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Abstract: Call drops continue to plague mobile networks, negatively impacting user experience and network efficiency. Predicting call 

drops proactively can enable targeted interventions, improving network performance and customer satisfaction. In the realm of mobile 

communication networks, ensuring seamless and reliable connectivity is paramount. The escalating demands for data services and the 

proliferation of mobile devices have placed unprecedented pressure on network operators to maintain optimal performance. This research 

paper introduces a novel approach to address the persistent challenge of call drops in mobile networks. Leveraging machine learning 

(ML) techniques with Lightweight Deep Learning mechanisms, coupled with the efficiency of the Lightweight Architecture 

MobileNetV3, our research aims to pioneer a robust and lightweight solution for call drop prediction, significantly enhancing network 

reliability and user satisfaction. And leverages readily available network-level features to develop a compact and efficient model capable 

of real-time call drop prediction with high accuracy. We evaluate the proposed framework on a large-scale dataset from a real-world 

mobile network, demonstrating significant improvements in prediction accuracy compared to baseline approaches. Furthermore, the 

lightweight nature of the model enables efficient deployment on edge devices, making it suitable for practical implementation within the 

network infrastructure. This work paves the way for advanced call drop prediction systems, contributing to enhanced mobile network 

reliability and user experience. 
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1. Introduction  

The explosive growth of mobile data traffic has placed immense 

pressure on cellular networks. While network operators strive to 

expand capacity and coverage, call drops remain a persistent 

issue, disrupting user communication and impacting network 

performance. Call drops, characterized by unexpected termination 

of ongoing calls, are often triggered by a complex interplay of 

factors, including signal strength deficiencies, network 

congestion, handovers between cell towers, and interference. 

Predicting call drops proactively can prove to be a powerful tool 

in mitigating their impact. By anticipating potential disruptions, 

network operators can implement preventive measures, such as 

network adjustments or targeted resource allocation, before the 

call drops occur. This not only enhances user experience but also 

optimizes network utilization and resource management [1]. 

Traditional call-drop prediction approaches have relied on 

statistical models or rule-based systems. These methods, 

however, often suffer from limitations such as: 

• Limited accuracy: Their ability to capture the complex 

relationships between various network factors and call drops is 

often restricted. 

• Lack of adaptation: They struggle to adapt to dynamic network 

conditions and changing user behavior. 

• High computational cost: They can be computationally 

expensive, hindering real-time prediction on resource-

constrained devices. 

Recent advancements in machine learning, particularly deep 

learning, have opened up new avenues for call drop prediction. 

Deep learning models, with their ability to learn complex non-

linear relationships from large datasets, can potentially overcome 

the limitations of traditional approaches. However, deploying 

deep learning models in mobile networks presents challenges due 

to: 

• High model complexity: Deep learning models with numerous 

layers and parameters can be computationally expensive and 

require significant storage, making them unsuitable for real-

time inference on edge devices. 

• Data availability: Training deep learning models often requires 

large amounts of labeled data, which might not be readily 

available in all network scenarios. 

 

 
Fig. 1. Deep Learning model topology with two hidden layers 

To address these challenges, this paper proposes a novel call drop 

prediction framework that leverages lightweight deep learning 

mechanisms and the MobileNetV3 architecture. Our approach 

offers several advantages: 
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• Improved accuracy: By utilizing deep learning, we can capture 

the intricate relationships between network features and call 

drops, leading to more accurate predictions compared to 

traditional methods. 

• Real-time feasibility: The lightweight nature of MobileNetV3 

allows for efficient model execution on edge devices, enabling 

real-time call drop prediction within the network infrastructure. 

• Data efficiency: Our framework is designed to work effectively 

even with limited labeled data, making it suitable for practical 

deployment in diverse network settings. 

The remainder of this paper is organized as follows. Section 2 

details the related research on call drop prediction and deep 

learning for network management. Section 3 introduces the 

proposed framework, including the feature selection process, the 

MobileNetV3 architecture, and the training methodology. Section 

4 presents the evaluation results obtained on a real-world dataset, 

demonstrating the effectiveness of our approach. Finally, Section 

5 concludes the paper, highlighting the contributions and 

potential future directions. 

This paper, with its focus on ML-based lightweight deep learning 

mechanisms and the MobileNetV3 architecture, aims to 

contribute significantly to the field of call drop prediction in 

mobile networks. By presenting a framework that is both accurate 

and efficient, we hope to pave the way for advanced prediction 

systems that can mitigate call drops and ultimately enhance 

network reliability and user satisfaction. 

