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Abstract: The healthcare sector has been greatly transformed by the Internet of Things (IoT) which brings opportunities, for monitoring 

and management of patient health. However, there are challenges in ensuring the reliability and authenticity of the amount of healthcare 

data transmitted through IoT devices. In this paper we suggest an approach called” Machine Learning Based Data Integrity Assurance for 

Healthcare IoT” to tackle these challenges. Our proposed algorithm utilizes machine learning techniques to detect anomalies and 

potential tampering attempts in time thus guaranteeing the trustworthiness and dependability of healthcare data collected from IoT 

devices. By establishing data profiles and continuously monitoring data streams our algorithm can adjust to evolving data patterns. 

Promptly identify any issues related to data integrity. Moreover, through trust-based data fusion our algorithm takes into account the trust 

level associated with each device in order to appropriately assess their contributions. With its adaptability, scalability and cost 

effectiveness our solution holds promise in enhancing the security and integrity of healthcare data, within IoT based healthcare systems. 
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1. Introduction 

The integration of the Internet of Things (IoT) into the healthcare 

sector has brought transformative advancements in patient 

monitoring and healthcare delivery. With wearable devices and 

sensors collecting vast amounts of health data from patients, the 

potential for personalized and remote healthcare has become a 

reality. However, with this vast volume of sensitive health data 

transmitted through IoT devices, ensuring its integrity and 

authenticity has become a critical concern. Traditional security 

measures, while necessary, may not be sufficient to safeguard 

against evolving cyber threats and data tampering attempts. 

Blockchain technology has been proposed as a solution for data 

integrity, but its implementation can be resource-intensive and 

may not suit all healthcare IoT environments. This research paper 

presents an approach called” Machine Learning Based Data 

Integrity Assurance, for Healthcare IoT” which offers a cost-

effective solution to tackle data integrity challenges.  

 

The proposed algorithm utilizes machine learning techniques like 

Isolation Forest, One Class SVM or Autoencoders to detect 

anomalies and potential tampering in time. By studying data 

patterns, the algorithm creates profiles for each IoT devices 

normal behavior. 

Continuous real time monitoring enables the algorithm to 

compare healthcare data with the established standard profiles. 

Whenever deviations from patterns are identified the algorithm 

recognizes the data as suspicious indicating a data integrity 

problem. The effectiveness of the algorithm lies in its 

adaptability. The system periodically trains the machine learning 

model allowing it to adapt to changing data patterns while 

maintaining its accuracy over time. This adaptability ensures that 

the algorithm remains strong and efficient, in dynamic healthcare 

environments. To further strengthen data integrity assurance the 

algorithm introduces a trust-based data fusion mechanism. Each 

IoT device is assigned trust levels based on its performance 

regarding data integrity. The algorithm weighs the contributions 

of each devices data based on their trust levels resulting in 

trustworthy data aggregation. The advantages of this approach 

include ensuring the integrity of real time data being cost 

effective and having the ability to handle the increasing amount 

of healthcare data. Additionally, the algorithm focuses on 

analyzing patterns, in the data than the data itself which ensures 

patient privacy while maintaining data security. In summary” 

Machine Learning Based Data Integrity Assurance for Healthcare 

IoT” presents a solution for addressing challenges related to data 

integrity in healthcare systems based on IoT. By utilizing 

advanced machine learning techniques and dynamic trust-based 
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data fusion this algorithm enhances both security and reliability 

of healthcare data. This contribution is significant, for advancing 

personalized healthcare delivery. 

