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Abstract: Software fault prediction is a vital and helpful technique for boosting the quality and dependability of software. There exists the 

prospective to enhance project management by proactively estimating prospective release delays and implementing cost-effective measures 

to boost software quality. This can be achieved by forecasting the components within a sizable software system that are most likely to 

exhibit a significant number of flaws in subsequent releases. However, creating reliable fault prediction models is a difficult task. This 

study’s primary goal is to carry out an investigation into the predictive analysis of software development frameworks with regard to 

software bug attributes: severity and priority. The machine learning method utilized in this study was implemented by using the Python 

programming platform. The implementation of this study makes use of methods from AI, along with data mining, and Machine Learning, 

along with statistical algorithms, and also modelling. Prediction models can be of assistance in maximizing all of the resources needed for 

the research. Random Forest (RF) Classifier and Support Vector Machine (SVM) are two techniques used in machine learning model 

training to determine the severity and urgency of the problem.  Per the findings of the study, The RF Priority Model provides a detailed 

outlook of the model's predicted performance across different priority levels with an accuracy rate of 0.87. This investigation assists 

developers discover faults based on existing software metrics using data mining techniques, which eventually will lead to an improvement 

in software quality and a decrease in the cost of developing software during both the development phase and the maintenance phase.                 

Keywords: Predictive Analysis; Predictive Models; Software Bugs; Priority; Severity; SVM; Random Forest Classifier. 

1. Introduction  

The "software defect prediction" (SDP) refers to the 

process of proactively identifying problematic aspects of 

a software system. The software development life cycle 

includes a number of various testing methodologies, one 

of the most essential of which is cloud-based solutions 

(Ali et al., 2022). This stage is also an extremely time-

consuming stage (Shatnawi et al., 2022). Early prediction 

and detection of problematic parts should typically 

demand quick debugging, the nature of which is 

determined by the severity degree of the defect or defects 

that have been found. In addition, the phase of the 

software development process known as the gathering of 

software requirements is an important early stage. As a 

result, testing the software while it is being developed is 

given a high priority in order to guarantee that it complies 

with the requirements specifications (Akmel et al., 2017). 

A software defect refers to a flaw, mistake, or error inside 

a software, resulting in an unexpected production along 

with an unintended behavioural effect that contradicts the 

quality objectives of software engineers along with the 

anticipated outcomes of end-users (Ali et al., 2019; Ali et 

al., 2022; Olaleye et al., 2021).  

Due to a lack of software testing, software defects are the 

most significant features that come with every release of 

a software product (Zhang et al., 2018). Developers 

encourage users to report defects via issue tracking 

systems like Bugzilla, along with Mantis, along with 

Google Code Issue Tracker, along with GitHub Issue 

Tracker, JIRA, and many others to prevent the existence 

of similar bugs in upcoming releases or new software 

products. By reporting defects, which is a common 

practice in the software maintenance process, users assist 

developers.  

In cloud platform data, bugs are typically encountered. 

Problems with the cloud's logic (29%), load (4%), space 

(4%), error-handling (18%), along with optimization 

(15%), along with configuration (14%), along with data-

race (12%), and hang (4%), are only some of the software 

bugs that can occur. The fact that nearly any kind of bug 

can result in practically any kind of consequence, 

including failed operations, along with performance 

degradation, component outages, data loss, along with 

staleness, along with corruption, makes the problem 

significantly worse. The purpose of this study is to utilise 

software prediction techniques to assess the severity and 

priority of faults in software as well as to prevent flaws 

from entering the system. The following section 

elaborates on the past literature related to this field. 
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2. Literature Review  

In the studies conducted, Malgonde and Chari (2019) 

utilized computer experiments to showcase the superior 

performance of the ensemble-based technique compared 

to previous ensemble-based benchmarking approaches. 

The research utilized an optimization model to enhance 

the sprint planning for two projects based on the dataset. 

This demonstrated the practical usability of the prediction 

model and the ensemble-based technique. 

In the study, Shetty et al. (2020) showcased the successful 

deployment of a rule-based expert system for fault 

remediation. Additionally, they proposed an analytical 

model so as to accurately evaluate the efficiency of 

remediation techniques for various fault types.  Related to 

a reactive fault controlling system, the results of an 

experiment using a specifically designed prototype 

demonstrate enhanced availability with reduced overhead. 