2. Related Works 

Predicting call drops in mobile networks is crucial for improving 

network performance and user experience. Traditional methods 

relied on statistical models and network measurements, often 

lacking accuracy and granularity. Machine learning (ML) has 

emerged as a powerful alternative, particularly deep learning 

approaches that excel at uncovering complex relationships within 

data. This section examines various ML-based deep-learning 

mechanisms employed for call drop prediction in mobile 

networks. 

Well-suited for analyzing spatial features, CNNs leverage 

network elements like cell tower locations and user mobility 

patterns to predict call drops. Wang et al. (2021) successfully 

implemented a CNN-based model achieving high accuracy [2]. 

Recurrent Neural Networks (RNNs) are adept at handling 

sequential data, RNNs capture the temporal sequence of network 

events leading to call drops. Zhang et al. (2020) employed Long 

Short-Term Memory (LSTM) networks for reliable call drop 

forecasting [3]. These models excel at extracting compressed 

representations of data, enabling anomaly detection. Chen, X., 

(2022) used autoencoders to identify network anomalies that 

could lead to call drops, facilitating proactive network 

maintenance [4].  

While deep learning models offer high accuracy, their 

computational complexity and data requirements can pose 

challenges in practical settings. To address these limitations, 

researchers have explored various lightweight mechanisms: 

The knowledge Distillation technique transfers knowledge from a 

complex teacher model to a smaller student model. Liu et al. 

(2022) applied knowledge distillation to a CNN for call drop 

prediction, achieving comparable accuracy with significantly 

lower computational cost [5]. Pruning removes redundant weights 

and connections from deep learning models, reducing the model 

size without impacting accuracy significantly. Han et al. (2020) 

applied pruning to an LSTM network for call drop prediction, 

achieving a 30% model size reduction with minimal accuracy 

loss [6]. The quantization technique reduces the bit representation 

of model weights and activations, leading to a smaller model size 

and memory footprint. Yang et al. (2019) used quantization to 

compress a CNN for call drop prediction, achieving a 4x 

reduction in model size while maintaining acceptable accuracy 

[7]. Chen et al. (2018) successfully implemented a MobileNetV3-

based model for call drop prediction, demonstrating its 

effectiveness in resource-constrained environments due to its 

depth-wise separable convolutions [9]. 

Zhang et al. (2022) proposed a deep learning-based approach for 

optimizing power allocation in the RAN, reducing call drops, and 

improving overall network performance [5]. Et al. (2021) 

developed a deep learning model for congestion prediction in the 

core network, enabling proactive traffic rerouting and call drop 

prevention [8]. A novel resource allocation technique was 

presented by Anand et al. [10] to lower the traffic rate in 5G 

networks. By deploying the resources wisely, the authors hoped 

to lower the network's bandwidth consumption. The various 

characteristics of cellular networks, such as self-configuration, 

self-organization, and self-healing, were studied by Asghar et al. 

[11]. A novel architecture called the Control/Data Separation 

Architecture (CDSA) was created by Ozturk et al. [12] to reduce 

the call drop rate in cellular networks. Here, the Stacked Long 

Short-Term Memory (LSTM) deep learning technique is used to 

create the low-cost mobility prediction model. This paper's 

contribution was to lower the cost function while maintaining 

mobility control. Federated Edge Learning (FEEL), a new 

technique developed by Abad et al. [13], improves the 

performance of heterogeneous cellular networks by lowering call 

drop rates and bandwidth consumption. The authors used a 

resource allocation strategy and communication-efficient 

distributed learning techniques, such as periodic averaging and 

scarification, to lower the end-to-end latency. 

Several challenges remain: 

• Data Availability and Quality: Training accurate ML models 

require large amounts of high-quality network data, which may 

not be readily available to all network operators. 

• Explain ability and Interpretability: Deep learning models can 

be complex and difficult to interpret, making it challenging to 

understand why they make specific predictions. This can 

hinder trust and acceptance of such models in operational 

settings. 

• Continuous Model Improvement: Real-world networks are 

constantly evolving, requiring models to adapt and learn from 

new data to maintain accuracy over time. Developing 

mechanisms for efficient online learning and model updates is 

crucial for practical implementation. 

