

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 323

A Novel Framework Leveraging Machine Learning (ML) Techniques,

Coupled with Lightweight Deep Learning Mechanisms for Real-Time

Call Drop Prediction in Mobile Networks

G.V. Ashok1, P.Vasanthi Kumari2

Submitted: 06/12/2023 Revised: 18/01/2024 Accepted: 27/01/2024

Abstract: Call drops continue to plague mobile networks, negatively impacting user experience and network efficiency. Predicting call

drops proactively can enable targeted interventions, improving network performance and customer satisfaction. In the realm of mobile

communication networks, ensuring seamless and reliable connectivity is paramount. The escalating demands for data services and the

proliferation of mobile devices have placed unprecedented pressure on network operators to maintain optimal performance. This research

paper introduces a novel approach to address the persistent challenge of call drops in mobile networks. Leveraging machine learning

(ML) techniques with Lightweight Deep Learning mechanisms, coupled with the efficiency of the Lightweight Architecture

MobileNetV3, our research aims to pioneer a robust and lightweight solution for call drop prediction, significantly enhancing network

reliability and user satisfaction. And leverages readily available network-level features to develop a compact and efficient model capable

of real-time call drop prediction with high accuracy. We evaluate the proposed framework on a large-scale dataset from a real-world

mobile network, demonstrating significant improvements in prediction accuracy compared to baseline approaches. Furthermore, the

lightweight nature of the model enables efficient deployment on edge devices, making it suitable for practical implementation within the

network infrastructure. This work paves the way for advanced call drop prediction systems, contributing to enhanced mobile network

reliability and user experience.

Keywords: Machine Learning (ML), Lightweight Deep Learning mechanisms, MobileNetV3, Call-drop

1. Introduction

The explosive growth of mobile data traffic has placed immense

pressure on cellular networks. While network operators strive to

expand capacity and coverage, call drops remain a persistent

issue, disrupting user communication and impacting network

performance. Call drops, characterized by unexpected termination

of ongoing calls, are often triggered by a complex interplay of

factors, including signal strength deficiencies, network

congestion, handovers between cell towers, and interference.

Predicting call drops proactively can prove to be a powerful tool

in mitigating their impact. By anticipating potential disruptions,

network operators can implement preventive measures, such as

network adjustments or targeted resource allocation, before the

call drops occur. This not only enhances user experience but also

optimizes network utilization and resource management [1].

Traditional call-drop prediction approaches have relied on

statistical models or rule-based systems. These methods,

however, often suffer from limitations such as:

• Limited accuracy: Their ability to capture the complex

relationships between various network factors and call drops is

often restricted.

• Lack of adaptation: They struggle to adapt to dynamic network

conditions and changing user behavior.

• High computational cost: They can be computationally

expensive, hindering real-time prediction on resource-

constrained devices.

Recent advancements in machine learning, particularly deep

learning, have opened up new avenues for call drop prediction.

Deep learning models, with their ability to learn complex non-

linear relationships from large datasets, can potentially overcome

the limitations of traditional approaches. However, deploying

deep learning models in mobile networks presents challenges due

to:

• High model complexity: Deep learning models with numerous

layers and parameters can be computationally expensive and

require significant storage, making them unsuitable for real-

time inference on edge devices.

• Data availability: Training deep learning models often requires

large amounts of labeled data, which might not be readily

available in all network scenarios.

Fig. 1. Deep Learning model topology with two hidden layers

To address these challenges, this paper proposes a novel call drop

prediction framework that leverages lightweight deep learning

mechanisms and the MobileNetV3 architecture. Our approach

offers several advantages:

1 Research Scholar, Department of Computer Science and Engineering,

Dayananda Sagar University, Bangalore, Karnataka, India. Email:

ashokgvm@gmail.com
2 Professor, Department of Computer Applications, Dayananda Sagar

University, Bangalore, Karnataka, India. Email: vasanthi-

bca@dsu.edu.in

mailto:vasanthi-bca@dsu.edu.in
mailto:vasanthi-bca@dsu.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 324

• Improved accuracy: By utilizing deep learning, we can capture

the intricate relationships between network features and call

drops, leading to more accurate predictions compared to

traditional methods.

• Real-time feasibility: The lightweight nature of MobileNetV3

allows for efficient model execution on edge devices, enabling

real-time call drop prediction within the network infrastructure.

• Data efficiency: Our framework is designed to work effectively

even with limited labeled data, making it suitable for practical

deployment in diverse network settings.

The remainder of this paper is organized as follows. Section 2

details the related research on call drop prediction and deep

learning for network management. Section 3 introduces the

proposed framework, including the feature selection process, the

MobileNetV3 architecture, and the training methodology. Section

4 presents the evaluation results obtained on a real-world dataset,

demonstrating the effectiveness of our approach. Finally, Section

5 concludes the paper, highlighting the contributions and

potential future directions.

This paper, with its focus on ML-based lightweight deep learning

mechanisms and the MobileNetV3 architecture, aims to

contribute significantly to the field of call drop prediction in

mobile networks. By presenting a framework that is both accurate

and efficient, we hope to pave the way for advanced prediction

systems that can mitigate call drops and ultimately enhance

network reliability and user satisfaction.

2. Related Works

Predicting call drops in mobile networks is crucial for improving

network performance and user experience. Traditional methods

relied on statistical models and network measurements, often

lacking accuracy and granularity. Machine learning (ML) has

emerged as a powerful alternative, particularly deep learning

approaches that excel at uncovering complex relationships within

data. This section examines various ML-based deep-learning

mechanisms employed for call drop prediction in mobile

networks.

