

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 249–256 | 249

Machine Learning Based Predictive Analysis of Software Bug Severity

and Priority

1Kamna Vaid, 2Prof. Udayan Ghose

Submitted: 12/12/2023 Revised: 28/01/2024 Accepted: 03/02/2024

Abstract: Software fault prediction is a vital and helpful technique for boosting the quality and dependability of software. There exists the

prospective to enhance project management by proactively estimating prospective release delays and implementing cost-effective measures

to boost software quality. This can be achieved by forecasting the components within a sizable software system that are most likely to

exhibit a significant number of flaws in subsequent releases. However, creating reliable fault prediction models is a difficult task. This

study’s primary goal is to carry out an investigation into the predictive analysis of software development frameworks with regard to

software bug attributes: severity and priority. The machine learning method utilized in this study was implemented by using the Python

programming platform. The implementation of this study makes use of methods from AI, along with data mining, and Machine Learning,

along with statistical algorithms, and also modelling. Prediction models can be of assistance in maximizing all of the resources needed for

the research. Random Forest (RF) Classifier and Support Vector Machine (SVM) are two techniques used in machine learning model

training to determine the severity and urgency of the problem. Per the findings of the study, The RF Priority Model provides a detailed

outlook of the model's predicted performance across different priority levels with an accuracy rate of 0.87. This investigation assists

developers discover faults based on existing software metrics using data mining techniques, which eventually will lead to an improvement

in software quality and a decrease in the cost of developing software during both the development phase and the maintenance phase.

Keywords: Predictive Analysis; Predictive Models; Software Bugs; Priority; Severity; SVM; Random Forest Classifier.

1. Introduction

The "software defect prediction" (SDP) refers to the

process of proactively identifying problematic aspects of

a software system. The software development life cycle

includes a number of various testing methodologies, one

of the most essential of which is cloud-based solutions

(Ali et al., 2022). This stage is also an extremely time-

consuming stage (Shatnawi et al., 2022). Early prediction

and detection of problematic parts should typically

demand quick debugging, the nature of which is

determined by the severity degree of the defect or defects

that have been found. In addition, the phase of the

software development process known as the gathering of

software requirements is an important early stage. As a

result, testing the software while it is being developed is

given a high priority in order to guarantee that it complies

with the requirements specifications (Akmel et al., 2017).

A software defect refers to a flaw, mistake, or error inside

a software, resulting in an unexpected production along

with an unintended behavioural effect that contradicts the

quality objectives of software engineers along with the

anticipated outcomes of end-users (Ali et al., 2019; Ali et

al., 2022; Olaleye et al., 2021).

Due to a lack of software testing, software defects are the

most significant features that come with every release of

a software product (Zhang et al., 2018). Developers

encourage users to report defects via issue tracking

systems like Bugzilla, along with Mantis, along with

Google Code Issue Tracker, along with GitHub Issue

Tracker, JIRA, and many others to prevent the existence

of similar bugs in upcoming releases or new software

products. By reporting defects, which is a common

practice in the software maintenance process, users assist

developers.

In cloud platform data, bugs are typically encountered.

Problems with the cloud's logic (29%), load (4%), space

(4%), error-handling (18%), along with optimization

(15%), along with configuration (14%), along with data-

race (12%), and hang (4%), are only some of the software

bugs that can occur. The fact that nearly any kind of bug

can result in practically any kind of consequence,

including failed operations, along with performance

degradation, component outages, data loss, along with

staleness, along with corruption, makes the problem

significantly worse. The purpose of this study is to utilise

software prediction techniques to assess the severity and

priority of faults in software as well as to prevent flaws

from entering the system. The following section

elaborates on the past literature related to this field.

1Research Scholar, University School of Information and Communication

Technology, Guru Gobind Singh Indraprastha University, Dwarka, New

Delhi, India

Email ID: kamnavaid@gmail.com
2University School of Information and Communication Technology, Guru

Gobind Singh Indraprastha University, Dwarka, New Delhi, India

mailto:kamnavaid@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 249–256 | 250

2. Literature Review

In the studies conducted, Malgonde and Chari (2019)

utilized computer experiments to showcase the superior

performance of the ensemble-based technique compared

to previous ensemble-based benchmarking approaches.