According to Ahmed et al. (2021), the framework is 

created utilizing NLP along with supervised machine 

learning methods. By examining more than 2000 bug 

complaints obtained from the Mozilla along with Eclipse 

sources. Four classification algorithms, which are Naive 

Bayes, along with RF, along with Decision Tree, along 

with Logistic Regression—were employed to categorize 

along with prioritize problem reports. Also, the study 

showcased the utilization of the CaPBug framework, 

which utilized a RF classifier together with a textual 

feature to predict the category. Also, the framework 

attained a precision rate of 88.78%. Similarly, the CaPBug 

framework attained a precision rate of 90.43% in 

evaluating the importance of bug reports. The problem of 

class imbalance in priority classes has been addressed by 

applying SMOTE. Distinguish resilience from the concept 

of reliability (SMOTE). 

Pachouly et al. (2022) emphasized the necessity of 

conducting an all-inclusive exploration of software defect 

prediction to investigate datasets, along with data 

validation procedures, defect detection, along with 

prediction tactics along with tools. Also, the findings of 

the literature research revealed that the conventional 

datasets possess a limited number of labels, thereby 

offering less information on the challenges at hand. The 

study proposed a methodology for creating a software 

prediction dataset that includes a sufficient number of 

attributes. It also employed statistical data validation 

approaches to accurately classify software concerns into 

many categories. 

According to Alsaedi et al. (2023), a new prediction model 

was proposed to evaluate BRs along with forecast the 

characteristics of bugs. The proposed model combines 

NLP and ML techniques to form an ensemble machine 

learning method. The simulation outcomes showcased 

that the proposed model, while utilizing text 

augmentation, achieved an accuracy of 96.72%, but 

without text augmentation, it achieved an accuracy of 

90.42%. These results indicate that the recommended 

model outperforms the bulk of existing models in terms of 

accuracy. 

Software defect prediction is a significant and helpful 

approach for boosting the quality and dependability of 

software, according to previous literature. There exists the 

potential to enhance project management practices by 

implementing early estimation techniques to identify 

potential release complications, as well as employing 

cost-effective strategies to guide corrective actions aimed 

at improving software quality (Alsghaier et al. (2021).  

This can be achieved by utilising predictive models to 

determine the components within a large software system 

that are most likely to exhibit a significant number of 

flaws in subsequent releases. However, creating reliable 

fault prediction models happens to be a tough issue, and 

numerous methods are put forth inside the collected 

works.  

Therefore, the main goal of this study is to undertake a 

research project on the predictive analysis of software 

development frameworks in relation to software problem 

traits, severity, and priority. 

3. Methodology  

One cannot completely eradicate bugs, fixes, patches, and 

other software-related issues because each one has a 

severity and priority level. This study was carried out 

utilizing the Python programming language.  The 

implementation strategy for the prediction model will be 

as follows. 
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Fig 1: Proposed Methodology of this study 

DATASET  

The dataset utilized in this study, focuses on the predictive 

analysis of software development frameworks in relation 

to software bug attributes: severity, and priority.  The 

dataset for agile software development,  was created using 

five different open-source programs: Apache, JIRA, 

JBoss, MongoDB, and Spring. Bug reports comprising of 

multiple attributes have been extracted for all the five 

open source softwares, obtained from the website: 

https://bz.apache.org/. 

 

Fig 2: Dataset used for this study 

LIBRARIES: 

Pandas library is utilized for data analysis along with 

processing, while Matplotlib and Seaborn are used for 

data visualization. These libraries enable the creation of 

useful charts and graphs. Additionally, scikit-learn 

modules like train_test_split, LabelEncoder, 

RandomForestClassifier, SVC, and classification_report 

are essential for data preprocessing, model training, and 

performance evaluation.  

DATA PRE-PROCESSING AND FEATURE 

ENGINEERING:  

The objective of this code is to organize bug data for 

machine learning analysis. First, it replaces missing 

information in the "Assignee" section with "Unknown." 