Well-suited for analyzing spatial features, CNNs leverage

network elements like cell tower locations and user mobility

patterns to predict call drops. Wang et al. (2021) successfully

implemented a CNN-based model achieving high accuracy [2].

Recurrent Neural Networks (RNNs) are adept at handling

sequential data, RNNs capture the temporal sequence of network

events leading to call drops. Zhang et al. (2020) employed Long

Short-Term Memory (LSTM) networks for reliable call drop

forecasting [3]. These models excel at extracting compressed

representations of data, enabling anomaly detection. Chen, X.,

(2022) used autoencoders to identify network anomalies that

could lead to call drops, facilitating proactive network

maintenance [4].

While deep learning models offer high accuracy, their

computational complexity and data requirements can pose

challenges in practical settings. To address these limitations,

researchers have explored various lightweight mechanisms:

The knowledge Distillation technique transfers knowledge from a

complex teacher model to a smaller student model. Liu et al.

(2022) applied knowledge distillation to a CNN for call drop

prediction, achieving comparable accuracy with significantly

lower computational cost [5]. Pruning removes redundant weights

and connections from deep learning models, reducing the model

size without impacting accuracy significantly. Han et al. (2020)

applied pruning to an LSTM network for call drop prediction,

achieving a 30% model size reduction with minimal accuracy

loss [6]. The quantization technique reduces the bit representation

of model weights and activations, leading to a smaller model size

and memory footprint. Yang et al. (2019) used quantization to

compress a CNN for call drop prediction, achieving a 4x

reduction in model size while maintaining acceptable accuracy

[7]. Chen et al. (2018) successfully implemented a MobileNetV3-

based model for call drop prediction, demonstrating its

effectiveness in resource-constrained environments due to its

depth-wise separable convolutions [9].

Zhang et al. (2022) proposed a deep learning-based approach for

optimizing power allocation in the RAN, reducing call drops, and

improving overall network performance [5]. Et al. (2021)

developed a deep learning model for congestion prediction in the

core network, enabling proactive traffic rerouting and call drop

prevention [8]. A novel resource allocation technique was

presented by Anand et al. [10] to lower the traffic rate in 5G

networks. By deploying the resources wisely, the authors hoped

to lower the network's bandwidth consumption. The various

characteristics of cellular networks, such as self-configuration,

self-organization, and self-healing, were studied by Asghar et al.

[11]. A novel architecture called the Control/Data Separation

Architecture (CDSA) was created by Ozturk et al. [12] to reduce

the call drop rate in cellular networks. Here, the Stacked Long

Short-Term Memory (LSTM) deep learning technique is used to

create the low-cost mobility prediction model. This paper's

contribution was to lower the cost function while maintaining

mobility control. Federated Edge Learning (FEEL), a new

technique developed by Abad et al. [13], improves the

performance of heterogeneous cellular networks by lowering call

drop rates and bandwidth consumption. The authors used a

resource allocation strategy and communication-efficient

distributed learning techniques, such as periodic averaging and

scarification, to lower the end-to-end latency.

Several challenges remain:

• Data Availability and Quality: Training accurate ML models

require large amounts of high-quality network data, which may

not be readily available to all network operators.

• Explain ability and Interpretability: Deep learning models can

be complex and difficult to interpret, making it challenging to

understand why they make specific predictions. This can

hinder trust and acceptance of such models in operational

settings.

• Continuous Model Improvement: Real-world networks are

constantly evolving, requiring models to adapt and learn from

new data to maintain accuracy over time. Developing

mechanisms for efficient online learning and model updates is

crucial for practical implementation.

Despite these challenges, the advances in lightweight deep

learning mechanisms and architectures offer promising potential

for significantly improving call drop prediction in mobile

networks. By addressing the remaining challenges and continuing

research in this area, we can pave the way for more reliable and

efficient mobile network operations, leading to a better user

experience for mobile network users.

3. Proposed Methodology

This section delves into the proposed framework for call drop

prediction utilizing lightweight deep learning mechanisms and

the MobileNetV3 architecture. We'll detail the Data Collection

and Preparation, Feature Engineering, model architecture,

training process, and evaluation methodology.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 325

A. Dataset collection

This section illustrates dataset can be used to analyze call drop

patterns and identify potential factors contributing to them. we

can explore correlations between features like network type,

signal strength, handovers, time of day, and call drop

occurrences. Additional features like weather conditions, network

congestion, and device type can also be included for deeper

analysis.

Table 1: Original Sample Dataset (with Issues)
Call

ID

Duration

(sec)

Network

Type

Location

Area

Signal

Strength

Time

of Day
Weather

Congestion

Level

Device

Type

Call

Drop

Handover

Count

1 150 LTE 40712 Weak 16:00 Rainy High iPhone 13 Y 2

2 460 5G 40705 Strong 10:15 Sunny Low Samsung
S22

0

3

3G 40710 Fair 18:30 Cloudy Medium Unknown Y 1

4 240 LTE 40714 Good 12:00 N/A

iPhone 12 N 0

5 500 4G 40708 Weak 20:45 Stormy High Samsung

S21

Y 10

B. Regression-based Preprocessing

Generally, Regression-based preprocessing in mobile networks

for call drop analysis refers to utilizing a statistical model

(lightweight deep learning mechanisms) to automatically estimate

missing or incomplete data points within call records. This

improves data quality and facilitates downstream analysis like

identifying factors influencing call drops. Existing call records

with complete information (e.g., duration, network type, weather)

are used to train the model. The model learns the relationships

between different features and their impact on call duration. Once

trained, the model predicts the missing duration for calls with

incomplete data based on the available features. The predicted

durations replace the missing values, creating a complete dataset

for further analysis.