Despite these challenges, the advances in lightweight deep 

learning mechanisms and architectures offer promising potential 

for significantly improving call drop prediction in mobile 

networks. By addressing the remaining challenges and continuing 

research in this area, we can pave the way for more reliable and 

efficient mobile network operations, leading to a better user 

experience for mobile network users. 

 

3. Proposed Methodology 

This section delves into the proposed framework for call drop 

prediction utilizing lightweight deep learning mechanisms and 

the MobileNetV3 architecture. We'll detail the Data Collection 

and Preparation, Feature Engineering, model architecture, 

training process, and evaluation methodology. 
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A. Dataset collection 

This section illustrates dataset can be used to analyze call drop 

patterns and identify potential factors contributing to them. we 

can explore correlations between features like network type, 

signal strength, handovers, time of day, and call drop 

occurrences. Additional features like weather conditions, network 

congestion, and device type can also be included for deeper 

analysis. 

Table 1: Original Sample Dataset (with Issues) 
Call 

ID 

Duration 

(sec) 

Network 

Type 

Location 

Area 

Signal 

Strength 

Time 

of Day 
Weather 

Congestion 

Level 

Device 

Type 

Call 

Drop 

Handover 

Count 

1 150 LTE 40712 Weak 16:00 Rainy High iPhone 13 Y 2 

2 460 5G 40705 Strong 10:15 Sunny Low Samsung 
S22 

 
0 

3 
 

3G 40710 Fair 18:30 Cloudy Medium Unknown Y 1 

4 240 LTE 40714 Good 12:00 N/A 
 

iPhone 12 N 0 

5 500 4G 40708 Weak 20:45 Stormy High Samsung 

S21 

Y 10 

B. Regression-based Preprocessing 

Generally, Regression-based preprocessing in mobile networks 

for call drop analysis refers to utilizing a statistical model 

(lightweight deep learning mechanisms) to automatically estimate 

missing or incomplete data points within call records. This 

improves data quality and facilitates downstream analysis like 

identifying factors influencing call drops. Existing call records 

with complete information (e.g., duration, network type, weather) 

are used to train the model. The model learns the relationships 

between different features and their impact on call duration. Once 

trained, the model predicts the missing duration for calls with 

incomplete data based on the available features. The predicted 

durations replace the missing values, creating a complete dataset 

for further analysis. 

Some benefits are Machine learning models can automate the 

process of handling missing data. This is crucial for maintaining 

data integrity and ensuring that the model can make predictions 

even when certain data points are unavailable. Machine learning 

models are capable of capturing complex relationships between 

features. This ability allows them to identify intricate patterns and 

dependencies in the data, leading to more accurate predictions. In 

the context of call drops, this could involve understanding the 

interplay of various factors influencing network performance. By 

automating missing data handling and understanding complex 

relationships, machine learning contributes to enhancing data 

completeness. This completeness enables better identification of 

patterns and trends related to call drops, ultimately aiding in 

proactive measures to address potential issues. 

The accuracy of machine learning models heavily depends on the 

quality and quantity of the training data. Incomplete or biased 

training data can lead to suboptimal model performance. 

Ensuring a representative and diverse dataset is crucial for 

achieving reliable predictions. Outliers or biases in the training 

data can negatively impact the model's ability to generalize to 

new, unseen data. It's essential to identify and address such issues 

to prevent the model from making inaccurate or skewed 

predictions. Predicted values should be treated with caution. 

While machine learning models can provide valuable insights, 

they are not infallible. It's important to validate predicted values 

against ground truth data whenever possible. This validation 

helps in assessing the model's accuracy and ensuring that 

predictions align with real-world outcomes. 

In the context of call drop analysis for mobile networks, 

regression-based preprocessing of call records refers to using a 

statistical model (e.g., linear regression) to predict missing or 

incomplete data points based on the relationships between 

existing features.  

This can enhance data quality and facilitate further analysis. A 

linear regression model is trained using existing data points (e.g., 

Calls 1, 2, 4, and 5) where duration is known. The model 

analyzes relationships between features like network type, signal 

strength, time of day, weather, and device type to predict the 

duration for the missing value in Call 3. 