The research utilized an optimization model to enhance

the sprint planning for two projects based on the dataset.

This demonstrated the practical usability of the prediction

model and the ensemble-based technique.

In the study, Shetty et al. (2020) showcased the successful

deployment of a rule-based expert system for fault

remediation. Additionally, they proposed an analytical

model so as to accurately evaluate the efficiency of

remediation techniques for various fault types. Related to

a reactive fault controlling system, the results of an

experiment using a specifically designed prototype

demonstrate enhanced availability with reduced overhead.

According to Ahmed et al. (2021), the framework is

created utilizing NLP along with supervised machine

learning methods. By examining more than 2000 bug

complaints obtained from the Mozilla along with Eclipse

sources. Four classification algorithms, which are Naive

Bayes, along with RF, along with Decision Tree, along

with Logistic Regression—were employed to categorize

along with prioritize problem reports. Also, the study

showcased the utilization of the CaPBug framework,

which utilized a RF classifier together with a textual

feature to predict the category. Also, the framework

attained a precision rate of 88.78%. Similarly, the CaPBug

framework attained a precision rate of 90.43% in

evaluating the importance of bug reports. The problem of

class imbalance in priority classes has been addressed by

applying SMOTE. Distinguish resilience from the concept

of reliability (SMOTE).

Pachouly et al. (2022) emphasized the necessity of

conducting an all-inclusive exploration of software defect

prediction to investigate datasets, along with data

validation procedures, defect detection, along with

prediction tactics along with tools. Also, the findings of

the literature research revealed that the conventional

datasets possess a limited number of labels, thereby

offering less information on the challenges at hand. The

study proposed a methodology for creating a software

prediction dataset that includes a sufficient number of

attributes. It also employed statistical data validation

approaches to accurately classify software concerns into

many categories.

According to Alsaedi et al. (2023), a new prediction model

was proposed to evaluate BRs along with forecast the

characteristics of bugs. The proposed model combines

NLP and ML techniques to form an ensemble machine

learning method. The simulation outcomes showcased

that the proposed model, while utilizing text

augmentation, achieved an accuracy of 96.72%, but

without text augmentation, it achieved an accuracy of

90.42%. These results indicate that the recommended

model outperforms the bulk of existing models in terms of

accuracy.

Software defect prediction is a significant and helpful

approach for boosting the quality and dependability of

software, according to previous literature. There exists the

potential to enhance project management practices by

implementing early estimation techniques to identify

potential release complications, as well as employing

cost-effective strategies to guide corrective actions aimed

at improving software quality (Alsghaier et al. (2021).

This can be achieved by utilising predictive models to

determine the components within a large software system

that are most likely to exhibit a significant number of

flaws in subsequent releases. However, creating reliable

fault prediction models happens to be a tough issue, and

numerous methods are put forth inside the collected

works.

Therefore, the main goal of this study is to undertake a

research project on the predictive analysis of software

development frameworks in relation to software problem

traits, severity, and priority.

3. Methodology

One cannot completely eradicate bugs, fixes, patches, and

other software-related issues because each one has a

severity and priority level. This study was carried out

utilizing the Python programming language. The

implementation strategy for the prediction model will be

as follows.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 249–256 | 251

Fig 1: Proposed Methodology of this study

DATASET

The dataset utilized in this study, focuses on the predictive

analysis of software development frameworks in relation

to software bug attributes: severity, and priority. The

dataset for agile software development, was created using

five different open-source programs: Apache, JIRA,

JBoss, MongoDB, and Spring. Bug reports comprising of

multiple attributes have been extracted for all the five

open source softwares, obtained from the website:

https://bz.apache.org/.

Fig 2: Dataset used for this study

LIBRARIES:

Pandas library is utilized for data analysis along with

processing, while Matplotlib and Seaborn are used for

data visualization. These libraries enable the creation of

useful charts and graphs. Additionally, scikit-learn

modules like train_test_split, LabelEncoder,

RandomForestClassifier, SVC, and classification_report

are essential for data preprocessing, model training, and

performance evaluation.