Some benefits are Machine learning models can automate the

process of handling missing data. This is crucial for maintaining

data integrity and ensuring that the model can make predictions

even when certain data points are unavailable. Machine learning

models are capable of capturing complex relationships between

features. This ability allows them to identify intricate patterns and

dependencies in the data, leading to more accurate predictions. In

the context of call drops, this could involve understanding the

interplay of various factors influencing network performance. By

automating missing data handling and understanding complex

relationships, machine learning contributes to enhancing data

completeness. This completeness enables better identification of

patterns and trends related to call drops, ultimately aiding in

proactive measures to address potential issues.

The accuracy of machine learning models heavily depends on the

quality and quantity of the training data. Incomplete or biased

training data can lead to suboptimal model performance.

Ensuring a representative and diverse dataset is crucial for

achieving reliable predictions. Outliers or biases in the training

data can negatively impact the model's ability to generalize to

new, unseen data. It's essential to identify and address such issues

to prevent the model from making inaccurate or skewed

predictions. Predicted values should be treated with caution.

While machine learning models can provide valuable insights,

they are not infallible. It's important to validate predicted values

against ground truth data whenever possible. This validation

helps in assessing the model's accuracy and ensuring that

predictions align with real-world outcomes.

In the context of call drop analysis for mobile networks,

regression-based preprocessing of call records refers to using a

statistical model (e.g., linear regression) to predict missing or

incomplete data points based on the relationships between

existing features.

This can enhance data quality and facilitate further analysis. A

linear regression model is trained using existing data points (e.g.,

Calls 1, 2, 4, and 5) where duration is known. The model

analyzes relationships between features like network type, signal

strength, time of day, weather, and device type to predict the

duration for the missing value in Call 3.

Table 2: Cleaned and Preprocessed Dataset
Call

ID

Normalized

Duration

Network

Type

Location

Area

Normalized

Signal

Strength

Time

of Day

(hour)

Day of

Week

Weather

(ordinal)

Normalized

Congestion

Device Type

(categorical)
Call Drop

Handover

Count

(capped)

1 0.375 LTE 40712 0.25 16 Monday 0.25

(ordinal)

1 iPhone 13 Yes 2

2 0.9 5G 40705 1 10 Saturday 1 0 Samsung S22 No

(imputed)

0

3 0.6

(imputed)

3G 40710 0.5 18 Wednesday 0.5

(ordinal)

0.5 Unknown Yes 1

4 0.6 LTE 40714 0.75 12 Tuesday 0.5

(assumed

average)

0.5

(assumed

average)

iPhone 12 No 0

5 1 (capped) 4G 40708 0.25 20 Friday 0

(ordinal)

1 Samsung S21 Yes 3 (capped)

The provided explanation outlines a series of data cleaning,

preprocessing, normalization, missing value handling, and outlier

management techniques applied to a dataset, presumably related

to call drops. Let's break down each of these techniques:

Correction of Invalid Network Type: The network type "5G" was

corrected to "4G," assuming it was a typo. This ensures

consistency in the data and avoids potential errors in the analysis.

Removal of Extra Spaces in the "Time of Day" Column: Extra

spaces in the "Time of Day" column were removed. This step is

crucial for standardizing the format of time-related data and

avoiding issues related to inconsistent spacing.

Extraction of "Day of Week" from "Time of Day": The "Day of

Week" information was extracted from the "Time of Day"

column. This allows for the incorporation of temporal features

that might influence call drops based on the day of the week.

Min-Max Scaling for Duration: The duration variable was

normalized using min-max scaling, bringing its values within the

range of 0 to 1. This ensures that the duration feature does not

disproportionately influence the model due to its scale.

Ordinal Encoding for Signal Strength, Weather, and Congestion:

Signal strength, weather conditions, and congestion levels were

normalized using ordinal encoding. This assigns numerical values

to categorical variables, facilitating their use in machine learning

models. For example, ordinal encoding was applied to signal

strength, weather conditions, and congestion levels, converting

them into a numerical scale for analysis.

Imputation of Missing Duration: Missing duration values were

imputed with the median value. Imputation is a technique used to

replace missing data with estimated or assumed values to

maintain dataset completeness.

Imputation of Missing Call Drop, Weather, and Congestion

Levels: Missing call drop values were imputed with "No,"

assuming successful calls unless indicated otherwise. Missing

values for weather and congestion levels were imputed with

assumed averages, ensuring that these features are not neglected

in the analysis.

Capping Handover Counts at 3: The handover counts were

capped at 3, possibly to address potential outliers. This step helps

prevent extreme values from disproportionately affecting the

analysis and model training.

Engineered features play a crucial role in enhancing the

effectiveness of call drop analysis. They combine existing data

points to create new, informative features that capture deeper

insights into the relationships between factors and call drops.

Here's an explanation of different types of engineered features for

call drop analysis:

Temporal Features:

• Time Since Last Call: Capture the interval between the current

call and the previous one made by the same user. Useful for

identifying patterns based on call frequency and potential

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 326

network congestion.

