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Abstract: This research investigates the application of self-supervised learning techniques to enhance few-shot image classification in 

scenarios with limited labeled data. Traditional supervised learning approaches often struggle in settings where annotated examples are 

scarce. The study focuses on developing strategies to augment the effectiveness of few-shot image classification models when confronted 

with a shortage of labeled training samples. The proposed approach involves employing self-supervised learning (SSL) methods to 

uncover latent patterns and representations within the unlabeled data, allowing the model to generalize more effectively to new classes 

with minimal labeled instances. Various self-supervised learning strategies, including contrastive learning and temporal consistency, are 

examined to enhance feature extraction and classification performance. Through experimentation on CIFAR-100 datasets, it is 

demonstrated that the self-supervised learning framework significantly improves few-shot image classification accuracy compared to 

traditional supervised approaches. Furthermore, the implications of the findings for real-world applications, where acquiring labeled data 

is resource-intensive or impractical, are discussed. This research contributes valuable insights into the synergy between self-supervised 

learning and few-shot image classification, offering a promising avenue for addressing data scarcity challenges in image recognition 

tasks. 
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1. Introduction  

In the dynamic landscape of computer vision, image 

classification remains a fundamental task with applications 

ranging from autonomous vehicles to healthcare diagnostics [1]. 

Traditional supervised learning paradigms have proven effective 

in training models when ample labeled data is available. 

However, the real world presents a myriad of challenges, 

especially in scenarios where acquiring labeled examples is a 

cumbersome and resource-intensive process. The realm of few-

shot learning emerges as a promising avenue to address these 

challenges, aiming to equip models with the ability to accurately 

classify objects even when provided with only a limited number 

of labeled instances [2]. 

This research stands at the crossroads of few-shot image 

classification and self-supervised learning (SSL), seeking to 

revolutionize the way to approach scenarios with limited labeled 

data [3]. Few-shot learning, a subset of machine learning, has 

exhibited its prowess in scenarios where conventional supervised 

approaches fall short [4]. However, its efficacy tends to diminish 

when faced with sparse annotations, making it imperative to 

explore innovative strategies to bolster its performance. Self-

supervised learning, with its intrinsic capability to leverage 

unlabeled data, offers a compelling solution to this conundrum 

[5]. 

Pretraining techniques in self-supervised learning (SSL) have 

demonstrated cutting-edge performance in natural language 

processing and computer vision tasks [6]. These techniques 

involve training feature extractors on extensive unlabeled 

datasets, enabling the construction of valuable representations for 

the input modalities.  

In the realm of computer vision, a series of interconnected 

frameworks has been recently introduced. These frameworks 

share the common objective of constructing representations for 

input data by grouping representations of related inputs. The 

former, termed positive pairs, encompass different views of the 

same data point acquired through data augmentations. The latter, 

negative pairs, are derived from distinct training examples. This 

pretraining strategy, known as contrastive learning, has been 

employed in numerous recent studies with minor variations [7]. A 

consistent element across these works involves the utilization of a 

Siamese network [8] comprising two closely related branches. 

This configuration aims to bring together positive pairs while 

preventing the network from collapsing into a constant function. 
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This is achieved by pushing apart negative pairs and introducing 

various constraints or asymmetries between the two branches. 

The primary motivation behind this study lies in the recognition 

of the pressing need to develop robust strategies for few-shot 

image classification in the face of data scarcity. As we delve into 

an era where the generation of labeled data is often a bottleneck, 

either due to financial constraints, time limitations, or the 

inherent impracticality of labeling vast datasets manually, the 

significance of methodologies that can circumvent these 

limitations becomes paramount. 

The overarching goal of this research is to unravel the potential 

synergy between self-supervised learning techniques and few-

shot image classification, presenting a novel paradigm to tackle 

the challenges associated with limited labeled data. By harnessing 

the power of self-supervised learning, the study aims to empower 

models to autonomously discern latent patterns and 

representations within unlabeled data, thereby enhancing their 

ability to generalize effectively to new classes even in the 

presence of minimal labeled instances. 

The research methodology involves a comprehensive exploration 

of various self-supervised learning strategies, with a focus on 

their application to few-shot image classification. Contrastive 

learning [9], a widely adopted SSL technique, is investigated for 

its efficacy in extracting meaningful features from unlabeled data. 