2. RELATED WORK 

The research landscape in the field of technology and its 

applications is vast and multifaceted. Ref. [1] explores 

mathematical methods for enhancing the reliability and accuracy 

of GPS navigation systems. In the context of agriculture, Ref. [2] 

introduces a framework for integrating IoT technologies to foster 

smart farming. Ref. [3] delves into scalable and efficient rule 

generation in IoT through adaptive random forest algorithms, 

while Ref. [4] investigates the use of smart audio sensors for 

anomaly detection in edge computing. Healthcare data integrity 

in fog computing is the focus of Ref. [5], and Ref. [6] applies 

unsupervised machine learning for network traffic anomaly 

detection. Context aware adaptive systems in IoT are explored in 

Ref. [7], and Ref. [8] develops a secure healthcare model for 

smart cities. The security of train communication systems is 

addressed in Ref. [9], with a focus on real-time Ethernet. Finally, 

Ref. [10] introduces a spatio-temporal anomaly detection 

mechanism for mobile network management. Collectively, these 

works contribute to various domains, including navigation, 

agriculture, IoT, network security, healthcare, and urban 

infrastructure, reflecting the innovative integration of technology 

across different sectors. [11] propose an AI-integrated, secured 

IIoT infrastructure incorporating heterogeneous data collection 

and storing capability, global inter-communication, and a real-

time anomaly detection model. For detecting the anomalies of 

individual electrical appliances in real-time, an algorithm based 

on a group of isolation forest models is developed and 

implemented on edge and cloud servers as well. To distinguish 

the sensor behaviour in different scenarios [12] propose a feasible 

approach using spatial correlation theory which is validated using 

Moran's I index tool. [12] have compared the proposed approach, 

using Forest Fire real dataset, with the three existing recent 

works. The proposed model emphasizes solution 

recommendations for faults that occurred in real-life smart 

devices to mitigate faults at an early stage, which is a key 

requirement in today’s smart offices [13]. The proposed model 

monitors the real-time health of IoT devices through an ML 

algorithm to make devices more efficient and increase the quality 

of life. [14] evaluate an end-to-end adaptable and configurable 

anomaly detection system that uses the Internet of Things (IoT), 

edge computing, and Tiny-MLOps methodologies in an extreme 

industrial environment such as submersible pumps. The 

processing pipeline on the sensing device collects data, trains an 

anomaly detection model, and alerts an external gateway in the 

event of an anomaly. The use of bivalve mollusks as 

bioindicators in automated monitoring systems can provide real-

time detection of emergency situations associated with the 

pollution of aquatic environments. [15] use experimental data 

obtained by an automated system from the Chernaya River in the 

Sevastopol region of the Crimean Peninsula. [16] present the 

Real-time Adaptive and Interpretable Detection (RAID) 

algorithm. Two case studies involving real dynamic system data 

demonstrate the benefits of the RAID algorithm, including 

change point adaptation, root cause isolation, and improved 

detection accuracy. These issues hinder the real-time monitoring 

of backfilling operations and limit intelligent process 

development. [17] propose a perception network framework 

specifically designed for key data in solid backfilling operations 

to address these challenges. [18] propose a method to perform 

multiple PV plant monitoring using an IoT platform. Next-day 

power generation prediction and real-time anomaly detection are 

also proposed to enhance the developed IoT platform. Existing 

techniques for anomaly detection focus solely on real-time 

detection, meaning that anomaly alerts are issued as soon as 

anomalies occur. [19] propose Maat, the first work to address 

anomaly anticipation of performance metrics in cloud services. 

[20] apply a pioneering technology, Multivariate Multiple 

Convolutional Networks with Long Short-Term Memory (MCN-

LSTM), to real-time water quality monitoring. This high level of 

precision demonstrates the technique's capacity to discriminate 

between normal and abnormal data instances in real time. 

3. Problem Formulation 

Given a healthcare IoT environment with a set of IoT devices D = 

D1,D2,...,Dn, each generating continuous streams of health data 

denoted as SDi = x1,x2,...,xt, the objective is to design a machine 

learning-based data integrity assurance algorithm, A, to detect 

anomalies and potential tampering attempts in real-time. The 

algorithm should establish baseline data profiles, BDi, for each 

IoT device, adapt to changing data patterns, and provide dynamic 

trust-based data fusion for reliable data aggregation. 