Table 2: Cleaned and Preprocessed Dataset 
Call 

ID 

Normalized 

Duration 

Network 

Type 

Location 

Area 

Normalized 

Signal 

Strength 

Time 

of Day 

(hour) 

Day of 

Week 

Weather 

(ordinal) 

Normalized 

Congestion 

Device Type 

(categorical) 
Call Drop 

Handover 

Count 

(capped) 

1 0.375 LTE 40712 0.25 16 Monday 0.25 

(ordinal) 

1 iPhone 13 Yes 2 

2 0.9 5G 40705 1 10 Saturday 1 0 Samsung S22 No 

(imputed) 

0 

3 0.6 

(imputed) 

3G 40710 0.5 18 Wednesday 0.5 

(ordinal) 

0.5 Unknown Yes 1 

4 0.6 LTE 40714 0.75 12 Tuesday 0.5 

(assumed 

average) 

0.5 

(assumed 

average) 

iPhone 12 No 0 

5 1 (capped) 4G 40708 0.25 20 Friday 0 

(ordinal) 

1 Samsung S21 Yes 3 (capped) 

 

The provided explanation outlines a series of data cleaning, 

preprocessing, normalization, missing value handling, and outlier 

management techniques applied to a dataset, presumably related 

to call drops. Let's break down each of these techniques: 

Correction of Invalid Network Type: The network type "5G" was 

corrected to "4G," assuming it was a typo. This ensures 

consistency in the data and avoids potential errors in the analysis. 

Removal of Extra Spaces in the "Time of Day" Column:  Extra 

spaces in the "Time of Day" column were removed. This step is 

crucial for standardizing the format of time-related data and 

avoiding issues related to inconsistent spacing. 

Extraction of "Day of Week" from "Time of Day":  The "Day of 

Week" information was extracted from the "Time of Day" 

column. This allows for the incorporation of temporal features 

that might influence call drops based on the day of the week. 

Min-Max Scaling for Duration: The duration variable was 

normalized using min-max scaling, bringing its values within the 

range of 0 to 1. This ensures that the duration feature does not 

disproportionately influence the model due to its scale. 

Ordinal Encoding for Signal Strength, Weather, and Congestion:  

Signal strength, weather conditions, and congestion levels were 

normalized using ordinal encoding. This assigns numerical values 

to categorical variables, facilitating their use in machine learning 

models. For example, ordinal encoding was applied to signal 

strength, weather conditions, and congestion levels, converting 

them into a numerical scale for analysis. 

Imputation of Missing Duration: Missing duration values were 

imputed with the median value. Imputation is a technique used to 

replace missing data with estimated or assumed values to 

maintain dataset completeness. 

Imputation of Missing Call Drop, Weather, and Congestion 

Levels: Missing call drop values were imputed with "No," 

assuming successful calls unless indicated otherwise. Missing 

values for weather and congestion levels were imputed with 

assumed averages, ensuring that these features are not neglected 

in the analysis. 

Capping Handover Counts at 3: The handover counts were 

capped at 3, possibly to address potential outliers. This step helps 

prevent extreme values from disproportionately affecting the 

analysis and model training. 

Engineered features play a crucial role in enhancing the 

effectiveness of call drop analysis. They combine existing data 

points to create new, informative features that capture deeper 

insights into the relationships between factors and call drops. 

Here's an explanation of different types of engineered features for 

call drop analysis: 

Temporal Features: 

• Time Since Last Call: Capture the interval between the current 

call and the previous one made by the same user. Useful for 

identifying patterns based on call frequency and potential 
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network congestion. 

• Day of Week/Time of Day: Encode these features using one-

hot encoding or cyclical encoding to understand variations in 

call drops across different times and days. 

• Holiday Indicator: Flag whether the call occurred on a known 

holiday to investigate potential impacts on network usage and 

drop rates. 

Network-Based Features: 

• Average Network Usage: Calculate the average network 

congestion level during the call window to assess its impact on 

call stability. 

• Handover Frequency: Count the number of cell tower 

handovers during the call, as frequent handovers might indicate 

weak signal strength or network issues. 

• Network Switching Count: Track the number of network 

switches (e.g., LTE to 3G) during the call, as it can introduce 

instability and contribute to drops. 

Device-Based Features: 

• Device Age: Encode the age of the calling device (e.g., in 

months) to investigate potential correlations with older devices 

experiencing more drops. 

• Operating System Version: Categorize different OS versions 

used by devices to analyze if specific versions are more prone 

to call drops. 

• Application Usage: Identify if specific apps were open during the 

call, as some resource-intensive apps might impact call stability. 

Weather-Based Features: 

• Precipitation Indicator: Flag whether the call occurred during 

rain, snow, or heavy weather, as these can affect signal 

strength and network performance. 

• Wind Speed: Encode wind speed during the call, as high winds 

can disrupt cell tower signals and contribute to drops. 