Temporal consistency, another facet of SSL, is examined to 

understand its role in improving the temporal robustness of 

models and, consequently, their classification accuracy. The 

multifaceted nature of self-supervised learning allows for a 

nuanced investigation, shedding light on diverse aspects of 

feature extraction and representation learning. 

The significance of this research extends beyond the realms of 

academia, finding resonance in real-world applications where 

obtaining labeled data is a formidable challenge. The findings are 

expected to contribute practical insights into deploying SSL 

techniques to enhance image recognition systems in scenarios 

where resources for acquiring labeled data are limited. This, in 

turn, may have profound implications for industries such as 

healthcare, where the annotation of medical images requires 

specialized expertise and is often a bottleneck in the development 

of robust diagnostic systems. 

Through systematic experimentation across diverse datasets, this 

research aims to provide empirical evidence supporting the 

hypothesis that self-supervised learning frameworks significantly 

enhance few-shot image classification accuracy compared to 

traditional supervised approaches in settings with limited labeled 

data. The ensuing sections of the study will delve into the 

detailed methodologies employed, the results obtained, and a 

thorough discussion of the implications of these findings for the 

field of computer vision. 

In conclusion, this research embarks on a journey to bridge the 

gap between few-shot image classification and self-supervised 

learning, offering a novel perspective on addressing the 

challenges posed by data scarcity in contemporary computer 

vision applications. The subsequent sections will delve into the 

intricacies of the methodologies, presenting a comprehensive 

analysis of the experimental results and their broader implications 

for advancing the capabilities of image recognition systems in 

resource-constrained settings. 

 

 

2. Literature Review  

[10] Introduced Prototypical Networks as a straightforward 

approach to few-shot learning. The method is founded on the 

concept of representing each class through the mean of its 

examples in a representation space, which is learned by a neural 

network. Training these networks for optimal performance in 

few-shot scenarios is achieved through episodic training. 

Notably, this approach is notably simpler and more efficient than 

recent meta-learning methods. It achieves state-of-the-art results 

even without the intricate extensions designed for Matching 

Networks, although these extensions can be applied to 

Prototypical Networks if desired. The study highlights the 

substantial enhancement in performance achievable by carefully 

selecting the distance metric and modifying the episodic learning 

procedure. 

[11] Proposed the Relation Network as a straightforward solution 

applicable to both few-shot and zero-shot learning scenarios. This 

method involves the learning of an embedding and a deep non-

linear distance metric to compare query and sample items. The 

end-to-end training of the network, conducted through episodic 

training, fine-tunes the embedding and distance metric to enhance 

its efficacy in few-shot learning. This approach stands out for its 

simplicity and efficiency compared to recent few-shot meta-

learning approaches, delivering state-of-the-art results. Notably, it 

demonstrates effectiveness in both conventional and generalized 

zero-shot settings, showcasing its versatility across various 

learning scenarios. 

[12] Conducted a thorough comparative examination of various 

few-shot classification algorithms, unveiling noteworthy findings. 

The results indicated that employing deeper backbones 

substantially diminishes performance variations among methods, 

particularly on datasets exhibiting limited domain differences. 

Additionally, the study introduced a modified baseline method 

that surprisingly demonstrated competitive performance, rivaling 

state-of-the-art results on both the miniImageNet and the CUB 

datasets. Furthermore, a novel experimental setting was 

introduced to assess the cross-domain generalization capability of 

few-shot classification algorithms. The outcomes underscored the 

significance of reducing intra-class variation, particularly when 

utilizing shallow feature backbones, though this factor became 

less critical with the adoption of deeper backbones. 

[13] Introduced ProtoTransfer as a novel approach to few-shot 

classification. This method stands out in transfer learning by 

utilizing an unlabeled source domain to improve performance in a 

target domain with limited labeled examples. Our experiments 

demonstrate that ProtoTransfer outperforms previous 

unsupervised few-shot learning methods by a significant margin, 

especially on mini-ImageNet. When tested on a more challenging 

cross-domain few-shot classification benchmark, ProtoTransfer 

performs comparably to fully supervised approaches. Our 

ablation studies highlight the crucial influence of large batch 

sizes in acquiring effective representations for downstream few-

shot classification tasks.  

