directly or through an interconnected sequence of intermediate 

relay nodes. The strategic use of FLbGA optimizes data collection, boosting network durability and performance. 

In each designated cluster, relay nodes receive data from corresponding sensor nodes, where transmitted information may exhibit 

constancy or variability. Assuming post-deployment spatial node configurations, parameters like population size, cross-over frequency, 

mutation frequency, etc., are integrated into FLbGA's design for an optimal solution. This parameter augmentation enhances the system's 

efficiency and adaptability. 

Keywords: Wireless Sensor Network, critical node, relay nodes, Genetic Algorithm, Fuzzy Logic. 

1. Introduction 

Recent attention in academic circles has been heavily 

directed towards Wireless Sensor Networks (WSNs), 

prompting a need for comprehensive studies to establish 

a solid foundation in this domain. WSNs, comprising a 

collection of sensor devices forming an ad-hoc network, 

aim to achieve objectives such as environmental 

monitoring, decision-making, and transmitting pertinent 

information to legitimate endpoints. To optimize 

operational efficiency, reduce communication overheads, 

and alleviate interference among Sensor Nodes (SNs), 

sensor networks employ clustering algorithms [1]. As 

proposed by [2], the fundamental justification for 

utilizing clustering routing pertains to the imperative 

need for data reduction within the network architecture. 

This is achieved through the information pooling process 

of Cluster Heads (CHs), alleviating the strain on SNs' 

power supply by minimizing energy requirements for 

communication. Furthermore, the implementation of 

clusters contributes to increased network uptime by 

optimizing load balancing, ensuring even distribution of 

responsibilities among CHs and thereby prolonging the 

overall network lifespan. This strategic division of 

responsibilities aims to extend the sustainability of the 

network architecture [2]. 

In the realm of optimization methodologies, this research 

delves into Wireless Sensor Network (WSN) clustering 

protocols. The investigation involves a comprehensive 

review and analysis of protocols, examining the 

methodologies and attributes of various algorithms with 

a particular emphasis on recent advancements in 

optimized clustering solutions. The study evaluates how 

these protocols perform across different network 

topologies, considering both the standard boundaries of 

group conventions and the improvement process 

boundaries specific to each case. To ensure a precise 

evaluation and a comprehensive understanding of 

clustering procedures, the analysis incorporates 

optimization parameters. These parameters are 

meticulously selected after considering a variety of 

optimization strategies, contributing to a nuanced and 

thorough assessment of the methods employed in WSN 

clustering protocols. Our contributions encompass 

innovative perspectives and methodologies in 

optimization for clustering protocols, spanning meta-

heuristic, fuzzy, and hybrid strategies. 

- Introduction of a novel viewpoint and approach to 

optimization methods in clustering protocols. 
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- Proposal of a fresh categorization approach grounded in 

optimization algorithms. 

- Pioneering the evaluation of Wireless Sensor Network 

(WSN) protocols by optimizing clustering parameters. 

2. Literature Reviews 

Introduction to Sensor Network Optimization: Explore 

clustering approaches and optimization strategies to 

enhance sensor network performance in diverse 

conditions. Aimed at assisting academics in 

understanding clustering-based optimization strategies, 

categorizing them based on optimization methods, and 

addressing fundamental constraints of existing clustering 

methods. 

Evaluation of Routing Algorithms: First attempt to 

assess routing algorithms employing swarm intelligence, 

considering potential applications and simulation 

environments. Limited focus on swarm-based protocols, 

particularly excluding protocols beyond swarm 

intelligence. 

Categorization of Group-Based Steering Procedures: In 

[3], authors categorized group-based steering procedures 

for homogeneous sensor networks (SNs) based on goals 

and clustering approaches. Factors considered include 

Cluster Head (CH) determination, information total, 

group development, and data transmission. 

Comprehensive Review of Clustering Methods: 

Systematic categorization of clustering methods for 

homogeneous networks from 2011 onward. Inclusion of 

relevant prior research to offer a comprehensive 

perspective on clustering techniques. 