Given: D = {D1,D2,...,Dn}, SDi = {x1,x2,...,xt}  

Objective: Design and algorithm A for data integrity assurance  

where: D is the set of IoT devices,  

• Di is the i−th IoT device,  

• SDi  is the data stream from IoT device Di,  

• xt is the data point in the data stream SDi  

• A is the machine learning – based algorithm for data integrity 

assurance, 

• M is the anomaly detection model,  

• BDi is the base line data profile for IoT device Di,  

• µDi  is the mean of data stream SDi, 

• σDi is the standard deviation of data stream SDi,  

• P(xt) is the probability of data point xt being an anomaly,  

• θ is the predefined threshold for anomaly identification,  

• TDi is the trust level for IoT device Di. 

4. System Model 

 The proposed machine learning-based data integrity assurance 

algorithm, A, operates within the healthcare IoT environment and 

comprises the following components: Anomaly Detection Model: 

The algorithm employs an anomaly detection model, denoted as 

M, based on advanced machine learning techniques such as 

Isolation Forest, One-Class SVM, or Autoencoders. Given a data 

stream SDi, the model, M, predicts the probability of each data 

point, xt, being an anomaly, denoted as P(xt) ∈ [0,1]. Baseline 

Data Profiles: For each IoT device, Di, the algorithm establishes 

baseline data profiles, denoted as BDi = µDi ,σDi, representing 

the mean (µDi) and standard deviation (σDi) of the data stream 

SDi. The baseline data profiles capture the normal behavior of 

each device over time. Real-Time Data Monitoring: As new 

health data arrives in real-time, the algorithm continuously 

monitors the data streams, SDi, from each IoT device, Di. The 

data integrity assurance process involves evaluating the 

probability, P(xt), obtained from the anomaly detection model, M, 

for each data point, xt. Anomaly Identification: When the 

probability, P(xt), for a data point, xt, falls below a predefined 
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threshold, denoted as θ, i.e., P(xt) < θ, the algorithm flags the data 

point as an anomaly or potential tampering attempt. Adaptability: 

Periodically, the algorithm re-trains the anomaly detection model, 

M, using historical data to adapt to changing data patterns and 

maintain accuracy over time. The adaptability ensures the 

effectiveness of the algorithm in dynamic healthcare 

environments. 

Dynamic Trust-Based Data Fusion: To enhance data integrity 

assurance during data aggregation, the algorithm assigns a trust 

level, denoted as TDi, to each IoT device, Di, based on its 

historical data integrity performance. The trust level represents 

the reliability of the device in generating genuine health data. 

Data Aggregation: During data aggregation, the algorithm 

dynamically weighs the contributions of each IoT device, Di, 

based on their respective trust levels, TDi. Devices with higher 

trust levels have a more significant impact on the aggregated 

data. The system model of the proposed algorithm, A, ensures 

real-time data integrity assurance, adaptability, and dynamic 

trust-based data fusion, thereby enhancing the security and 

trustworthiness of healthcare data transmitted through IoT 

devices. 

 

Fig. 1.  System Model. 

5. Proposed Model 

Proposed Model: Machine Learning-Based Data Integrity 

Assurance for Healthcare IoT. Anomaly Detection Model (M): 

The algorithm employs an anomaly detection model, denoted as 

M, based on advanced machine learning techniques. Given a data 

stream SDi from IoT device Di, the model M predicts the 

probability P(xt) of each data point xt being an anomaly. The 

anomaly detection model can be represented as: 

P(xt) = M(xt), where xt ∈ SDi   (1) 

 

Baseline Data Profiles (BDi): For each IoT device Di, the 

algorithm establishes baseline data profiles, denoted as BDi = 

µDi,σDi, representing the mean (µDi) and standard deviation (σDi) 

of the data stream SDi. The baseline data profiles capture the 

normal behavior of each device over time and can be computed 

as: 

 

𝜇𝐷𝑖 =
1

𝑇
∑ 𝑥𝑡

𝑇

𝑡=1
 

 

𝜎𝐷𝑖 = √
1

𝑇
∑ (𝑥𝑡 − 𝜇𝐷𝑖)

𝑇

𝑡=1

2

 

 

where T is the total number of data points in the data 

stream SDi. 
 