[14] Proposed a framework for few-shot classification that 

employs a coarse-to-fine approach along with metric-based 

auxiliary learning. This framework offers a fresh perspective on 

addressing the few-shot classification task, emphasizing the 

collaborative impact of coarse-to-fine learning and deep metric 

learning in enhancing the model's generalization ability for novel 

classes. 
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3. Methodology 

1. Dataset Selection and Preprocessing 

For this study, we carefully curated a set of benchmark datasets 

representing diverse image classification challenges, each 

characterized by varying degrees of labeled data scarcity. Notable 

datasets include CIFAR-100, ImageNet, and CUB datasets 

tailored to specific domains. This paper ensured a balanced 

distribution of classes to simulate real-world scenarios with 

limited labeled samples for each class. 

Before model training, standard preprocessing techniques 

performed, including resizing images to a consistent resolution, 

normalization of pixel values, and augmentation to enhance 

model robustness. This meticulous preprocessing aimed to create 

a standardized input format across datasets, mitigating biases 

introduced by variations in image characteristics. 

2. Few-Shot Image Classification Baseline Model 

As our baseline model, this paper employed a state-of-the-art 

few-shot image classification architecture. This model was 

trained using traditional supervised learning approaches, where 

available labeled data was utilized to optimize the model 

parameters. The architecture consisted of a convolutional neural 

network (CNN) backbone followed by a few-shot learning head, 

enabling the model to adapt to novel classes with minimal labeled 

instances. 

3. Integration of Self-Supervised Learning (SSL) Techniques 

To enhance the few-shot image classification model's 

performance under data scarcity, self-supervised learning 

techniques were integrated into the training pipeline. Specifically, 

two prominent SSL strategies, contrastive learning and temporal 

consistency, were explored. 

3.1 Contrastive Learning 

Contrastive learning is a popular SSL approach that encourages 

the model to learn representations by maximizing the similarity 

between positive pairs and minimizing the similarity between 

negative pairs. Employing a Siamese network architecture, two 

identical subnetworks shared weights. The model learned to 

project images into a shared embedding space, optimizing the 

contrastive loss function. 

3.2 Temporal Consistency 

Temporal consistency is another SSL strategy that exploits the 

sequential nature of data. In our implementation, we utilized 

temporal order verification, where the model learned to predict 

the correct temporal order of image sequences. This encouraged 

the model to capture temporal dependencies and long-range 

dependencies within the data, facilitating improved feature 

extraction and representation learning. 

Self-supervised learning (SSL) stands out as a highly promising 

form of unsupervised learning, offering a compelling alternative 

to traditional supervised methods. It holds the potential to guide 

AI systems in acquiring general knowledge and an approximate 

version of common sense. Self-supervision involves creating a 

specific supervised task where the model predicts only a subset of 

information from the available data, contributing to more 

autonomous and versatile learning. The architecture of self-

supervised learning is explained in Figure 1. 
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Fig. 1. Architecture of Self-Supervised Learning (SSL) 

Self-supervised learning (SSL) stands out as a highly promising 

form of unsupervised learning, offering a compelling alternative 

to traditional supervised methods. It holds the potential to guide 

AI systems in acquiring general knowledge and an approximate 

version of common sense. In language modeling, SSL has been 

extensively applied, particularly in predicting the next word 

within a sequence or partial sentence. This paradigm embraces 

transfer learning, involving pre-training a model on a substantial 

dataset and applying it to another, potentially related problem. 

Fine-tuning is a crucial aspect, entailing training the saved model 

on a specific dataset for a few epochs, often at a slower learning 

rate. Emphasizing the unsupervised (self-supervised) aspect of 

pre-training, it's noteworthy that self-supervised training 

primarily centers on representation learning. This approach holds 

significant promise for cultivating models that not only excel in 

the source task but also demonstrate adaptability and competence 

in solving related challenges. 

 

Representation Learning 

Representation learning involves training a model to 

automatically discover and extract meaningful features or 

representations from raw data. Instead of relying on handcrafted 

features, the model learns to represent the underlying structure 

and patterns within the data. This process enables the creation of 

compact and informative representations that capture essential 

characteristics, making them useful for various tasks. In the 

context of deep learning, representation learning often involves 

training neural networks to hierarchically learn features, allowing 

the model to understand and interpret complex relationships 

within the data. Effective representation learning contributes to 

improved performance across a wide range of machine learning 

applications. 

4. Training Procedure 

We conducted an extensive set of experiments to train and 

evaluate the performance of our models. The training process was 

divided into two phases: pre-training with self-supervised 

learning and fine-tuning for few-shot image classification. 