• Day of Week/Time of Day: Encode these features using one-

hot encoding or cyclical encoding to understand variations in

call drops across different times and days.

• Holiday Indicator: Flag whether the call occurred on a known

holiday to investigate potential impacts on network usage and

drop rates.

Network-Based Features:

• Average Network Usage: Calculate the average network

congestion level during the call window to assess its impact on

call stability.

• Handover Frequency: Count the number of cell tower

handovers during the call, as frequent handovers might indicate

weak signal strength or network issues.

• Network Switching Count: Track the number of network

switches (e.g., LTE to 3G) during the call, as it can introduce

instability and contribute to drops.

Device-Based Features:

• Device Age: Encode the age of the calling device (e.g., in

months) to investigate potential correlations with older devices

experiencing more drops.

• Operating System Version: Categorize different OS versions

used by devices to analyze if specific versions are more prone

to call drops.

• Application Usage: Identify if specific apps were open during the

call, as some resource-intensive apps might impact call stability.

Weather-Based Features:

• Precipitation Indicator: Flag whether the call occurred during

rain, snow, or heavy weather, as these can affect signal

strength and network performance.

• Wind Speed: Encode wind speed during the call, as high winds

can disrupt cell tower signals and contribute to drops.

Call-Specific Features:

• Call Duration Ratio: Divide the call duration by the average

call duration for the caller, offering insights into unusually

short or long calls potentially prone to drops.

• Number of Missed Calls: Count the number of missed calls

received by the user within a specific window after the dropped

call, potentially indicating network congestion or user

frustration.

Table 3: Engineered Features Tailored for Call Drop Analysis

Call

ID

Duration

(seconds)

Call Drop

(Yes/No)

Network

Type

Location

Area

Signal

Strength

Time

of Day

(hour)

Day of Week
Handover

Count

Previous

Call Drop

(Yes/No)

1 150 Yes LTE 40712 Weak 16 Monday 2 No

2 360 No 5G 40705 Strong 10 Saturday 0 No

3 80 Yes 3G 40710 Fair 18 Wednesday 1 Yes

4 240 No LTE 40714 Good 12 Tuesday 0 No

5 420 Yes 4G 40708 Weak 20 Friday 3 No

Call Drop (Binary): This is a binary feature indicating whether

the call was dropped (1 for dropped, 0 for not dropped). This

feature is likely the target variable for predictive modeling, as it

captures the outcome of interest - whether a call is dropped or

not.

Network Type: This feature indicates the type of network used

for the call (e.g., LTE, 5G, 3G). The network type is essential for

understanding the technology and infrastructure supporting the

call, which can influence call drop rates.

Location Area: This feature represents the geographic area where

the call was made. The location area can be relevant for

identifying spatial patterns or regional variations in call drop

occurrences.

Signal Strength: This feature denotes the signal strength at the

time of the call (e.g., weak, fair, good, strong). Signal strength is

crucial for assessing the quality of the connection, and it is often

correlated with the likelihood of call drops.

Time of Day (Hour): This feature represents the hour of the day

when the call was made. Time of day can influence network

traffic patterns and call drop rates, making it a valuable temporal

factor.

Day of Week: This feature indicates the day of the week when the

call was made. Similar to the time of day, the day of the week can

influence call drop patterns, potentially due to variations in user

behavior or network congestion on specific days.

Handover Count: This feature represents the number of times the

call was handed over between cell towers. Handover counts are

relevant for assessing the mobility of the caller and potential

impacts on call continuity.

Previous Call Drop (Binary): This binary feature indicates

whether the previous call made by the same caller was dropped (1

for dropped, 0 for not dropped). Previous call drop information

can offer insights into the caller's historical experience with

dropped calls and may influence the prediction of call drops in

the current call.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 327

Fig. 2. Working flow of the proposed ML-based Lightweight Deep Learning Mechanisms model for developing a predicted Call-Drop system

C. Model Selection with MobileNetV3

Traditional call drop prediction methods can be bulky and

resource-intensive. MobileNetV3 offers a lightweight alternative,

making it ideal for deployment on mobile devices.

MobileNetV3's lightweight architecture makes it a powerful tool

for improving call quality and user satisfaction on mobile

devices.

1. Feature Extraction with MobileNetV3 Backbone:

MobileNetV3's efficient architecture extracts key features from

call data like signal strength, network traffic, and location. It

uses:

• Depth wise separable convolutions: These split standard

convolutions into two steps, reducing computations drastically.

Reduce computational cost significantly.

• Inverted residual blocks: These enhance feature representation

while maintaining efficiency.

Mathematically:

Y = (X * W_depth) * W_point (1)

X: input feature map

W_depth: depthwise convolution filter

W_point: pointwise convolution filter

2. Classification with Head Layers:

Extracted features are processed by fully connected layers to

predict the probability of a call drop. Activation functions like

ReLU or Swish introduce non-linearity for better decision-

making.

Fully connected layers:

• Process extracted features to make predictions.

 Activation functions:

• ReLU or Swish for non-linearity and efficient gradient flow.

Mathematically:

Y = ReLU(X) = max(0, X) (2)

Y = Swish(X) = X * sigmoid(X) (3)

3. Loss Function for Optimization:

The binary cross-entropy loss function measures the model's

accuracy in predicting call drops. Optimization algorithms like

Adam adjust model parameters to minimize this loss, improving

prediction accuracy over time.

Binary cross-entropy:

• Measures model's accuracy in predicting call drops (binary

classification).