Assessment Schemes for CH Selection Techniques: 

Application of supported, multi-dimensional, and 

autonomously organized evaluation frameworks [4] for 

classifying CH selection methods. Enhances 

understanding of diverse methods for selecting Cluster 

Heads in sensor networks. 

This research systematically evaluates 16 prominent 

clustering algorithms in Wireless Sensor Networks 

(WSNs), categorizing them into information 

transmission and group development steering 

approaches. The study deliberately excludes novel 

methods, such as fuzzy and transformative-based 

strategies, focusing on conventional clustering protocols 

[5]. Addressing the advantages and drawbacks of hub 

bunching procedures in WSNs, the paper introduces a 

taxonomy of fuzzy and hybrid fuzzy-based clustering 

strategies [6]. The exploration systematically categorizes 

cluster-based routing strategies into block, chain, and 

grid-based classifications, evaluating their scalability, 

cluster stability, delivery latency, and energy efficiency 

[7]. An additional scrutiny of clustering techniques 

reveals strengths and weaknesses, distinguishing 

between block-based, matrix-based, and chain-based 

grouping strategies. Existing approaches are assessed 

based on parameters such as delivery latency, energy 

consciousness, load balancing, cluster stability, and 

algorithmic efficacy [8]. The study also considers 

homogeneous and heterogeneous WSNs, classifying 

various clustering procedures based on standards such as 

the number of clusters, CHs, clustering objects, and 

procedural complexity, accounting for network hub and 

resource constraints [9]. Unequal clustering methods are 

explored in terms of goals and characteristics, 

categorizing them into probabilistic, preset, and 

deterministic groups, with energy consumption and 

lifetime calculations conducted through simulations [10]. 

The clustering approaches are further classified into 

classical, fuzzy-based, meta-heuristic, and hybrid meta-

heuristic based on general order boundaries and 

measures, considering both clustering and methodology 

parameters [11]. 

Multiple computational intelligence (CI) approaches, 

encompassing swarm intelligence, fuzzy logic, neural 

networks, genetic algorithms, and reinforcement 

learning, were employed to classify various 

computations. The study emphasized scalability, data 

transmission rate, and data accumulation in these CI 

applications [12]. The utilization of these techniques 

notably improved both the network's lifespan and service 

quality. Additionally, hybrid model combinations were 

found to enhance network interference [13]. 

3. Implementation of Routing for FLbGA 

Exploring our high-level relay node network intricacies, 

it operates on a two-tiered architecture employing an 

FLbGA-based routing algorithm. This proposed 

algorithm aims to optimize the network's longevity by 

determining an efficient data collection strategy for a 

dual-layered Wireless Sensor Network (WSN). 

In a dual-layered remote sensing structure with n transfer 

hubs (1, 2, 3, ..., n) and a singular base station (n+1), 

each transfer hub aligns with a group head. Each sensor 

hub is an integral part of precisely one cluster, denoted 

by D representing the collection of all sensor hubs 

forming m clusters. 

In the paradigm of wireless sensor networks (WSNs), the 

sensor nodes within a specific cluster autonomously 

transmit their collected data to the designated cluster-

centric hand-off hub. In turn, the transfer hubs, organized 

in distinct clusters, relay their respective data sets to the 

central base station. A critical condition for the data 

transfer between a source transfer hub, denoted as hub I, 

and a recipient hub, denoted as hub j, necessitates that 

hub j lies within the transmission range of hub I and is 
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closer to the base station than hub I. Remarkably, data 

transmission from the base station to any of the transfer 

hubs is precluded, as the base station exclusively 

functions as a receiver in this communication 

architecture. 

Assumptions underpinning this model include the 

equitable distribution of energy access among all relay 

nodes from the inception of the network operation. In 

each operational round, every relay node consistently 

receives a uniform quantity of bits, albeit this quantity 

may vary among distinct nodes. Notably, the relay node 

network in this framework adheres to the "non-flow-

splitting" model. In this model, each relay node's 

outgoing data exhibits an exclusive trajectory, directed 

towards a singular destination within the architecture—

be it another relay node or the base station itself. A 

salient constraint imposed by this model is the 

prohibition of concurrently creating multiple data flows 

from a single relay node to diverse destinations [14]. 