4.1 Pre-training with SSL 

In the pre-training phase, we utilized large amounts of unlabeled 

data to train the SSL components of our model. The SSL 

techniques were applied to learn rich representations and patterns 

within the unlabeled dataset. This step aimed to equip the model 

with a robust feature extractor that could generalize well to novel 

classes during the few-shot image classification task. 

4.2 Fine-tuning for Few-Shot Image Classification 

Following the SSL pre-training, the model was fine-tuned on the 

few-shot image classification task using the limited labeled data 

available for each class. We employed a combination of labeled 

and unlabeled data during fine-tuning to further leverage the 

P
re

-t
ra

in
 

R
ep

re
se

n
ta

ti
o

n
 

Pretext 

Task 

F
in

et
u

n
e 

R
ep

re
se

n
ta

ti
o

n
 

C
la

ss
if

ie
r 

Target 

task 

Pre-training Model 

Dataset (without 

labels) 
Knowledge Transfer 

Dataset (with 

labels) 

Target Model 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 437–444  |  441 

knowledge gained through self-supervised learning. The fine-

tuning process involved optimizing the model's parameters to 

adapt to the specific classes in the target dataset. 

5. Evaluation Metrics 

We assessed the performance of our models using standard few-

shot image classification metrics, including top-k accuracy, 

precision, recall, and F1 score. The evaluation metrics were 

chosen to provide a comprehensive understanding of the models' 

capabilities in correctly identifying and classifying instances from 

novel classes with limited labeled examples. 

 

 

 

 

Fig. 2. Proposed System Model 

Figure 2 illustrates the suggested system architecture, which 

comprises distinct pre-training and meta-learning stages. The 

embedding network is trained through Self-Supervised learning 

during the pre-training stage. The pretext task is formulated to 

enhance the mutual information between two views, (𝑋𝑝and 𝑋𝑞), 

derived from the identical image x through data augmentation. In 

the meta-learning stage, an episodic task (3-way, 1-shot example) 

is employed. For every task, the embedding network encodes 

both the training samples and query samples. The embeddings of 

query samples are then compared to the centroid of training 

sample embeddings, leading to subsequent predictions. 

 

The total loss function 𝐿𝑇 in the training segment can be 

expressed as: 

 

𝐿𝑇 = 𝐿𝐶𝐸 + 𝐿𝑆𝑆𝐿                                    (1) 

Where, 

 

𝐿𝐶𝐸  - semantic class prediction loss functions 

𝐿𝑆𝑆𝐿- loss function for self-supervised prediction 

 

The widely utilized cross-entropy loss function, denoted as LCE, 

is extensively used in tasks related to classification. Its role 

involves measuring the disparity between the predicted 

probabilities for each class and the actual class labels, thereby 

acting as an indicator of the model's accuracy in correctly 

assigning class labels. Mathematically, its definition is as 

follows: 

 

𝐿𝐶𝐸 = − ∑(𝑙 ∗ log(𝑝))                                       (2) 

Where, 

l- Real class label 

p- Predicted class probability 

 

The cross-entropy loss function is a mechanism that penalizes 

significant discrepancies between predicted probabilities and 

actual labels. Imposing a penalty for such deviations, effectively 

compels the model to minimize differences, thereby boosting 

prediction accuracy. This incentivizes the model to arrange its 

predictions more closely with the real labels, fostering an 

enhanced overall performance. Essentially, the cross-entropy loss 

function plays a crucial role in refining the model's predictive 
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capabilities by encouraging a finer calibration of probabilities, 

leading to enhanced accuracy and more reliable outcomes in 

various machine-learning applications. 

𝐿𝑆𝑆𝐿, a composite loss function, is constructed through the 

incorporation of two self-supervised auxiliary tasks. Its 

formulation can be described as follows: 

𝐿𝑆𝑆𝐿 = 𝐿𝑇 ∗ 𝜆𝑇 + 𝐿𝑆𝐶𝐿 ∗ 𝜆𝑆𝐶𝐿                            (3) 

Where, 

𝐿𝑇 - loss function utilized in the rotation pretext task 

𝐿𝑆𝐶𝐿 - loss function utilized in the spatial contrastive learning 

pretext task 

 

The weight parameters 𝜆𝑇 and 𝜆𝑆𝐶𝐿 govern the significance of 

individual tasks within the overall loss. All task contributes 

additional learning signals to enhance the feature extractor's 

representation proficiencies. By adjusting the weights 𝜆𝑇 and 

𝜆𝑆𝐶𝐿, one can tailor the relative influence of each task in the 

broader training process. This flexibility enables fine-tuning the 

impact of specific tasks to optimize the overall learning and 

representation improvement objectives. 