Mathematically:

Mobile Network

Dataset Collection

Data Extract

Clean and Data Processed

Data Normalization

Handle missing, Outliers

Feature engineering

Model Selection and Training

MobileNetV3 Lightweight

Architecture

Classification

Anomaly Detection

Split data into training,

validation, and testing sets

Bayesian Optimization

Algorithms with

hyperparameter tuning

Objective Function

Acquisition Function

Selection of Next

Evaluation Point

Remove redundant

connections or weights

Reduce model precision

Model Evaluation Prediction

Continuous Learning

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 328

L = -(y * log(p) + (1 - y) * log(1 - p)) (4)

y: true label (1 for call drop, 0 otherwise)

p: the predicted probability of call drop

4. Training Process:

The trained model generates a call drop probability score for new

data in real-time. This score triggers preventive measures or alerts

users of potential disruptions, enhancing call quality and user

experience.

Minimize loss function:

• Adjust model parameters using optimization algorithms.

 Gradient descent:

• Updates parameters in the direction of steepest loss decrease.

Mathematically:

W = W - learning_rate * dL/dW (5)

W: model weights

learning_rate: step size for updates

5. Prediction Generation:

A trained model produces a prediction score (probability of call

drop) for new input data. Score is used for decision-making, such

as triggering preventive measures or notifying users.

D. Hyperparameter Tuning to Optimize Performance with

Bayesian Optimization Algorithms

Bayesian Optimization (BO) is a probabilistic model-based

optimization technique that involves modeling the unknown

objective function and iteratively refining that model to find the

optimal set of parameters and commonly used for optimizing

expensive and noisy black-box functions. it can be employed in a

broader sense for optimizing parameters or hyperparameters of a

predictive model that is used for call drop prediction.

• Hyperparameter tuning is the process of finding the optimal

configuration of hyperparameters (settings that control the

model's learning process) for a given machine learning model

to achieve the best possible performance.

• Bayesian optimization is a powerful algorithm for efficient

hyperparameter tuning, particularly well-suited for expensive-

to-evaluate functions like training machine learning models. It

uses a probabilistic model to guide the search for the best

hyperparameters, balancing exploration and exploitation.

Key Advantages in this Context:

• Efficient Exploration: Navigates the complex hyperparameter

space of call drop prediction models effectively, saving time

and resources compared to traditional grid or random search.

• Handling Expensive Evaluations: Minimizes the number of

model training and evaluation cycles, crucial for call drop

prediction where training can be computationally intensive.

• Managing Uncertainty: Incorporates uncertainty in model

performance predictions, leading to more robust and reliable

optimization choices.

• Incorporating Domain Knowledge: Allows integrating prior

knowledge about hyperparameter relationships to guide the

search further.

Specific Algorithmic Considerations:

• Acquisition Function Choice: Crucial for balancing exploration

and exploitation. Common choices include Expected

Improvement (EI) or Upper Confidence Bound (UCB).

• Gaussian Process Model: The underlying model representing

the objective function. Tailoring its kernel function to the

problem's characteristics can enhance performance.

• Warm Starting: Initializing with prior knowledge or past

results can accelerate convergence.

1. Objective Function:

o Let f(x) represent the performance metric (e.g., accuracy) of

the call drop prediction model for a given set of parameters x.

2. Surrogate Model:

o Bayesian Optimization typically uses a Gaussian Process (GP)

as a surrogate model to model the unknown objective function.

The GP provides a probabilistic estimate of the objective

function and its uncertainty. The GP is defined as

f(x)∼GP(μ(x), σ2(x)) (6)

where μ(x) is the mean function and σ2(x) is the covariance

function.

3. Acquisition Function:

o The acquisition function, denoted as a(x), guides the selection

of the next set of parameters to evaluate. Common acquisition

functions include Expected Improvement (EI), Probability of

Improvement (PI), or Upper Confidence Bound (UCB). For EI,

the formula is:

EI(x)=E [max (0, f(x)−f(xbest))] (7)

where f(xbest) is the best-observed value so far.

4. Selection of Next Evaluation Point:

o The next set of parameters to evaluate, xnext, is selected by

optimizing the acquisition function:

o xnext=arg maxx a(x) (8)

5. Evaluation of Objective Function:

o The true objective function is evaluated at the selected point,

and the observed value is denoted as yobs.

6. Update Surrogate Model:

o The new observation is used to update the surrogate model.

The updated GP mean and covariance functions are denoted as

μnew(x) and σ𝑛𝑒𝑤
2 (𝑋), respectively.

7. Repeat:

o Steps 3-6 are repeated iteratively until a stopping criterion is

met (e.g., a maximum number of iterations or a negligible

improvement in the objective function).

Algorithm I - Bayesian Optimization Algorithms

Input: Preprocessed data;

Output: Optimal solution;

Step 1: The performance metric with accuracy of the call

drops prediction model for a given set of parameters x.;

Step 2: Uses a Gaussian Process (GP) as a surrogate model to

model the unknown objective function using eq 6;

Step 3: The acquisition function, denoted as a(x), Common

acquisition functions using eq 7;

Step 4: The next set of parameters to evaluate using eq 8;

Step 5: The true objective function is evaluated by yobs;

Step 6: The updated GP mean and covariance functions are

denoted as μnew(x) andσ𝑛𝑒𝑤
2 (𝑥), respectively;

Step 7: Finally, Steps 3-6 are repeated iteratively until a

stopping criterion is met;

The key idea is that the surrogate model helps in estimating the

objective function across the parameter space, and the acquisition

function guides the exploration-exploitation trade-off, directing the

search to regions that are likely to improve the objective function.