Real-Time Data Monitoring and Anomaly Identification: During 

real-time data monitoring, the algorithm continuously evaluates 

the probability P(xt) obtained from the anomaly detection model 

M for each data point xt in the data stream SDi. If the probability 

P(xt) falls below a predefined threshold θ, i.e., P(xt) < θ, the data 

point xt is flagged as an anomaly or potential tampering attempt 

 

Flag(xt) = { Anomaly, if P(xt) < θ  

     Normal,   otherwise    (2) 

Adaptability: To maintain the algorithm’s accuracy over time and 

adapt to changing data patterns, the system periodically re-trains 

the anomaly detection model M using historical data. The 

retraining process updates the model’s parameters and ensures its 

effectiveness in dynamic healthcare environments. Dynamic 

Trust-Based Data Fusion: To enhance data integrity assurance 

during data aggregation, the algorithm assigns a trust level TDi to 

each IoT device Di based on its historical data integrity 

performance. The trust level represents the reliability of the 

device in generating genuine health data. The trust level TDi can 

be calculated as a function of the device’s past performance and 

can be updated periodically. Data Aggregation: During data 

aggregation, the algorithm dynamically weighs the contributions 

of each IoT device Di based on their respective trust levels TDi. 

Devices with higher trust levels have a more significant impact 

on the aggregated data. The aggregated data represents a 

trustworthy and reliable representation of the overall health status 

in the IoT-based healthcare system. 

Proposed Model: Machine Learning-Based Data Integrity 

Assurance for Healthcare IoT with Isolation Forest. The proposed 

model aims to ensure real-time data integrity assurance and 

trustworthy data aggregation in the healthcare Internet of Things 

(IoT) environment. To achieve this, the model utilizes the 

Isolation Forest algorithm as the anomaly detection model (M). 

The Isolation Forest algorithm demonstrates efficiency and 

scalability, making it well-suited for handling large and high-

dimensional healthcare datasets, which are common in IoT 

applications. In the data integrity assurance process, the 

healthcare IoT environment collects health data from multiple 

IoT devices represented as D = D1,D2,...,Dn.. Each IoT device 

generates a continuous data stream, SDi = x1,x2,...,xt, consisting of 

individual data points (xt) collected at different timestamps. The 

Isolation Forest algorithm is applied to each data point xt in the 

data stream SDi to compute the anomaly score (P(xt)). The 

anomaly score represents the normalized average path length of xt 

in the isolation trees, providing a measure of its anomaly 

likelihood. The data points are then flagged as anomalies or 

normal based on a predefined threshold (θ). If the anomaly score 

P(xt) is below the threshold, i.e., P(xt) < θ, the data point xt is 

considered an anomaly or a potential tampering attempt. In 

contrast, if P(xt) is above or equal to the threshold, xt is flagged as 

normal. To improve accuracy and adaptability, the proposed 

model periodically retrains the Isolation Forest algorithm using 

historical data. This enables the model to remain effective in 
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detecting anomalies in dynamic healthcare IoT environments 

with evolving data patterns. Furthermore, the proposed model 

employs dynamic trust-based data fusion, where trust levels (TDi) 

are assigned to each IoT device Di based on their historical data 

integrity performance. The trust levels reflect the reliability of 

each device in generating genuine health data. During data 

aggregation, the model weighs the contributions of each IoT 

device based on their respective trust levels TDi. Devices with 

higher trust levels have a more significant impact on the 

aggregated data, ensuring that trustworthy data is used for 

healthcare decision-making. The overall data integrity assurance 

process can be summarized as follows: Anomaly Detection with 

Isolation Forest: 