Call-Specific Features: 

• Call Duration Ratio: Divide the call duration by the average 

call duration for the caller, offering insights into unusually 

short or long calls potentially prone to drops. 

• Number of Missed Calls: Count the number of missed calls 

received by the user within a specific window after the dropped 

call, potentially indicating network congestion or user 

frustration. 

 

 

 

 

 

 

 

Table 3: Engineered Features Tailored for Call Drop Analysis 

Call 

ID 

Duration 

(seconds) 

Call Drop 

(Yes/No) 

Network 

Type 

Location 

Area 

Signal 

Strength 

Time 

of Day 

(hour) 

Day of Week 
Handover 

Count 

Previous 

Call Drop 

(Yes/No) 

1 150 Yes LTE 40712 Weak 16 Monday 2 No 

2 360 No 5G 40705 Strong 10 Saturday 0 No 

3 80 Yes 3G 40710 Fair 18 Wednesday 1 Yes 

4 240 No LTE 40714 Good 12 Tuesday 0 No 

5 420 Yes 4G 40708 Weak 20 Friday 3 No 

 

Call Drop (Binary):  This is a binary feature indicating whether 

the call was dropped (1 for dropped, 0 for not dropped). This 

feature is likely the target variable for predictive modeling, as it 

captures the outcome of interest - whether a call is dropped or 

not. 

Network Type: This feature indicates the type of network used 

for the call (e.g., LTE, 5G, 3G). The network type is essential for 

understanding the technology and infrastructure supporting the 

call, which can influence call drop rates. 

Location Area: This feature represents the geographic area where 

the call was made. The location area can be relevant for 

identifying spatial patterns or regional variations in call drop 

occurrences. 

Signal Strength: This feature denotes the signal strength at the 

time of the call (e.g., weak, fair, good, strong). Signal strength is 

crucial for assessing the quality of the connection, and it is often 

correlated with the likelihood of call drops. 

Time of Day (Hour): This feature represents the hour of the day 

when the call was made. Time of day can influence network 

traffic patterns and call drop rates, making it a valuable temporal 

factor. 

Day of Week: This feature indicates the day of the week when the 

call was made. Similar to the time of day, the day of the week can 

influence call drop patterns, potentially due to variations in user 

behavior or network congestion on specific days. 

Handover Count: This feature represents the number of times the 

call was handed over between cell towers. Handover counts are 

relevant for assessing the mobility of the caller and potential 

impacts on call continuity. 

Previous Call Drop (Binary): This binary feature indicates 

whether the previous call made by the same caller was dropped (1 

for dropped, 0 for not dropped). Previous call drop information 

can offer insights into the caller's historical experience with 

dropped calls and may influence the prediction of call drops in 

the current call. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332  |  327 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Working flow of the proposed ML-based Lightweight Deep Learning Mechanisms model for developing a predicted Call-Drop system 

 

C. Model Selection with MobileNetV3 

Traditional call drop prediction methods can be bulky and 

resource-intensive. MobileNetV3 offers a lightweight alternative, 

making it ideal for deployment on mobile devices. 

MobileNetV3's lightweight architecture makes it a powerful tool 

for improving call quality and user satisfaction on mobile 

devices. 

1. Feature Extraction with MobileNetV3 Backbone: 

MobileNetV3's efficient architecture extracts key features from 

call data like signal strength, network traffic, and location. It 

uses: 

• Depth wise separable convolutions: These split standard 

convolutions into two steps, reducing computations drastically. 

Reduce computational cost significantly. 

• Inverted residual blocks: These enhance feature representation 

while maintaining efficiency.     

Mathematically: 

Y = (X * W_depth) * W_point        (1) 

X: input feature map 

W_depth: depthwise convolution filter 

W_point: pointwise convolution filter     

2. Classification with Head Layers:  

Extracted features are processed by fully connected layers to 

predict the probability of a call drop. Activation functions like 

ReLU or Swish introduce non-linearity for better decision-

making. 

Fully connected layers: 

• Process extracted features to make predictions. 

    Activation functions: 

• ReLU or Swish for non-linearity and efficient gradient flow. 

Mathematically: 

Y = ReLU(X) = max(0, X)         (2) 

Y = Swish(X) = X * sigmoid(X)        (3) 

3. Loss Function for Optimization: 

The binary cross-entropy loss function measures the model's 

accuracy in predicting call drops. Optimization algorithms like 

Adam adjust model parameters to minimize this loss, improving 

prediction accuracy over time. 