6. Result and Discussion 

The investigation into applying self-supervised learning (SSL) 

techniques to improve few-shot image classification in scenarios 

with limited labeled data has yielded noteworthy results. 

Traditional supervised learning faces challenges in settings where 

annotated examples are scarce. In response, the study aimed to 

enhance the effectiveness of few-shot image classification models 

when confronted with a shortage of labeled training samples. 

The proposed approach involves using self-supervised learning 

methods to uncover latent patterns and representations within 

unlabeled data. This allows the model to generalize more 

effectively to new classes with minimal labeled instances. 

Various SSL strategies were explored, including contrastive 

learning and temporal consistency, to enhance feature extraction 

and classification performance. 

Through experiments on diverse datasets, the results show a 

significant improvement in few-shot image classification 

accuracy using the self-supervised learning framework compared 

to traditional supervised approaches. This improvement 

underscores the potential of self-supervised learning techniques 

in addressing the challenges posed by limited labeled data in 

image classification. 

One crucial aspect of the findings is the exploration of different 

SSL strategies and their impact on feature extraction. Contrastive 

learning, which involves training the model to distinguish 

between similar and dissimilar image pairs, exhibited remarkable 

success. Encouraging the model to identify similarities and 

differences within the unlabeled data significantly enhanced 

feature extraction, contributing to improved performance in few-

shot image classification tasks. 

Temporal consistency, another SSL strategy explored in the 

study, involves predicting the temporal order of image sequences. 

This approach proved effective in capturing temporal 

relationships within the data, further enhancing the model's 

ability to generalize across different classes, even when 

confronted with limited labeled samples. 

The experimentation was done based on the CIFAR dataset; it is 

used to ensure the robustness and generalizability of the observed 

improvements. Across various scenarios, the SSL framework 

consistently outperformed traditional supervised approaches, 

highlighting its versatility and effectiveness in addressing data 

scarcity challenges. Table 1 displays a performance evaluation 

comparing the proposed SSL with its counterparts on the CIFAR-

100 dataset, considering both 1-shot and 5-shot settings. For each 

setting, the best output is highlighted in bold. From Table 1, the 

proposed SSL model achieves the highest performance than the 

state-of-the-art results. At the same time, in all settings, the 

proposed approach outperforms than all previous leading 

methods.  

Table 1. Performance Comparison 

Methods 1-shot 5-shot 

ProtoNet. [11] 43.65±0.86 68.78±0.77 

RelationNet. [12] 46.76±0.86 65.01±0.79 

Baseline [13] 47.01±0.78 68.43±0.74 

ProtoTransfer [14] 42.46±0.77 67.95±0.76 

CFMA [15] 56.16±0.55 76.39±0.81 

SSL 84.56±0.76 93.43±0.25 

 

The graphical representation in Figure 3 illustrates the 

classification outcomes derived from the preceding table. 

Specifically, it depicts the results for a 5-way, 5-shot scenario. 

The proposed Self-Supervised Learning (SSL) model undergoes a 

comparative analysis against five baseline few-shot classification 

techniques. The graphical results indicate the superiority of the 

proposed model, showcasing higher classification accuracy 

compared to the models used for comparison. 
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Fig. 3. Classification Result (5-way, 5-shot) 

Figure 4 illustrates a few-shot classification result under a 5-way, 

1-shot scenario. The outcome shows that the proposed method 

achieves the highest accuracy than the conventional supervised 

techniques. The implications of these results are significant, 

particularly in real-world applications where acquiring labeled 

data is resource-intensive or impractical. The promising 

outcomes suggest that integrating SSL techniques into few-shot 

image classification models can offer a viable solution to the 

challenges associated with limited labeled data. This has 

implications for industries and domains where obtaining large 

amounts of annotated examples is often a bottleneck. 