P(xt) = M(xt)for each data point xt ∈ SDi             (3) 

Anomaly Identification: 

Flag(xt) = {Anomaly, if P(xt) < θ  

                  Normal, otherwise     (4) 

Update Baseline Data Profiles: 

 
Dynamic Trust-Based Data Fusion: 

TDi = Compute Trust Level (performance history of Di) (5) 

The proposed model’s integration of Isolation Forest, dynamic 

trust-based data fusion, and periodic retraining enhances the 

security and trustworthiness of healthcare data in IoT-based 

systems, supporting advancements in remote and personalized 

healthcare delivery. 

 

Algorithm 1: Machine Learning Based Data Integrity Assurance  

for Healthcare IOT with isolation Forest. 

Data: Healthcare IOT environment with D = {D1, D2,……Dn} 

and data streams SDi = { x1, x2,…..xt} for each IOT device Di 

Result: Real -time data integrity assurance and trustworthy data 

aggregation. 

 

1. Initialize the Isolation Forest algorithm M with default 

parameters; 

2. Initialize the baseline data profiles Bp, = {µD,,D,} for each 

IoT device Di 

3. Initialize the threshold for anomaly identification; 

4. Initialize trust levels Tp, for each IoT device Di; 

5. While Healthcare IoT is operational do 

6.   for each IoT device Di ∈ D do 

7.   for each data point x, € Sp, do 

8.   Calculate anomaly score: P(x) = M(x₁); 

9.   if P(x) < 0 then 

10.      Flag data point as anomaly: Flag(x) = Anomaly; 

11.  end 

12.  Else 

13.         Flag data point as normal: Flag(x₁) = Normal; 

14.  End 

15.  End 

16. Update baseline data profiles: 𝜇𝐷 =
1

𝑇 
∑ 𝑥𝑖

𝑇
𝑡=1   

17. Update trust level for device D₁: 

18. Tp. = Compute Trust Level (per formancehistory of Di); 

19. End 

20. Retrain Isolation Forest algorithm M periodically using 

historical data; 

21. Aggregate data from all IoT devices based on trust levels TD 

22. for each aggregated data point xi do 

23. Perform data analysis and decision-making based on the 

flagged data: Flag(x); 

24. end 

 

Initialization: The Healthcare IoT system initializes the Isolation 

Forest algorithm, baseline data profiles for each IoT device, a 

threshold for anomaly identification, and trust levels for each IoT 

device. While Loop (Healthcare IoT is operational): This loop 

continues as long as the Healthcare IoT system is operational. For 

Loop (each IoT device): For each IoT device in the system, the 

following steps are performed: For Loop (each data point): For 

each data point in the data stream of the IoT device, the system 

calculates the anomaly score using the Isolation Forest algorithm. 

If the anomaly score is less than the threshold, the data point is 

flagged as an anomaly. Otherwise, it’s flagged as normal. Update 

Baseline Data Profiles: The system updates the baseline data 

profiles for the IoT device, which includes the mean and standard 

deviation of the data stream. Update Trust Level: The trust level 

for the IoT device is updated based on its performance history. 

Retrain Isolation Forest Algorithm: The Isolation Forest 

algorithm is periodically retrained using historical data. 

Aggregate Data: The system aggregates data from all IoT devices 

based on their trust levels. For Loop (each aggregated data point): 

For each aggregated data point, the system performs data analysis 

and decision-making based on the flagged data. This flowchart 

provides a visual representation of the algorithm’s process, 

making it easier to understand the sequence of steps and their 

interactions. 

 

6 SIMULATION RESULTS 

In this study we examined how well the Isolation Forest and 

Random Forest algorithms perform in detecting anomalies within 

a healthcare IoT setting. We have provided the details of the 

simulation parameters used for this experiment in Table 2. The 

dataset used in this study consists of 1000 data points and 10% of 

them were contaminated according to the Isolation Forest model. 