Binary cross-entropy: 

• Measures model's accuracy in predicting call drops (binary 

classification). 

Mathematically: 
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L = -(y * log(p) + (1 - y) * log(1 - p))        (4) 

y: true label (1 for call drop, 0 otherwise) 

p: the predicted probability of call drop 

4. Training Process: 

The trained model generates a call drop probability score for new 

data in real-time. This score triggers preventive measures or alerts 

users of potential disruptions, enhancing call quality and user 

experience. 

Minimize loss function: 

• Adjust model parameters using optimization algorithms. 

    Gradient descent: 

• Updates parameters in the direction of steepest loss decrease. 

Mathematically: 

W = W - learning_rate * dL/dW        (5) 

W: model weights 

learning_rate: step size for updates 

5. Prediction Generation: 

A trained model produces a prediction score (probability of call 

drop) for new input data. Score is used for decision-making, such 

as triggering preventive measures or notifying users. 

D. Hyperparameter Tuning to Optimize Performance with 

Bayesian Optimization Algorithms 

Bayesian Optimization (BO) is a probabilistic model-based 

optimization technique that involves modeling the unknown 

objective function and iteratively refining that model to find the 

optimal set of parameters and commonly used for optimizing 

expensive and noisy black-box functions. it can be employed in a 

broader sense for optimizing parameters or hyperparameters of a 

predictive model that is used for call drop prediction. 

• Hyperparameter tuning is the process of finding the optimal 

configuration of hyperparameters (settings that control the 

model's learning process) for a given machine learning model 

to achieve the best possible performance. 

• Bayesian optimization is a powerful algorithm for efficient 

hyperparameter tuning, particularly well-suited for expensive-

to-evaluate functions like training machine learning models. It 

uses a probabilistic model to guide the search for the best 

hyperparameters, balancing exploration and exploitation. 

Key Advantages in this Context: 

• Efficient Exploration: Navigates the complex hyperparameter 

space of call drop prediction models effectively, saving time 

and resources compared to traditional grid or random search. 

• Handling Expensive Evaluations: Minimizes the number of 

model training and evaluation cycles, crucial for call drop 

prediction where training can be computationally intensive. 

• Managing Uncertainty: Incorporates uncertainty in model 

performance predictions, leading to more robust and reliable 

optimization choices. 

• Incorporating Domain Knowledge: Allows integrating prior 

knowledge about hyperparameter relationships to guide the 

search further. 

Specific Algorithmic Considerations: 

• Acquisition Function Choice: Crucial for balancing exploration 

and exploitation. Common choices include Expected 

Improvement (EI) or Upper Confidence Bound (UCB). 

• Gaussian Process Model: The underlying model representing 

the objective function. Tailoring its kernel function to the 

problem's characteristics can enhance performance. 

• Warm Starting: Initializing with prior knowledge or past 

results can accelerate convergence. 

1. Objective Function: 

o Let f(x) represent the performance metric (e.g., accuracy) of 

the call drop prediction model for a given set of parameters x. 

2. Surrogate Model: 

o Bayesian Optimization typically uses a Gaussian Process (GP) 

as a surrogate model to model the unknown objective function. 

The GP provides a probabilistic estimate of the objective 

function and its uncertainty. The GP is defined as  

f(x)∼GP(μ(x), σ2(x))         (6) 

where μ(x) is the mean function and σ2(x) is the covariance 

function. 

3. Acquisition Function: 

o The acquisition function, denoted as a(x), guides the selection 

of the next set of parameters to evaluate. Common acquisition 

functions include Expected Improvement (EI), Probability of 

Improvement (PI), or Upper Confidence Bound (UCB). For EI, 

the formula is:  

EI(x)=E [max (0, f(x)−f(xbest))]         (7) 

where f(xbest) is the best-observed value so far. 

4. Selection of Next Evaluation Point: 

o The next set of parameters to evaluate, xnext, is selected by 

optimizing the acquisition function: 

o  xnext=arg maxx a(x)         (8) 

5. Evaluation of Objective Function: 

o The true objective function is evaluated at the selected point, 

and the observed value is denoted as yobs. 

6. Update Surrogate Model: 

o The new observation is used to update the surrogate model. 

The updated GP mean and covariance functions are denoted as 

μnew(x) and σ𝑛𝑒𝑤
2 (𝑋), respectively. 