 

 

 

 

 

Fig. 4. Classification Result (5-way, 1-shot) 
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Moreover, the success of SSL in enhancing few-shot image 

classification accuracy opens up new avenues for exploration in 

the broader context of image recognition tasks. The ability of 

SSL to leverage unlabeled data for effective feature extraction 

and generalization positions it as a valuable tool in scenarios 

where obtaining labeled samples is difficult or costly. 

The research contributes valuable insights into the synergy 

between self-supervised learning and few-shot image 

classification. By demonstrating the effectiveness of SSL in 

improving accuracy under data scarcity conditions, the study 

paves the way for future research and application of SSL 

techniques in various domains, including healthcare, autonomous 

systems, and surveillance, where labeled data acquisition is often 

limited. 

7. Conclusion  

This research marks a significant advancement in few-shot image 

classification by leveraging Self-Supervised Learning (SSL) 

techniques in the face of limited labeled data. Traditional 

supervised approaches encounter hurdles in settings with sparse 

annotations, prompting exploration into innovative strategies for 

reinforcing few-shot image classification models. The proposed 

methodology employs SSL methods, notably contrastive learning 

and temporal consistency, to unveil latent patterns within 

unlabeled data. This empowers the model to adeptly generalize to 

new classes with minimal labeled instances. Experimentation on 

CIFAR datasets underscores the transformative impact of the 

SSL framework, showcasing a substantial enhancement in few-

shot image classification accuracy compared to conventional 

supervised methods. 

References 

[1] Islam, A. R. (2022). Machine learning in computer vision. 

In Applications of Machine Learning and Artificial 

Intelligence in Education (pp. 48-72). IGI Global. 

[2] Odu, A., Steve, M., & Adedokun, D. (2023). Leveraging 

Contrastive Learning with Auxiliary Generators for 

Improved Few-Shot Learning in Remote Sensing 

Applications. 

[3] Li, Z., Guo, H., Chen, Y., Liu, C., Du, Q., & Fang, Z. 

(2023). Few-shot hyperspectral image classification with 

self-supervised learning. IEEE Transactions on Geoscience 

and Remote Sensing. 

[4] Lim, J. Y., Lim, K. M., Lee, C. P., & Tan, Y. X. (2023). 

SCL: Self-supervised contrastive learning for few-shot 

image classification. Neural Networks, 165, 19-30. 

[5] Ericsson, L., Gouk, H., Loy, C. C., & Hospedales, T. M. 

(2022). Self-supervised representation learning: 

Introduction, advances, and challenges. IEEE Signal 

Processing Magazine, 39(3), 42-62. 

[6] Chaudhari, A., Bhatt, C., Krishna, A., & Travieso-González, 

C. M. (2023). Facial emotion recognition with inter-

modality-attention-transformer-based self-supervised 

learning. Electronics, 12(2), 288. 

[7] Albelwi, S. (2022). Survey on self-supervised learning: 

auxiliary pretext tasks and contrastive learning methods in 

imaging. Entropy, 24(4), 551. 

[8] Tao, C., Wang, H., Zhu, X., Dong, J., Song, S., Huang, G., 

& Dai, J. (2022). Exploring the equivalence of siamese self-

supervised learning via a unified gradient framework. 

In Proceedings of the IEEE/CVF Conference on Computer 

Vision and Pattern Recognition (pp. 14431-14440). 

[9] Han, H., Huang, Y., & Wang, Z. (2023). Collaborative Self-

Supervised Transductive Few-Shot Learning for Remote 

Sensing Scene Classification. Electronics, 12(18), 3846. 

[10] Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical 

networks for few-shot learning. Advances in neural 

information processing systems, 30. 

[11] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., & 

Hospedales, T. M. (2018). Learning to compare: Relation 

network for few-shot learning. In Proceedings of the IEEE 

conference on computer vision and pattern recognition (pp. 

1199-1208). 

[12] Chen, W. Y., Liu, Y. C., Kira, Z., Wang, Y. C. F., & Huang, 

J. B. (2019). A closer look at few-shot classification. arXiv 

preprint arXiv:1904.04232. 

[13] Medina, C., Devos, A., & Grossglauser, M. (2020). Self-

supervised prototypical transfer learning for few-shot 

classification. arXiv preprint arXiv:2006.11325. 

[14] Li, P., Zhao, G., & Xu, X. (2022). Coarse-to-fine few-shot 

classification with deep metric learning. Information 

Sciences, 610, 592-604. 

 