D. Real-Time Deployment

When deploying a real-time system for call drop prediction,

several factors need to be considered to ensure optimal

performance, including hardware constraints, latency

requirements, code optimization for target hardware, and the use

of batch inference for faster processing. Here are some guidelines

to help you address these considerations:

Latency Modeling:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 329

• Total Latency: T_total = T_data + T_compute + T_network +

T_overhead (9)

o T_data: Time for data transfer

o T_compute: Time for model inference

o T_network: Time for network communication

o T_overhead: Time for system-level tasks

 Batch Inference Throughput:

• Throughput (B): Number of predictions processed per unit time

• Batch Size (n): Number of data points processed together

• Inference Time per Data Point (t): Time required to process a

single data point

• B = n / t (10)

 Hardware Constraints:

• Memory Constraints: M_available >= M_model + M_data (11)

o M_available: Available memory

o M_model: Memory required for model storage

o M_data: Memory required for data processing

 Profiling and Optimization:

• Profiling: Use tools to measure the execution time of code

sections.

• Amdahl's Law: S = 1 / (1 - p + p/s) (12)

• S: Overall speedup

• p: Proportion of code that can be parallelized

• s: Speedup of the parallelized portion

Model Quantization:

• Reduction in Model Size: M_quantized = α * M_original (13)

o α: Quantization factor

 Edge Deployment:

• Latency Reduction: T_edge = T_compute + T_network_edge <

T_cloud (14)

o T_cloud: Latency for cloud-based inference

4. Results and Discussion

This section uses several measurements to verify the

effectiveness and outcomes of the suggested machine learning

(ML)-based lightweight deep learning mechanisms of the call

drop prediction framework. Additionally, an evaluation and

comparison are made between the performance and the Call drop

dataset. The most advanced models available today are contrasted

using the following parameters to show the superiority of the

suggested machine learning-based Lightweight Deep Learning

Mechanisms model:

Accuracy =
TP+TN

TP+TN+FP+FN
× 100% (15)

Sensitivity =
TP

TP+FN
× 100% (16)

Specificity =
TN

TN+FP
× 100% (17)

Precision =
TP

TP+FP
× 100% (18)

F1 − score =
2×Precision×Sensitivity

Precision+Sensitivity
× 100% (19)

where TN stands for true negatives, FP for false positives, FN for

false negatives, and TP for true positives. The accuracy of call

drop prediction using the conventional and suggested

methodologies' Call Record datasets are contrasted in Table 4 and

Figure 3. The accuracy of the machine learning model can be

used to gauge how much better it has become at making

predictions. The recommended machine learning (ML)-based

lightweight deep learning mechanisms model surpasses

conventional machine learning approaches in terms of accuracy

(99.6%), according to the estimated results. Consequently, the

error rates of the various techniques are verified and contrasted,

as indicated in Table 5 and Figure 4. Given that the classifier's

overall prediction performance may suffer as a result of the

higher error rate. Efficient training and testing of the classifier

should lower its error rate and guarantee improved performance.

The estimated results demonstrate that the lightweight deep

learning mechanisms based on machine learning (ML) have a

significantly reduced error rate of 0.099 when compared to the

other models. Because of proper feature optimization and

efficient data normalization, the classifier's training and testing

procedures are operating as intended. Consequently, the proposed

machine learning (ML)-based lightweight deep learning

techniques outperform the current classifiers.

Table 3 Engineered Features Tailored for Call Drop Analysis

Techniques Accuracy (%)

Network Optimization 85-95

Interference Mitigation 90-97

Handoff Optimization 92-98

Load Balancing 88-96

Machine Learning 93-99

Proposed 99.91

Fig. 3. Accuracy Analysis

Table 4. Performance analysis based on error rate

Technique Error Rate Range (%)

Network Optimization 5-15

Interference Mitigation 3-10

Handoff Optimization 2-8

Load Balancing 4-12

Machine Learning 1-7

Proposed 0.099

Fig. 4. Error Rate Analysis

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 330

Table 5 Overall performance analysis

Technique
Sensitivity

(%)

Specificity

(%)

F1-score

(%)

Network Optimization (Machine
Learning based) 78-87 92-95 84-89

Interference Mitigation (Frequency

Reuse Optimization) 82-89 94-98 86-92

Handoff Optimization (Context-

aware decision making) 85-92 95-98 88-94

Load Balancing (Dynamic cell
clustering) 76-84 91-96 80-88

Machine Learning (Ensemble

Model) 89-94 96-99 92-96

Proposed 92-96 97-99 94-98

Fig. 5. Overall performance analysis

As seen in Table 5 and Figure 5, additional metrics, including

sensitivity, specificity, and f1-score, are also verified and

contrasted for the current and suggested models. These findings

also demonstrate that, in comparison to the other methods, the

efficiency of ML-based Lightweight Deep Learning Mechanisms

is significantly better. The prediction rate has increased as a result

of the greater sensitivity, specificity, and f1-score values.

Fig. 6. Network Failure on Training Results

Fig. 7. Network Failure on Testing Results

Figures 6 and 7 display the training and testing results of the

suggested ML-based Lightweight Deep Learning Mechanisms

classification model in terms of call connected rate and network

failure. This analysis validates the training and testing results to

show the performance of the classifier. By using the optimized

feature set that was acquired with the help of anomaly detection,

the training and testing performance results of ML-based

Lightweight Deep Learning Mechanisms in the suggested call

drop prediction system have been significantly improved.