In this context, the calculation of the routing schedule is 

attributed to the base station or another power-

independent location. It is imperative that all deployed 

nodes remain stationary, with relay nodes being either 

predetermined during their initial configuration or 

capable of reporting their current position. In this 

context, a fundamental premise revolves around the 

generation of standardized data by individual sensor 

hubs and their subsequent arrangement into clusters. 

Each transition hub is equipped with an equal initial 

energy provision, aligning with the previously 

expounded framework. As elucidated earlier, the routing 

schedule is centrally orchestrated, strategically 

considering the spatial deployment of transfer hubs and 

their anticipated data throughput. This orchestrated 

approach ensures a coherent and efficient data transfer 

process within the network infrastructure, maintaining 

the scientific rigor integral to the scenario. It is assumed 

that nodes may be preloaded with the computed routing 

schedule prior to deployment, or alternatively, the 

schedule can be simultaneously disseminated to all 

nodes. In the latter scenario, it is pertinent to highlight 

that the quantum of data transmitted for the 

establishment of the initial configuration is exceptionally 

minimal, thereby exerting a negligible impact on the 

overall network lifespan. Further exploration into the 

intricacies of crafting an evolutionary algorithm 

specifically tailored for energy-efficient routing is 

imperative for comprehensive understanding, [15]. 

Generating a Destination Node at Random 

The random destination generation for the initial 

population in a network must adhere to specified flow 

requirements. 

In a designated cluster, sensor nodes furnish information 

to their respective hand-off hubs. The data transfer hub 

has the capability to acquire information from other 

hand-off hubs within the network. The transmission of 

data unfolds from node i to another node f, where f is 

positioned within the transmission range of i and is in 

closer proximity to the base station. It is essential to note 

that the initiation of data transmission does not stem 

from the base station towards any relay nodes; instead, 

solely the reception process takes place at the base 

station [16]. 

Initialize an integer array of size n with zero values, 

representing the absence of connections in the network 

of size n+1. Designate node 1 as the origin and randomly 

select a destination node f from the range 1 to n+1, 

ensuring adherence to flow constraint 2. Update the 

value in column l from 0 to f, designating node f as the 

terminal destination for node 1. Subsequently, randomly 

select an integer k, denoting the objective hub for f, from 

the range 1 to n+1 while satisfying the aforementioned 

flow prerequisite. Notably, f serves as the source hub, 

excluding the base station. 

If k is not the base station, iterate the process until the 

base station is identified as the ultimate hop. The 

selection of objective hubs must be meticulous to prevent 

the formation of isolated graphs resulting from the flow. 

In a network with n hubs and one base station, hub i is 

selected as the target for hub j based on conditions i * 

n+1, Euclidean distance (f) between nodes i and j, and 

data bandwidth (d).  Ensuring the scientific rigor of the 

methodology, these steps facilitate the establishment of 

connections in a network, adhering to specified 

constraints and optimizing the allocation of hubs to 

enhance network performance. This approach mitigates 

the risk of creating isolated network segments and 

underscores the significance of criteria such as Euclidean 

distance and data bandwidth in hub selection. 

Subsequently, commencing from the array's left side, 

identify the accessible source hub wherein the objective 

hub remains unmarked (i.e., designated as 0, indicative 

of an unestablished connection). Designate this hub as 

the source, iteratively executing the antecedent steps 

until a linkage with the base station is achieved. When a 

node concurrently serves as both the produced 

destination and the source node, the marker transitions 

from 0 to that new target node.. The search then resumes 

for the subsequent available source hub. This cycling of 

origin nodes persists until their eventual destinations are 

reached. The prescribed methodology to formulate a 

random graph of size 8 involves sequential steps. For 

instance, selecting node 2 as the source, linking it to 

node 6, and subsequently to node 8. Node 5 is 

subsequently chosen as the source, establishing a linkage 
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with node 3, which, in turn, becomes the source for node 

1. Upon tracking down the base station and confirming 

that objective hubs for all source hubs are identified, the 

random graph generation process is deemed complete. 