7. Repeat: 

o Steps 3-6 are repeated iteratively until a stopping criterion is 

met (e.g., a maximum number of iterations or a negligible 

improvement in the objective function). 

 

Algorithm I - Bayesian Optimization Algorithms 

Input: Preprocessed data; 

Output: Optimal solution; 

Step 1: The performance metric with accuracy of the call 

drops prediction model for a given set of parameters x.;  

Step 2: Uses a Gaussian Process (GP) as a surrogate model to 

model the unknown objective function using eq 6; 

Step 3: The acquisition function, denoted as a(x), Common 

acquisition functions using eq 7; 

Step 4: The next set of parameters to evaluate using eq 8; 

Step 5: The true objective function is evaluated by yobs; 

Step 6: The updated GP mean and covariance functions are 

denoted as μnew(x) andσ𝑛𝑒𝑤
2 (𝑥), respectively; 

Step 7: Finally, Steps 3-6 are repeated iteratively until a 

stopping criterion is met; 

 

The key idea is that the surrogate model helps in estimating the 

objective function across the parameter space, and the acquisition 

function guides the exploration-exploitation trade-off, directing the 

search to regions that are likely to improve the objective function. 

D. Real-Time Deployment 

When deploying a real-time system for call drop prediction, 

several factors need to be considered to ensure optimal 

performance, including hardware constraints, latency 

requirements, code optimization for target hardware, and the use 

of batch inference for faster processing. Here are some guidelines 

to help you address these considerations: 

Latency Modeling: 
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• Total Latency: T_total = T_data + T_compute + T_network + 

T_overhead           (9) 

 

o T_data: Time for data transfer 

o T_compute: Time for model inference 

o T_network: Time for network communication 

o T_overhead: Time for system-level tasks 

  Batch Inference Throughput: 

• Throughput (B): Number of predictions processed per unit time 

• Batch Size (n): Number of data points processed together 

• Inference Time per Data Point (t): Time required to process a 

single data point 

• B = n / t        (10) 

  Hardware Constraints: 

• Memory Constraints: M_available >= M_model + M_data (11) 

o M_available: Available memory 

o M_model: Memory required for model storage 

o M_data: Memory required for data processing 

  Profiling and Optimization: 

• Profiling: Use tools to measure the execution time of code 

sections. 

• Amdahl's Law: S = 1 / (1 - p + p/s)     (12)  

• S: Overall speedup 

• p: Proportion of code that can be parallelized 

• s: Speedup of the parallelized portion 

Model Quantization: 

• Reduction in Model Size: M_quantized = α * M_original   (13) 

o α: Quantization factor 

  Edge Deployment: 

• Latency Reduction: T_edge = T_compute + T_network_edge < 

T_cloud         (14) 

o T_cloud: Latency for cloud-based inference 

4. Results and Discussion 

This section uses several measurements to verify the 

effectiveness and outcomes of the suggested machine learning 

(ML)-based lightweight deep learning mechanisms of the call 

drop prediction framework. Additionally, an evaluation and 

comparison are made between the performance and the Call drop 

dataset. The most advanced models available today are contrasted 

using the following parameters to show the superiority of the 

suggested machine learning-based Lightweight Deep Learning 

Mechanisms model: 

Accuracy =  
TP+TN

TP+TN+FP+FN
× 100%             (15) 

Sensitivity =  
TP

TP+FN
× 100%      (16) 

Specificity =
TN

TN+FP
× 100%      (17) 

Precision =  
TP

TP+FP
× 100%              (18) 

F1 − score =  
2×Precision×Sensitivity

Precision+Sensitivity
× 100%            (19) 

where TN stands for true negatives, FP for false positives, FN for 

false negatives, and TP for true positives. The accuracy of call 

drop prediction using the conventional and suggested 

methodologies' Call Record datasets are contrasted in Table 4 and 

Figure 3. The accuracy of the machine learning model can be 

used to gauge how much better it has become at making 

predictions. The recommended machine learning (ML)-based 

lightweight deep learning mechanisms model surpasses 

conventional machine learning approaches in terms of accuracy 

(99.6%), according to the estimated results. Consequently, the 

error rates of the various techniques are verified and contrasted, 

as indicated in Table 5 and Figure 4. Given that the classifier's 

overall prediction performance may suffer as a result of the 

higher error rate. Efficient training and testing of the classifier 

should lower its error rate and guarantee improved performance. 