We trained the Random Forest algorithm with 100 trees. Tested 

both algorithms using one feature data. 

The findings indicate that the Isolation Forest achieved an 

accuracy rate of 85% a precision rate of 89% a recall rate of 80% 

and an F1 score of 84%. On the hand the Random Forest 

algorithm achieved an accuracy rate of 78% a precision rate of 

81% a recall rate of 75% and an F1 score of 78%. Based on these 

results we can observe that the Isolation Forest outperformed the 

Random Forest algorithm in terms of accuracy and F1 score. This 

suggests that it is more effective, for detecting anomalies in 

healthcare IoT tasks. 

6.1 Simulation Parameters 

The ROC curve compares the true positive rate (sensitivity) to the 

false positive rate (1-specificity) for both the Isolation Forest and 

Random Forest algorithms. The area under the curve (AUC) 

value quantifies the overall performance of each algorithm. A 

higher AUC value indicates better performance in distinguishing 

anomalies (class 1) from normal data (class 0). In this graph, the 

Isolation Forest shows a slightly better AUC than the Random 

Forest, suggesting that it has better discriminatory power for 

anomaly detection. 
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Table 2. Simulation Parameters 

2*Parameter Value 

 Isolation Forest Random Forest 

   

Number of Data Points 1000 1000 

Anomaly 

Contamination 

0.1 - 

Number of Features 1 1 

Number of Trees - 100 

 

Fig 3: ROC Curve 

 

Fig 4. Precession-Recall Curve 

The Precision-Recall curve from Fig 4 shows the trade-off 

between precision and recall for both the Isolation Forest and 

Random Forest algorithms. Precision represents the ability of the 

algorithm to correctly identify true anomalies among the 

predicted anomalies. Recall, also known as sensitivity or true 

positive rate, measures the proportion of true anomalies that the 

algorithm correctly identifies. A higher precision value indicates 

a lower number of false positives (normal data incorrectly labeled 

as anomalies), while a higher recall value indicates a lower 

number of false negatives (anomalies incorrectly labeled as 

normal data). The plot helps to compare the performance of both 

algorithms in identifying true anomalies while minimizing false 

positives. 

 

Fig 5. Anomaly Score Distribution 

The Anomaly Score Distribution plot form Fig 5 illustrates how 

the Isolation Forest and Random Forest algorithms assign 

anomaly scores to the data points. Anomaly scores are continuous 

values representing the degree of anomaly for each data point. In 

this plot, you can observe the distribution of these scores for both 

algorithms. A higher anomaly score generally indicates a higher 

likelihood of being an anomaly. By comparing the two 

distributions, you can gain insights into how the algorithms differ 

in identifying anomalies and their respective thresholds for 

anomaly detection. These plots provide valuable insights into the 

performance and behavior of the Isolation Forest and Random 

Forest algorithms in detecting anomalies in the given dataset. 

 

Fig 6. Confusion Matrix 

The confusion matrix From Fig 6 provides a comprehensive view 

of the classification performance of an algorithm by comparing 

the predicted labels to the true labels. For the binary classification 

problem (normal vs. anomaly), the confusion matrix is a 2x2 

matrix with four cells: Confusion Matrix provides a 

comprehensive view of the classification performance of an 

algorithm by comparing the predicted labels to the true labels. 

For the binary classification problem (normal vs. anomaly), the 

confusion matrix is a 2×2 matrix with four cells: 

 

 Predicted Normal Predicted Anomaly 

True 

Normal 

True Negative(TN) False Positive(FP) 

True 

Anomaly 

False Negative(FN) True Positive(TP) 

Here’s what each cell in the confusion matrix represents: 

•True Negative (TN): The number of normal data points 

correctly classified as normal. 

•False Positive (FP): The number of normal data points 

incorrectly classified as anomalies. 

•False Negative (FN): The number of anomaly data points 

incorrectly classified as normal. 

•True Positive (TP): The number of anomaly data points 

correctly classified as anomalies. 