For a population size denoted as Pp, it becomes 

imperative to generate Pp instances of randomly 

generated graphs utilizing the aforementioned protocol. 

Subsequently, the fitness value for each individual is 

calculated before undertaking the initial selection process 

[17]. 

Fuzzy logic-based Genetic algorithm 

The nodes within a Wireless Sensor Network (WSN) 

implement a decentralized clustering strategy grounded 

in fuzzy logic principles. In this network architecture, 

each node possesses an equal probability of serving as 

the Cluster Head (CH) or parent hub, reflecting the 

network's conceptualization as a tree structure. The fuzzy 

logic engine at each node in the CH selection process 

utilizes input parameters such as residual hub energy, 

hub distance to neighboring hubs, hub thickness, and 

bounce count. The fuzzy logic engine is strategically 

designed to consider solely the most pertinent nodes, 

those with the highest likelihood of assuming the role of 

CH. 

In situations where a Sensor Node (SN) encounters a 

service disruption due to energy depletion, the Fuzzy 

Logic-based Genetic Algorithm (FLbGA) intervenes to 

ensure the seamless operation of the network. 

Performance evaluation of the FLbGA was conducted 

within a simulation environment, scrutinizing energy 

consumption, the count of active nodes, network 

lifespan, and the number of messages received within a 

five-node network. In alignment with energy 

conservation objectives and performance optimization, 

the FLbGA was specifically engineered to minimize 

message transmission, as articulated in prior studies 

[18,19]. 

Hybrid Fuzzy 

Two predominant classes of hybrid optimization 

strategies in wireless sensor networks are discerned: 

fuzzy-based techniques and metaheuristic-based 

procedures. The inherent challenge arises from the 

exclusive selection of a single Cluster Head (CH) within 

the transmission range, leading to instances where 

certain nodes do not inherently assume CH status [20]. 

After a stipulated timeframe, each node autonomously 

designates a CH based on the relative signal strengths 

received from all prospective candidates. Subsequent to 

data collection and group formation facilitated by CHs 

adhering to predetermined guidelines, this section 

meticulously scrutinizes and contrasts the methodologies 

and attributes of fuzzy hybrid strategies across diverse 

research endeavors [21,22]. 

 

Sets and parameters 

The deployed static sensors, denoted by the set I, are 

strategically positioned across a defined geographical 

region to facilitate mission objectives denoted as M. 

Each individual sensor i within the set I possesses an 

initial battery capacity represented by Vi. These sensors 

are designed to actively monitor and surveil objects 

within their respective fields of view, denoted by Zi, 

where Zi signifies any point within the coverage area of 

sensor i. The operational range of each sensor is 

characterized by a sphere of influence with a radius 

denoted as R. 

Upon activation, the i sensor diligently monitors all 

targets within its coverage area, resulting in a discharge 

of its battery proportional to the surveillance efforts. 

Importantly, the battery life of the sensor remains 

unaffected during periods of inactivity. The collective 

surveillance area, denoted as Z, corresponds to the union 

of all individual coverage regions (⋃zi). To ensure the 

success of mission M, it is imperative that the lifespan of 

each sensor, denoted by the interval [Vminm, Vmaxm], 

falls within specified bounds. These bounds on battery 

life collectively contribute to the effective execution of 

the mission, underscoring the importance of careful 

energy management within the surveillance network. 

Consider a set denoted as (f), representing a collection of 

objectives with indices ranging from 1 to (f), totaling (f) 

objectives. The standard notation for an objective's index 

is (f). Within the framework of planning a multisensor 

(ms) mission, the minimal duration dedicated to 

monitoring objective (j) is expressed as (Tmin, kms). 

The function (Ppf(t)) denotes the desired location of 

objective (j) at instant ( t ). Marks are categorized into 

two types: those entering a system and those exiting it. 