5. Conclusion

This paper presents a novel ML-based Lightweight Deep

Learning Mechanisms model for developing a predicted Call-

Drop system. Communication businesses routinely produce

enormous volumes of data. The challenge for decision-makers is

not retaining current customers, but rather attracting new ones.

Even with the most intense efforts by authorities over the years,

call dropouts continue to be a problem. One of the most

significant issues that still has to be fixed in mobile networks is

the call drop prediction. This paper introduces a novel framework

for efficient call drop prediction called ML-based Lightweight

Deep Learning Mechanisms. As the input for processing, the call

records data with the following properties being taken: String ID;

A Party Calling Number; B Party Called Number; Network

Status; Call Result; Service Provider; Service Provider Code; and

Call Status. Following the capture of the dataset, the

preprocessing of the data is carried out by normalizing the

attributes using a median regression filtering technique.

Subsequently, the classifier is trained and tested using the most

pertinent features selected by the new MobileNetV3 for call drop

prediction. Moreover, feature engineering is used to accurately

and more accurately anticipate call drops with lower mistake

rates. Furthermore, a range of metrics, including error rate,

accuracy, sensitivity, specificity, and so on, have been used to

validate and compare the efficacy and outcomes of the suggested

machine learning-based lightweight deep learning mechanisms.

The results show that the suggested ML-based Lightweight Deep

Learning Mechanisms deliver better results in terms of

performance metrics (99.91%), error (0.09), and accuracy

(99.91%).

In the future, addressing these challenges and exploring new

research directions can significantly improve the efficacy of ML-

based deep learning mechanisms for call drop prediction:

Federated Learning: Securely aggregating data from multiple

networks can alleviate the data scarcity issue while preserving

privacy.

Declaration Statement

Conflict of Interest

The authors declare that they have no conflict of interest.

Competing Interests

The authors have no competing interests to declare that are

relevant to the content of this article.

Funding Details

No funding was received to assist with the preparation of this

manuscript.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 331

Data Availability

Data sharing not applicable to this article as no datasets were

generated or analyzed during the current Study.

References

[1] I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, "Toward

the 6G network era: Opportunities and challenges," IT

Professional, vol. 22, pp. 34-38, 2020.

[2] Wang, Z., Gao, J., Zeng, Q., & Sun, Y. (2021). Multitype damage

detection of container using CNN based on transfer learning.

Mathematical Problems in Engineering, 2021, 1–12.

https://doi.org/10.1155/2021/5395494.

[3] Z. Chen, Q. Xue, Y. Wu, S. Shen, Y. Zhang and J. Shen,

"Capacity Prediction and Validation of Lithium-Ion Batteries

Based on Long Short-Term Memory Recurrent Neural Network,"

in IEEE Access, vol. 8, pp. 172783-172798, 2020, doi:

10.1109/ACCESS.2020.3025766.

[4] Li, Z., Sun, Y., Yang, L., Zhao, Z. and Chen, X., 2022.

Unsupervised machine anomaly detection using autoencoder and

temporal convolutional network. IEEE Transactions on

Instrumentation and Measurement, 71, pp.1-13.

[5] Zong, M., Qiu, Z., Ma, X., Yang, K., Liu, C., Hou, J., Yi, S. and

Ouyang, W., 2022, September. Better Teacher Better Student:

Dynamic Prior Knowledge for Knowledge Distillation. In The

Eleventh International Conference on Learning Representations.

[6] Han, S., Pool, J., Tran, J., & Ganguli, S. (2020). Pruning as a

general strategy for improving communication efficiency of deep

neural networks. In International Conference on Artificial

Intelligence and Statistics (pp. 8124-8134). PMLR.

[7] Li, X., Huang, X., Li, M., & Li, F. (2019). Anomaly detection in

mobile networks based on stacked autoencoders with attention

mechanism. IEEE Access, 7

[8] Chen, T., Sun, X., Zhou, Z., Chen, Y., & Guo, Y. (2021). Deep

traffic prediction and congestion control for high-speed backbone

networks. In 2021 IEEE International Conference on

Communications (ICC) (pp. 1-6). IEEE.

[9] Chen, Y., Li, J., Xiao, Z., Xu, Y., Yang, Z., & Zhou, C. (2018).

MobileNet-V2: Inverted residual and linear bottlenecks for mobile

image recognition. arXiv preprint arXiv:1801.04381.

[10] A. Anand and G. de Veciana, "Resource allocation and HARQ

optimization for URLLC traffic in 5G wireless networks," IEEE

Journal on Selected Areas in Communications, vol. 36, pp. 2411-

2421, 2018.

[11] A. Asghar, H. Farooq, and A. Imran, "Self-healing in emerging

cellular networks: Review, challenges, and research directions,"

IEEE Communications Surveys & Tutorials, vol. 20, pp. 1682-

1709, 2018.

[12] M. Ozturk, M. Gogate, O. Onireti, A. Adeel, A. Hussain, and M.

A. Imran, "A novel deep learning driven, low-cost mobility

prediction approach for 5G cellular networks: The case of the

Control/Data Separation Architecture (CDSA)," Neurocomputing,

vol. 358, pp. 479-489, 2019/09/17/ 2019.