DATA PRE-PROCESSING AND FEATURE

ENGINEERING:

The objective of this code is to organize bug data for

machine learning analysis. First, it replaces missing

information in the "Assignee" section with "Unknown."

Datetime objects are created from "Changed" column

data. Feature engineering begins with the 'Changed_Year'

and 'Changed_Month' columns, which pull year and

month from the 'Changed' date. Encoding categorical

information including product, component, assignee,

status, version, depends on, hardware, summary, blocks,

severity, and priority with the LabelEncoder improves

machine learning algorithms. We can also encode blocks,

severity, and priority. This stage formats the data for

model training along with evaluation.

SPLITTING THE DATA AND MODEL TRAINING:

The code partitions the dataset into training along with

testing sets and trains Random Forest models to predict

issue severity and priority, completing an important

machine learning pipeline stage. Scikit-learn's

train_test_split function splits data into features (X) and

severity and priority target variables (y_severity and

https://bz.apache.org/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 249–256 | 252

y_priority). Stratified splits enable consistency in severity

and priority labels across training and testing sets. Two

Random Forest classifiers were trained using the training

set, with each classifier consisting of 100 decision trees.

Classifiers acquire knowledge of patterns and correlations

within a given dataset in order to make predictions for

instances that have not yet been included in the testing set.

The fundamental basis has been established. These

metrics and images are intended to facilitate model

performance evaluations at a later stage.

TRAINING MACHINE LEARNING MODELS:

Two methods are employed in machine learning model

training to estimate problem severity and priority:

Random Forest Classifier and SVM. The severity and

priority forecasts for each algorithm are trained

separately. The ensemble structure of the

RandomForestClassifier provides robustness against

overfitting and is implemented with 100 decision trees.

Training the model involves using the feature matrix

X_train and severity labels y_severity_train for severity

prediction (severity_model). To train the priority model,

the feature matrix X_train and priority labels

y_priority_train are used with the same parameters.

4. Results and Discussions

Predictions for bug severity are produced using both the

Random Forest model (severity_model) and the SVM

model (svm_severity_model). The classification reports

are printed in order to assess the models' efficacy. Each

class's classification report includes detailed summaries of

a number of parameters, including as precision, along with

recall, along with F1-score, along with support. Separate

reports for Random Forest along with SVM models are

presented for problem severity and prioritization. These

metrics highlight areas where the models can improve

their ability to reliably classify bug severity and

importance. This approach makes it easier to understand

the effectiveness of the models. The severity model report

is given in table below. Classification reports for every

class include detailed summaries of multiple parameters,

including as precision, along with recall, along with F1-

score, along with support. Metrics for problem severity

and priority highlight areas for improvement and potential

directions for the models' precise bug severity and priority

classification. This strategy makes understanding the

effectiveness of the models easier.

Table 1: Precision, along with Recall, along with F1- Score for various models

RANDOM FOREST SEVERITY MODEL REPORT:

CLASS PRECISION RECALL F1-SCORE SUPPORT

0 0.00 0.00 0.00 0

1 0.00 0.00 0.00 2

2 0.14 0.50 0.22 2

3 0.00 0.00 0.00 2

4 0.00 0.00 0.00 1

5 0.85 0.74 0.79 3

Accuracy 0.60 30

Macro avg 0.17 0.21 0.17 30

Weighted avg 0.66 0.60 0.62 30

RANDOM FOREST PRIORITY MODEL REPORT:

CLASS PRECISION RECALL F1-SCORE SUPPORT

0 0.00 0.00 0.00 1

1 0.86 1.00 0.92 24

2 1.00 0.50 0.67 4

4 0.00 0.00 0.00 1

Accuracy 0.87 30

Macro avg 0.46 0.38 0.40 30

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 249–256 | 253

Weighted avg 0.82 0.87 0.83 30

SVM SEVERITY MODEL REPORT:

CLASS PRECISION RECALL F1-SCORE SUPPORT

1 0.00 0.00 0.00 2

2 0.14 0.50 0.22 2

3 0.00 0.00 0.00 2

4 0.00 0.00 0.00 1

5 0.86 0.78 0.82 23

Accuracy 0.63 30

Macro avg 0.20 0.26 0.21 30

Weighted avg 0.67 0.63 0.64 30

SVM PRIORITY MODEL REPORT:

CLASS PRECISION RECALL F1-SCORE SUPPORT

0 0.00 0.00 0.00

1 0.92 0.96 0.94

2 0.60 0.75 0.67

4 0.00 0.00 0.00

Accuracy 0.87 30

Macro avg 0.38 0.43 0.40 30

Weighted avg 0.82 0.87 0.84 30

Across different severity classes, the Random Forest

Severity Model's precision, along with recall, along with

F1-score measures differ. The model is remarkably

accurate, as evidenced by its F1-score of 0.79 for severity

class 5. Overall, the accuracy is 0.60, although class 0 and

other severity levels have far lower precision and recall.

The precision, along with recall, along with F1-score of

the Random Forest Priority Model are more uniformly

distributed, with a substantial accuracy of 0.87. The model

performs well when predicting class 1 severity but

struggles when predicting class 0 and class 2 severity. The

reports indicate comparable trends for the Severity and

Priority SVM models. The models encounter challenges

in accurately forecasting classes other than 5 and 1 in

terms of severity and importance. However, it is in these

specific classes that the models demonstrate exceptional

performance. The distribution of severity is illustrated by

using the figure below.

Fig 3: Distribution of Severity

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 249–256 | 254

The distribution of priority of bugs can be identified from the figure below.

Fig 4: Distribution of priority

The following graphic presents the current status of the severity of the defect as determined by this investigation.

Fig 5: Bug Severity by Status

The following figure presents the severity and priority rankings in their respective distributions.

Fig 6: Distribution of Severity and Priority

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 249–256 | 255

The histogram of severity levels shows how different

severity levels are distributed over the sample. Impact is

represented by a problem's severity level, which ranges

from 0 to 7. The y-axis of this histogram shows the

frequency or count of issues at each severity level, while

the x-axis represents each severity level. The distribution

of issues with moderate and severe impact is most

frequently observed at severity levels 2 and 5, according

to the histogram. At severity levels 0, 1, 3, 4, and 7, fewer

cases happen. The distribution of priority levels is also

shown by the histogram of priority levels, which has a

scale from 0 to 4. A problem's priority level indicates how

soon it must be resolved. The fact that priority level 1

dominates and levels 0, 2, 3, and 4 are less frequent in this

histogram suggests that the majority of the issues require

immediate attention. The graph below illustrates the

histogram of severity levels.

Fig 7: Histogram of Severity and Priority levels.

5. Conclusion

This study aims to predict software development

frameworks' bug attributes, severity, and priority.

Precision, recall, and F1-score vary by severity class in the

Random Forest Severity Model. The model's severity

class 5 F1-score of 0.79 shows its accuracy. Class 0 and

other severity categories have far poorer precision and

recall, but accuracy is 0.60. The Random Forest Priority

Model has a robust 0.87 accuracy and more uniform

precision, recall, and F1-score. Severity levels are

dispersed across the sample in the histogram. Problem

severity, ranging from 0 to 7, indicates impact. Given

histogram illustrates the frequency or count of issues at

each severity level on y-axis along with each severity level

on x-axis. Severity levels are dispersed across the sample

in the histogram. Problem severity, ranging from 0 to 7,

indicates impact. This histogram demonstrates the

frequency or count of issues at each severity level on y-

axis along with each severity level on x-axis. Finally, the

visualization of the Random Forest Priority Model offers

a comprehensive view of the model's expected

performance across various priority levels. Per the

investigation’s findings, the inference to be made is that

the utilization of a random forest model holds promise for

the application of predictive analysis in the context of

software development frameworks. Specifically, this

approach may be employed to assess software bug

attributes, severity, and priority. Hence, it is hypothesized

that this investigation acts as a treasured tool for future

investigations, providing the research community with a

guiding framework to enhance the quality of software

defect severity and priority prediction research.