Datetime objects are created from "Changed" column 

data. Feature engineering begins with the 'Changed_Year' 

and 'Changed_Month' columns, which pull year and 

month from the 'Changed' date. Encoding categorical 

information including product, component, assignee, 

status, version, depends on, hardware, summary, blocks, 

severity, and priority with the LabelEncoder improves 

machine learning algorithms. We can also encode blocks, 

severity, and priority. This stage formats the data for 

model training along with evaluation.   

SPLITTING THE DATA AND MODEL TRAINING: 

The code partitions the dataset into training along with 

testing sets and trains Random Forest models to predict 

issue severity and priority, completing an important 

machine learning pipeline stage. Scikit-learn's 

train_test_split function splits data into features (X) and 

severity and priority target variables (y_severity and 

https://bz.apache.org/
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y_priority). Stratified splits enable consistency in severity 

and priority labels across training and testing sets. Two 

Random Forest classifiers were trained using the training 

set, with each classifier consisting of 100 decision trees. 

Classifiers acquire knowledge of patterns and correlations 

within a given dataset in order to make predictions for 

instances that have not yet been included in the testing set. 

The fundamental basis has been established. These 

metrics and images are intended to facilitate model 

performance evaluations at a later stage.    

TRAINING MACHINE LEARNING MODELS: 

Two methods are employed in machine learning model 

training to estimate problem severity and priority: 

Random Forest Classifier and SVM. The severity and 

priority forecasts for each algorithm are trained 

separately. The ensemble structure of the 

RandomForestClassifier provides robustness against 

overfitting and is implemented with 100 decision trees. 

Training the model involves using the feature matrix 

X_train and severity labels y_severity_train for severity 

prediction (severity_model). To train the priority model, 

the feature matrix X_train and priority labels 

y_priority_train are used with the same parameters. 

4. Results and Discussions 

Predictions for bug severity are produced using both the 

Random Forest model (severity_model) and the SVM 

model (svm_severity_model). The classification reports 

are printed in order to assess the models' efficacy. Each 

class's classification report includes detailed summaries of 

a number of parameters, including as precision, along with 

recall, along with F1-score, along with support. Separate 

reports for Random Forest along with SVM models are 

presented for problem severity and prioritization. These 

metrics highlight areas where the models can improve 

their ability to reliably classify bug severity and 

importance. This approach makes it easier to understand 

the effectiveness of the models. The severity model report 

is given in table below. Classification reports for every 

class include detailed summaries of multiple parameters, 

including as precision, along with recall, along with F1-

score, along with support. Metrics for problem severity 

and priority highlight areas for improvement and potential 

directions for the models' precise bug severity and priority 

classification. This strategy makes understanding the 

effectiveness of the models easier. 

Table 1: Precision, along with Recall, along with F1- Score for various models 

RANDOM FOREST SEVERITY MODEL REPORT: 

CLASS PRECISION RECALL F1-SCORE SUPPORT 

0 0.00 0.00 0.00 0 

1 0.00 0.00 0.00 2 

2 0.14 0.50 0.22 2 

3 0.00 0.00 0.00 2 

4 0.00 0.00 0.00 1 

5 0.85 0.74 0.79 3 

Accuracy   0.60 30 

Macro avg 0.17 0.21 0.17 30 

Weighted avg 0.66 0.60 0.62 30 

RANDOM FOREST PRIORITY MODEL REPORT: 

CLASS PRECISION RECALL F1-SCORE SUPPORT 

0 0.00 0.00 0.00 1 

1 0.86 1.00 0.92 24 

2 1.00 0.50 0.67 4 

4 0.00 0.00 0.00 1 

Accuracy   0.87 30 

Macro avg 0.46 0.38 0.40 30 
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Weighted avg 0.82 0.87 0.83 30 

SVM SEVERITY MODEL REPORT: 

CLASS PRECISION RECALL F1-SCORE SUPPORT 

1 0.00 0.00 0.00 2 

2 0.14 0.50 0.22 2 

3 0.00 0.00 0.00 2 

4 0.00 0.00 0.00 1 

5 0.86 0.78 0.82 23 

Accuracy   0.63 30 

Macro avg 0.20 0.26 0.21 30 

Weighted avg 0.67 0.63 0.64 30 

SVM PRIORITY MODEL REPORT:  