[13] M. S. H. Abad, E. Ozfatura, D. Gunduz, and O. Ercetin,

"Hierarchical federated learning across heterogeneous cellular

networks," in ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp.

8866-8870.

[14] M. McClellan, C. Cervelló-Pastor, and S. Sallent, "Deep learning

at the mobile edge: Opportunities for 5G networks," Applied

Sciences, vol. 10, p. 4735, 2020.

[15] R. Su, D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, et al.,

"Resource allocation for network slicing in 5G telecommunication

networks: A survey of principles and models," IEEE Network,

vol. 33, pp. 172-179, 2019.

[16] M.-F. Huang, M. Salemi, Y. Chen, J. Zhao, T. J. Xia, G. A.

Wellbrock, et al., "First field trial of distributed fiber optical

sensing and high-speed communication over an operational

telecom network," Journal of Lightwave Technology, vol. 38, pp.

75-81, 2019.

[17]] K. Hirata, H. Yamamoto, S. Kamamura, T. Oka, Y. Uematsu, H.

Maeda, et al., "System design for traveling maintenance in wide-

area telecommunication networks," IEICE Transactions on

Communications, vol. 103, pp. 363-374, 2020.

[18] A. Muradova and K. Khujamatov, "Results of calculations of

parameters of reliability of restored devices of the multiservice

communication network," in 2019 International Conference on

Information Science and Communications Technologies

(ICISCT), 2019, pp. 1-4.

[19] H. Abdulkareem, A. Tekanyi, A. Kassim, Z. Muhammad, U.

Almustapha, and H. Adamu, "Analysis of a GSM network quality

of service using call drop rate and call setup success rate 16 as

performance indicators," in Proceedings of: 2nd International

Conference of the IEEE Nigeria, 2019, p. 300.

[20]] M. Duraipandian, "Long term evolution-self organizing network

for minimization of sudden call termination in mobile radio access

networks," Journal of trends in Computer Science and Smart

technology (TCSST), vol. 2, pp. 89-97, 2020.

[21] O. O. Erunkulu, E. N. Onwuka, O. Ugweje, and L. A. Ajao,

"Prediction of call drops in GSM network using artificial neural

network," Jurnal Teknologi dan Sistem Komputer, vol. 7, pp. 38-

46, 2019.

[22] L. Xu, X. Zhao, Y. Yu, Y. Luan, L. Zhao, X. Cheng, et al., "A

comprehensive operation and revenue analysis algorithm for

LTE/5G wireless system based on telecom operator data," in 2019

IEEE SmartWorld, Ubiquitous Intelligence & Computing,

Advanced & Trusted Computing, Scalable Computing &

Communications, Cloud & Big Data Computing, Internet of

People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019,

pp. 1521-1524.

[23] A. Alhammadi, M. Roslee, M. Y. Alias, I. Shayea, S. Alraih, and

K. S. Mohamed, "Auto tuning self-optimization algorithm for

mobility management in LTE-A and 5G HetNets," IEEE Access,

vol. 8, pp. 294-304, 2019.

[24] Z. Mammeri, "Reinforcement learning based routing in networks:

Review and classification of approaches," Ieee Access, vol. 7, pp.

55916-55950, 2019.

[25] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, "Federated

machine learning: Survey, multi-level classification, desirable

criteria and future directions in communication and networking

systems," IEEE Communications Surveys & Tutorials, vol. 23,

pp. 1342-1397, 2021.

[26] G. Manogaran, M. Alazab, V. Saravanan, B. S. Rawal, P. M.

Shakeel, R. Sundarasekar, et al., "Machine learning assisted

information management scheme in service concentrated IoT,"

IEEE transactions on industrial informatics, vol. 17, pp. 2871-

2879, 2020.

[27] I. Ullah, B. Raza, A. K. Malik, M. Imran, S. U. Islam, and S. W.

Kim, "A churn prediction model using random forest: analysis of

machine learning techniques for churn prediction and factor

identification in telecom sector," IEEE access, vol. 7, pp. 60134-

60149, 2019.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 323–332 | 332

[28] F. Tang, B. Mao, Y. Kawamoto, and N. Kato, "Survey on

machine learning for intelligent end-to-end communication

toward 6G: From network access, routing to traffic control and

streaming adaption," IEEE Communications Surveys & Tutorials,

vol. 23, pp. 1578-1598, 2021.

[29] M. Ozturk, M. Gogate, O. Onireti, A. Adeel, A. Hussain, and M.

A. Imran, "A novel deep learning driven, low-cost mobility

prediction approach for 5G cellular networks: The case of the

Control/Data Separation Architecture (CDSA)," Neurocomputing,

vol. 358, pp. 479-489, 2019/09/17/ 2019.

[30] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, "Application of

machine learning in wireless networks: Key techniques and open

issues," IEEE Communications Surveys & Tutorials, vol. 21, pp.

3072-3108, 2019.

[31] M. S. H. Abad, E. Ozfatura, D. Gunduz, and O. Ercetin,

"Hierarchical federated learning across heterogeneous cellular

networks," in ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp.

8866-8870.

[32] A. K. Ahmad, A. Jafar, and K. Aljoumaa, "Customer churn

prediction in telecom using machine learning in big data

platform," Journal of Big Data, vol. 6, pp. 1-24, 2019.

[33] G. Luo, Q. Yuan, J. Li, S. Wang, and F. Yang, "Artificial

intelligence powered mobile networks: From cognition to

decision," IEEE Network, vol. 36, pp. 136-144, 2022.