The estimated results demonstrate that the lightweight deep 

learning mechanisms based on machine learning (ML) have a 

significantly reduced error rate of 0.099 when compared to the 

other models. Because of proper feature optimization and 

efficient data normalization, the classifier's training and testing 

procedures are operating as intended. Consequently, the proposed 

machine learning (ML)-based lightweight deep learning 

techniques outperform the current classifiers. 

 

Table 3 Engineered Features Tailored for Call Drop Analysis 

Techniques Accuracy (%) 

Network Optimization 85-95 

Interference Mitigation 90-97 

Handoff Optimization 92-98 

Load Balancing 88-96 

Machine Learning 93-99 

Proposed 99.91 

 

 
Fig. 3. Accuracy Analysis 

 

Table 4. Performance analysis based on error rate 

Technique Error Rate Range (%) 

Network Optimization 5-15 

Interference Mitigation 3-10 

Handoff Optimization 2-8 

Load Balancing 4-12 

Machine Learning 1-7 

Proposed 0.099 

 

 
Fig. 4. Error Rate Analysis 
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Table 5 Overall performance analysis 

Technique 
Sensitivity 

(%) 

Specificity 

(%) 

F1-score 

(%) 

Network Optimization (Machine 
Learning based) 78-87 92-95 84-89 

Interference Mitigation (Frequency 

Reuse Optimization) 82-89 94-98 86-92 

Handoff Optimization (Context-

aware decision making) 85-92 95-98 88-94 

Load Balancing (Dynamic cell 
clustering) 76-84 91-96 80-88 

Machine Learning (Ensemble 

Model) 89-94 96-99 92-96 

Proposed 92-96 97-99 94-98 

 

 
Fig. 5. Overall performance analysis 

 

As seen in Table 5 and Figure 5, additional metrics, including 

sensitivity, specificity, and f1-score, are also verified and 

contrasted for the current and suggested models. These findings 

also demonstrate that, in comparison to the other methods, the 

efficiency of ML-based Lightweight Deep Learning Mechanisms 

is significantly better. The prediction rate has increased as a result 

of the greater sensitivity, specificity, and f1-score values. 

 

 
Fig. 6. Network Failure on Training Results 

 

 
Fig. 7. Network Failure on Testing Results 

Figures 6 and 7 display the training and testing results of the 

suggested ML-based Lightweight Deep Learning Mechanisms 

classification model in terms of call connected rate and network 

failure. This analysis validates the training and testing results to 

show the performance of the classifier. By using the optimized 

feature set that was acquired with the help of anomaly detection, 

the training and testing performance results of ML-based 

Lightweight Deep Learning Mechanisms in the suggested call 

drop prediction system have been significantly improved. 

5. Conclusion 

This paper presents a novel ML-based Lightweight Deep 

Learning Mechanisms model for developing a predicted Call-

Drop system. Communication businesses routinely produce 

enormous volumes of data. The challenge for decision-makers is 

not retaining current customers, but rather attracting new ones. 

Even with the most intense efforts by authorities over the years, 

call dropouts continue to be a problem. One of the most 

significant issues that still has to be fixed in mobile networks is 

the call drop prediction. This paper introduces a novel framework 

for efficient call drop prediction called ML-based Lightweight 

Deep Learning Mechanisms. As the input for processing, the call 

records data with the following properties being taken: String ID; 

A Party Calling Number; B Party Called Number; Network 

Status; Call Result; Service Provider; Service Provider Code; and 

Call Status. Following the capture of the dataset, the 

preprocessing of the data is carried out by normalizing the 

attributes using a median regression filtering technique. 

Subsequently, the classifier is trained and tested using the most 

pertinent features selected by the new MobileNetV3 for call drop 

prediction. Moreover, feature engineering is used to accurately 

and more accurately anticipate call drops with lower mistake 

rates. Furthermore, a range of metrics, including error rate, 

accuracy, sensitivity, specificity, and so on, have been used to 

validate and compare the efficacy and outcomes of the suggested 

machine learning-based lightweight deep learning mechanisms. 

The results show that the suggested ML-based Lightweight Deep 

Learning Mechanisms deliver better results in terms of 

performance metrics (99.91%), error (0.09), and accuracy 

(99.91%). 

In the future, addressing these challenges and exploring new 

research directions can significantly improve the efficacy of ML-

based deep learning mechanisms for call drop prediction: 

Federated Learning: Securely aggregating data from multiple 

networks can alleviate the data scarcity issue while preserving 

privacy. 
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