References

[1] Ali, S., Baseer, S., Abbasi, I. A., Alouffi, B.,

Alosaimi, W., & Huang, J. (2022). Analyzing the

interactions among factors affecting cloud adoption

for software testing: a two-stage ISM-ANN

approach. Soft Computing, 26(16), 8047-8075

[2] Shatnawi, M. Q., & Alazzam, B. (2022). An

Assessment of Eclipse Bugs' Priority and Severity

Prediction Using Machine Learning. International

Journal of Communication Networks and

Information Security, 14(1), 62-69.

[3] Akmel, F., Birihanu, E., & Siraj, B. (2017). A

literature review study of software defect prediction

using machine learning techniques. Int. J. Emerg.

Res. Manag. Technol, 6(6), 300-306.

[4] Ali, S., Ullah, N., Abrar, M. F., Majeed, M. F., Umar,

M. A., & Huang, J. (2019). Barriers to software

outsourcing partnership formation: an exploratory

analysis. IEEE Access, 7, 164556-164594.

[5] Ali, S., Nasir, A., Samad, A., Basser, S., & Irshad,

A. (2022). An automated approach for the prediction

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 249–256 | 256

of the severity level of bug reports using GPT-

2. Security and Communication Networks, 2022.

[6] Olaleye, T. O., Arogundade, O. T., Abayomi-Alli,

A., & Adesemowo, A. K. (2021). An ensemble

predictive analytics of COVID-19 infodemic tweets

using bag of words. In Data science for COVID-

19 (pp. 365-380). Academic Press.

[7] Zhang, Y., Chen, Y., Cheung, S. C., Xiong, Y., &

Zhang, L. (2018, July). An empirical study on

TensorFlow program bugs. In Proceedings of the

27th ACM SIGSOFT international symposium on

software testing and analysis (pp. 129-140).

[8] Malgonde, O., & Chari, K. (2019). An ensemble-

based model for predicting agile software

development effort. Empirical Software

Engineering, 24, 1017-1055.

[9] Shetty, J., Babu, B. S., & Shobha, G. (2020).

Proactive cloud service assurance framework for

fault remediation in cloud

environment. International Journal of Electrical &

Computer Engineering (2088-8708), 10(1).

[10] Ahmed, H. A., Bawany, N. Z., & Shamsi, J. A.

(2021). Capbug-a framework for automatic bug

categorization and prioritization using nlp and

machine learning algorithms. IEEE Access, 9,

50496-50512.

[11] Pachouly, J., Ahirrao, S., Kotecha, K.,

Selvachandran, G., & Abraham, A. (2022). A

systematic literature review on software defect

prediction using artificial intelligence: Datasets,

Data Validation Methods, Approaches, and

Tools. Engineering Applications of Artificial

Intelligence, 111, 104773.

[12] Alsaedi, S. A., Noaman, A. Y., Gad-Elrab, A. A., &

Eassa, F. E. (2023). Nature-Based Prediction Model

of Bug Reports Based on Ensemble Machine

Learning Model. IEEE Access.

[13] Alsghaier, H., & Akour, M. (2021). Software fault

prediction using whale algorithm with genetics

algorithm. Software: Practice and

Experience, 51(5), 1121-1146.

[14] J.Kim and G. Yang, ‘‘Bug severity prediction

algorithm using topic based feature selection and

CNN-LSTM algorithm,’’ IEEE Access, vol. 10, pp.

94643–94651, 2022.

[15] https://www.usenix.org/system/files/login/articles/l

ogin_aug15_08_gunawi.pdfY.

[16] Tian, D. Lo, X. Xia and C. Sun, "Automated

prediction of bug report priority using multi-factor

analysis", Empirical Software Engineering, vol. 20,

no. 5, pp. 1354-1383, 2015.

https://www.usenix.org/system/files/login/articles/login_aug15_08_gunawi.pdfY
https://www.usenix.org/system/files/login/articles/login_aug15_08_gunawi.pdfY