Incoming marks signify the date and time when a target 

initially enters a sensor's field of view, while outgoing 

marks indicate the date and time of a target's departure 

from that field. Conventionally, initial and final marks 

correspond to outgoing and ingoing directions. 

Let J be a set encompassing all faces impacted by the 

shots, represented by indices {1...J}, with J indicating the 

total count of faces. If J serves as a hint for a face, its 

score is denoted as Jj. Each facet's time allocation 

adheres to the quality criteria of Dmin,km and Dmax,km 

throughout each kn time interval within every ms 

mission. The designated faces of interest are identified as 

J1...Jq, where J signifies candidate sensors covering a 

specific face. 
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The given framework establishes a comprehensive 

structure for characterizing objectives and faces within 

the context of a multisensor mission, incorporating 

precise notations and definitions to delineate the 

associated parameters and relationships. 

In the context of mission planning, a value K: = {1...K} 

is assigned to each potential time window, where K 

denotes the total number of time frames, and (kn) 

represents the index of a specific time frame. By 

delineating a temporal interval between two points, a 

mission with m legs can be segmented into K discrete 

time windows. The fundamental principle underlying 

this variation involves treating the coverage of targets 

and faces equivalently. Specifically, deploying a sensor 

to cover a target is analogous to covering all locations 

within its coverage region and, consequently, all the 

facial marks corresponding to the target's placement. 

Focusing solely on the areas where targets are situated 

proves sufficient for their elimination. 

To formalize this concept, a face-covering set, (J(kn)), is 

defined for each (k)-second interval. Given our 

knowledge of the faces containing each target, the 

original set of targets becomes unnecessary. This 

elimination of the target collection exemplifies one of the 

advantages conferred by face-based discretization. Given 

a mission duration (m), the scheduling parameter for 

each (kn)-minute interval is expressed as Δkn in 

milliseconds. 

Optimizing the use of a sensor network is crucial, 

especially when considering future monitoring missions 

for the same organization [9]. The efficiency in current 

missions has implications for subsequent monitoring 

endeavors [9]. 

A set of missions, denoted as M=1...M, encompasses M 

total missions identified by the index ms. The 

completion of each m mission results in an i-fold 

decrease in sensor life expectancy. The cumulative time 

H is computed as the sum of all mission times, expressed 

as H=∑ms=1MHms=∑ms=1M∑kn=1KΔknms. 

4. Results from Computational Analysis 

Consider the depicted scenario in the figures, featuring 

three sensors (I=03), two targets (J=02), seven-time 

windows (K=07), and three missions (M=03). 

Figures 1 and 2 herein encapsulate the averaged 

outcomes resulting from an array of numerical 

experiments. To extend the operational lifespan of the 

sensor network, a meticulous analysis was undertaken, 

employing an optimal schedule for the activation or 

inactivation of each sensor. Consequently, the optimal 

solutions derived at the conclusion of this schedule 

predominantly pertain to the expected activation or 

inactivation instances within predefined time windows. 

This strategic approach contributes to enhancing the 

overall efficiency and longevity of the sensor network. 

These windows are characterized by their duration, along 

with the residual operational time on each sensor. The 

temporal alignment of sensor activations within specific 

intervals emerges as a pivotal optimal variable. In 

scenarios featuring three sensors, two targets, and seven 

temporal intervals, the strategic sequencing allows for 

the activation of fewer sensors. However, under different 

circumstances, where sensors are situated in an 

inaccessible location, it becomes economically judicious 

to deploy multiple missions within the same sensor 

network. This approach capitalizes on a contextual 

understanding of sensor accessibility and optimizes the 

allocation of resources. 