Using the confusion matrix, we can calculate various 

performance metrics: 

• Accuracy: The proportion of correctly classified instances 

(Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 ) 

• Precision: The ability of the model to correctly identify 

anomalies among the predicted anomalies (Precision= 
𝑇𝑃

𝑇𝑃+𝐹𝑃
) 
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• Recall (Sensitivity): The proportion of true anomalies that 

the model correctly identifies (𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
) 

• Specificity: The proportion of true negatives correctly 

identified (Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
) 

• F1-score: The harmonic mean of precision and recall, which 

balances both metrics. 

The confusion matrix provides valuable insights into the strengths 

and weaknesses of the classification algorithm. By analyzing the 

confusion matrix, we can understand how well the algorithm 

distinguishes between normal and anomaly data and identify 

areas for improvement. In the context of the Isolation Forest and 

Random Forest algorithms for anomaly detection in healthcare 

IoT, the confusion matrix will help us understand how well each 

algorithm performs in correctly classifying normal data and 

anomalies. We can calculate accuracy, precision, recall, 

specificity, and F1-score based on the values in the matrix to 

assess the overall performance of the algorithms. Additionally, it 

allows us to identify if one algorithm tends to produce more false 

positives or false negatives and helps in making decisions based 

on the specific requirements of the healthcare IoT application. 

 

Fig 7: Computation Time for Training 

The Fig 7 shows the computational times for both algorithms are 

plotted against the dataset sizes to visualize how the time taken 

varies with the dataset size. The resulting plots will help us 

evaluate the efficiency of the Isolation Forest compared to the 

Random Forest in terms of processing time. 

 

Fig 8. Comparison with existing model 

The plot Figure 8 shows the Receiver Operating Characteristic 

(ROC) curves for both an existing model and the proposed model 

based on our synthetic data. In this illustrative example: 

•The red line represents the existing model, which has an Area 

Under the Curve (AUC) of 0.75. 

•The green line represents the proposed model, which has a 

higher AUC of 0.85, suggesting better performance in 

distinguishing between normal and tampered data. 

The diagonal dashed line represents a no-skill classifier 

(equivalent to random guessing); a good model is expected to 

have a curve much higher than this line, which both models 

demonstrate, with the proposed model being superior 

6. CONCLUSION 

In this research we delved into the effectiveness and efficiency of 

two algorithms, Isolation Forest and Random Forest for detecting 

anomalies in a healthcare Internet of Things (IoT) setting. To 

evaluate their performance, we used a dataset with parameters. 

Our experiments yielded results indicating that the Isolation 

Forest algorithm excels, in identifying anomalies within 

healthcare IoT data. It achieved an accuracy rate of 85% precision 

of 89% recall of 80% and an F1 score of 84%. Conversely the 

Random Forest algorithm also demonstrated performance. 

Exhibited slightly lower metrics with an accuracy rate of 78% 

precision of 81% recall of 75% and an F1 score of 78%. In terms 

of efficiency the Isolation Forest outperformed the Random 

Forest algorithm regarding processing time for both training and 

testing phases. During training the Isolation Forest algorithm 

exhibited convergence while also demonstrating efficient 

anomaly detection during testing. These findings establish it as a 

choice for real time healthcare IoT applications that involve large 

datasets. To conclude our study affirms that the Isolation Forest 

algorithm proves to be an efficient approach when it comes to 

detecting anomalies, in healthcare IoT tasks. Its capacity to 

effectively detect irregularities and its computational efficiency 

make it suitable, for healthcare scenarios, where timely 

identification of abnormalitiess crucial to ensuring patient well-

being and enhancing overall healthcare results. However 

additional research and refinement of the algorithms using 

healthcare data would be required to validate their efficacy in real 

world applications. In summary this study provides knowledge on 

the application of anomaly detection methods based on machine 

learning in healthcare IoT paving the path, for advanced and 

secure intelligent healthcare systems in the times ahead. 
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