CLASS PRECISION RECALL F1-SCORE SUPPORT 

0 0.00 0.00 0.00  

1 0.92 0.96 0.94  

2 0.60 0.75 0.67  

4 0.00 0.00 0.00  

Accuracy   0.87 30 

Macro avg 0.38 0.43 0.40 30 

Weighted avg 0.82 0.87 0.84 30 

 

Across different severity classes, the Random Forest 

Severity Model's precision, along with recall, along with 

F1-score measures differ. The model is remarkably 

accurate, as evidenced by its F1-score of 0.79 for severity 

class 5. Overall, the accuracy is 0.60, although class 0 and 

other severity levels have far lower precision and recall. 

The precision, along with recall, along with F1-score of 

the Random Forest Priority Model are more uniformly 

distributed, with a substantial accuracy of 0.87. The model 

performs well when predicting class 1 severity but 

struggles when predicting class 0 and class 2 severity. The 

reports indicate comparable trends for the Severity and 

Priority SVM models. The models encounter challenges 

in accurately forecasting classes other than 5 and 1 in 

terms of severity and importance. However, it is in these 

specific classes that the models demonstrate exceptional 

performance. The distribution of severity is illustrated by 

using the figure below. 

 

Fig 3: Distribution of Severity 
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The distribution of priority of bugs can be identified from the figure below. 

 

Fig 4: Distribution of priority 

The following graphic presents the current status of the severity of the defect as determined by this investigation. 

 

Fig 5: Bug Severity by Status 

The following figure presents the severity and priority rankings in their respective distributions. 

 

Fig 6: Distribution of Severity and Priority 
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The histogram of severity levels shows how different 

severity levels are distributed over the sample. Impact is 

represented by a problem's severity level, which ranges 

from 0 to 7. The y-axis of this histogram shows the 

frequency or count of issues at each severity level, while 

the x-axis represents each severity level. The distribution 

of issues with moderate and severe impact is most 

frequently observed at severity levels 2 and 5, according 

to the histogram. At severity levels 0, 1, 3, 4, and 7, fewer 

cases happen.  The distribution of priority levels is also 

shown by the histogram of priority levels, which has a 

scale from 0 to 4. A problem's priority level indicates how 

soon it must be resolved. The fact that priority level 1 

dominates and levels 0, 2, 3, and 4 are less frequent in this 

histogram suggests that the majority of the issues require 

immediate attention. The graph below illustrates the 

histogram of severity levels. 

 

Fig 7: Histogram of Severity and Priority levels. 

5. Conclusion 

This study aims to predict software development 

frameworks' bug attributes, severity, and priority. 

Precision, recall, and F1-score vary by severity class in the 

Random Forest Severity Model. The model's severity 

class 5 F1-score of 0.79 shows its accuracy. Class 0 and 

other severity categories have far poorer precision and 

recall, but accuracy is 0.60. The Random Forest Priority 

Model has a robust 0.87 accuracy and more uniform 

precision, recall, and F1-score. Severity levels are 

dispersed across the sample in the histogram. Problem 

severity, ranging from 0 to 7, indicates impact. Given 

histogram illustrates the frequency or count of issues at 

each severity level on y-axis along with each severity level 

on x-axis. Severity levels are dispersed across the sample 

in the histogram. Problem severity, ranging from 0 to 7, 

indicates impact. This histogram demonstrates the 

frequency or count of issues at each severity level on y-

axis along with each severity level on x-axis. Finally, the 

visualization of the Random Forest Priority Model offers 

a comprehensive view of the model's expected 

performance across various priority levels. Per the 

investigation’s findings, the inference to be made is that 

the utilization of a random forest model holds promise for 

the application of predictive analysis in the context of 

software development frameworks. Specifically, this 

approach may be employed to assess software bug 

attributes, severity, and priority. Hence, it is hypothesized 

that this investigation acts as a treasured tool for future 

investigations, providing the research community with a 

guiding framework to enhance the quality of software 

defect severity and priority prediction research. 
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