 

optimizing life time WNS moving target 

 

Fig 1 Mission lifetime sensor                             Fig 2 Time windows in hours- sensor 1 
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Fig 3 Time windows in hours- sensor 2                    Fig 4 Time windows in hours- sensor 3 

 

Fig 5 Time windows in hours- sensor 4              Fig 6 Time windows in hours- sensor 5 

 

It is imperative to bear in mind that the simultaneous 

activation of all sensors is not requisite for 

comprehensive reconnaissance coverage within a 

designated zone across three sensors and seven temporal 

intervals spanning three missions. Each sensor is 

anticipated to activate during its designated operational 

timeframe, aligning with the arrival of targets within its 

operational domain. Authorized entities within this 

domain must be duly identified. In the absence of 

adversarial incursions within its field of vision, the 

sensor's vitality and operational capacity are replenished 

to an infinite extent. Exemplifying the process, during 

the initial mission, specifically in F1face and the first 

temporal frame, activation conventionally occurs at the 

mean requisite time of 100 Units. 

Consequently, all sensors aligned with the specified side 

are momentarily suspended, directing their power 

reflections towards infinity. Consequently, the F2 face's 

primary sensor undergoes activation precisely half of the 

time across the entirety of three distinct missions and 

temporal intervals. To articulate succinctly, this strategic 

allocation extends the operational longevity of the sensor 

network by optimizing fewer sensors to cover larger 

spatial domains. Precise knowledge of the activation 

times for each sensor during each designated time 

interval on each face (denoted as Fk) within a mission 

becomes imperative for computing the aggregate time 

required for deploying a sensor over the entire mission 

duration (m). 

For instance, the deployment of the F2 face's primary 

sensor during the second temporal interval aligns with 

the preconceived schedule, precisely timed at 87.5-time 

units. In a hypothetical scenario encompassing three 

sensors, eight temporal windows, and faces F1, F2, and 

F3, each sensor, on average, undergoes activation only 

four times per face across the seven-time windows. 

During sensor inactivity, its potential energy remains 

untapped, leading to an extended operational lifespan 

approaching infinity. This phenomenon highlights the 

efficiency and sustainability inherent in the utilization of 

the sensors within the specified temporal and facial 

parameters. 
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An additional consideration integral to the initiation 

process of the sensor involves the dichotomy between its 

active and inactive states within any given timeframe. 

Specifically, during the 8-second interval on side 1, the 

sensors remain inactive, whereas on side 2 during the 

same interval, all sensors are activated. It is imperative to 

meticulously discern the ingress and egress of each mark 

within every temporal span throughout a mission, 

facilitating scheduling optimization for enhanced target 

monitoring within specified areas of interest. For 

instance, in the context of the third mission with a 

singular target, the commencement involved a mark 

entering the initial timeframe, duly recorded by Cluster 

3. 

Assuming that marks represent decisions for each 

objective, knowledge of the primary tick enables the 

inference of subsequent marks across all temporal 

intervals. The primary objective of marks lies in 

determining, at each timeframe, whether an objective 

enters or exits a face, contingent upon the target's 

trajectory. This discernment enables the precise tracking 

of a target's movements, facilitating the impeccably 

sequenced actions of the sensor network. This imperative 

is particularly relevant when coordinating the activation 

of multiple sensors and targets, maintaining its validity 

even when the target's trajectory is subject to stochastic 

influences. This comprehensive understanding of sensor 

activation dynamics ensures the accurate orchestration of 

the sensor network, aligning with the scientific rigor 

inherent in such intricate systems. 

The operational efficiency of sensor networks is 

intricately linked to the progressive deterioration of 

battery life with each successive flight. The foreseen 

pace at which sensors deplete their batteries enables the 

calculation of their remaining life post-flight. As 

illustrated in Fig. 3 & 4, a discernible decline in sensor 

life, quantified in energy units, is evident after each 

deployment. Consequently, the overall longevity of the 

sensor network hinges significantly on the rate of battery 

degradation. A discernible enhancement in the network's 

lifespan is observed with a diminishing degradation rate, 

underscoring the critical role of this parameter. 

A pivotal consideration in maximizing mission 

effectiveness involves understanding the duration each 

sensor remains active during a given mission. Fig. 5 

elucidates this aspect, highlighting that by discerning the 

duration of sensor usage in distinct intervals, a 

comprehensive assessment of each sensor's overall 

mission engagement can be ascertained. Notably, in 

missions with time frames exceeding 180 units, it 

becomes imperative for a sensor's operational lifespan to 

surpass or equal the cooperation threshold (i,m) for 

mission m. This criterion is crucial to avert potential 

disinterest in target monitoring mid-operation due to 

premature sensor depletion. 

Ensuring the robustness of all sensors before mission 

launch is imperative to preempt the risk of sensor failure 

during critical operations. Figure 6 delineates the 

multifaceted constraints that sensors must satisfy for 

mission participation. Consequently, the initiation of 

subsequent missions is contingent upon the third sensor 

attaining the requisite 18-time units necessary for its 

participation in the ongoing operation. Moreover, an 

essential prerequisite involves establishing a guaranteed 

minimum time for target coverage by any selected 

sensors of interest. 

In the context of subsequent missions, the designated 

time interval encompasses the minimum average 

duration essential for error-free and accurate target 

monitoring. This meticulous consideration of sensor 

health, engagement duration, and coverage prerequisites 

aligns with the overarching objective of optimizing 

mission outcomes in sensor network operations. 

5. Conclusion 

To optimize the temporal utilization of a network of 

sensors, a mixed variable linear programming model was 

meticulously developed. This model relies on discrete 

marks denoting the initiation and termination of each 

temporal frame, strategically determining the precise 

timing of target positioning throughout the mission. The 

primary objective is to strategically plan the activation 

and deactivation of sensors within the network, aiming to 

maximize their lifespan during each mission. This 

proactive approach facilitates the identification of 

sensors crucial for engagement during specific time 

windows, precisely aligning with predetermined tasks. 

Additionally, we conducted a comprehensive analysis to 

ascertain the minimum energy requirements for a 

sensor's active participation in a mission and the speed at 

which the sensor network can track and intercept a 

moving object. These determinations contribute to a 

comprehensive understanding of the operational 

dynamics, enabling the establishment of minimum 

monitoring durations, commonly referred to as the 

"guarantee of coverage," and defining the threshold 

criteria for a sensor's involvement in a mission. In 

essence, our devised strategy ensures the longevity of the 

sensor network throughout missions, a significant 

departure from conventional methods. Unlike existing 

methodologies, our approach leverages a substantial 

number of sensor networks. This strategic sequencing 

allows for the activation of a select subset of sensors 

necessary for a mission involving two targets and 

spanning seven distinct time periods. This selective 

activation maximizes the overall utility of the sensor 

network and optimizes the operational life of individual 
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sensors. Furthermore, energy efficiency improvement in 

Wireless Sensor Networks (WSNs) through the 

optimization of clustering strategies is a well-established 

practice. Recent advancements in hierarchical 

optimization strategies for cluster head selection, cluster 

formation, data aggregation, and communication were 

subjected to detailed scrutiny. These clustering methods, 

categorized based on their optimization techniques such 

as meta-heuristics, fuzzy logic, or a hybrid of both, were 

systematically reviewed. Comparative analyses were 

conducted across these categories, considering metrics 

like performance, clustering success, and optimization 

parameters. 

The examination of various clustering protocols 

encompassed critical aspects, goals, and benefits 

associated with each procedure. Simulations were 

executed using platforms like JPAC, MATLAB, and NS, 

allowing for the comparison of protocol performances. 

Key criteria such as cluster head parameters, rotation, 

data transmission techniques, mobility, and deployment 

strategies were scrutinized specifically within fuzzy-

based protocols. Results were methodically analyzed to 

draw meaningful parallels, confirming the optimization 

of parameters. Notably, our study contributes a 

comprehensive map for future research endeavors in the 

domain of cluster networks. The synthesis of our 

findings not only advances the understanding of 

temporal optimization in sensor networks but also 

propels the discourse on enhancing energy efficiency in 

WSNs through sophisticated clustering methodologies. 

The established insights offer a roadmap for researchers, 

guiding their focus toward innovative solutions and 

advancements in this dynamic field. 
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