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Abstract: The accurate and timely prediction of traffic flow is crucial for a safe and stable Intelligent Transportation System (ITS). Because 

of the complexity and nonlinearity of traffic flow, the conventional techniques fail to capture global and local correlations. To overcome 

this issue, an Attention-based Spatial Temporal-Graph Convolutional Network (AST-GCN) is proposed for predicting traffic flows. This 

research utilized PEMS04 and PEMS08 datasets which are publicly available transport network datasets. In the spatial dimension, the 

various locations' traffic conditions are influenced by each other, and mutual influence is extremely dynamic. In the temporal dimension, 

the exists a correlation among traffic conditions and the correlations differ under various situations. The GCN is used for extracting spatial 

and temporal features that are applied to graph-structured data directly and it builds a graph between two neural network layers that is a 

graph edge weight. The obtained result shows that the proposed AST-GCN model achieves a better MAPE of 8% on the PEMS04 dataset 

and 5.67% on PEMS08 dataset which ensures accurate prediction compared with other existing methods like Spatial-Temporal Correlation 

Graph Convolutional Networks (STCGCN), Long-term Spatial-Temporal Graph Convolutional Fusion Network (LSTFGCN) and 

Attention-based Spatial-Temporal Graph Transformer (ASTGT). 

Keywords: Graph convolutional network, Graph neural network, Spatial dimension, Temporal dimension, Traffic flow prediction 

1. Introduction 

Traffic flow prediction involves forecasting the conditions 

of traffic like vehicle volume and time of travel in a 

particular region or road [1]. The traffic flow prediction is 

significant for the optimization of transportation systems 

and minimizes the traffic crowd [2]. Traffic flow prediction 

is a global-ranging framework in human’s everyday life, the 

prediction of traffic data tasks is learned widely by 

researchers [3]. The capability for accurate traffic flow 

prediction information can maximize effectiveness and 

safety especially huge traffic and speed on highways where 

crowds seriously affect its effectiveness [4] [5]. The 

accurate prediction of traffic flow gives support for the 

scheduling of vehicles and optimization of the bus system 

supports reducing the urban traffic crowd and maximizing 

the ability of urban traffic [6]. Based on the traffic flow 

prediction result, the departments of traffic flow perform 

timely traffic to reduce crowds formed through huge traffic 

[7]. The Intelligent Transportation System (ITS) handles 

serious traffic issues in cities like pollution of air and traffic 

jams [8]. 

The difficult technique in ITS is accurate and respectable 

prediction of traffic is a necessary element for the 

deliverance of traffic data, guidance of data, and 

optimization of traffic management [9]. The prediction of 

traffic flow in urban networks are important technique in 

ITS and is efficient for travelers and traffic managers [10]. 

The exact prediction of spatiotemporal traffic flow is needed 

to protect public transport crowd and allows decision-

making for traffic management which includes temporary 

control of traffic and modification of traffic signal [11] [12]. 

Because of spatial dependency among adjacent road 

segments spatial prediction is performed by evaluating 

traffic flows from close roadways [13]. With the 

development of graph neural networks, concentrates on 

spatial-temporal graph model is maximized to attain huge 

efficient traffic flow predictions in long-term and complex 

spatial conditions [14]. Different types of sensor devices 

have been established on transportation networks due to the 

process of sensor technology. The sensors produce huge 

geographic-based traffic information that gives adequate 

traffic prediction [15]. The major contribution of this 

research is as follows: 

• This paper proposed an Attention-based Spatial 

Temporal-Graph Convolutional Network (AST-GCN) to 

capture dynamic correlations of spatial and temporal 

traffic networks.  

• The attention-based spatial and temporal mechanism was 

employed to calculate the attention weights for each time 

step in the input sequences. 

• Then, the GCN is implemented according to spectral 

graphs to process signals directly and manipulate signal 

correlations on a network in spatial dimensions. 

The remaining of this research is described as follows, the 

relative research in traffic flow prediction is given in section 
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2. The proposed method is explained in section 3. The 

results and comparative analysis of the proposed method are 

given in section 4 and section 5 is a conclusion of the paper. 

2. Literature Review 

In this section, the relevant existing papers are described in 

terms of methods, advantages, and limitations. It gives a 

better understanding of existing research and helps to build 

readers' knowledge in this field. 

Zeng et al. [16] implemented a Long-term Spatial-Temporal 

Graph Convolutional Fusion Network (LSTFGCN) for the 

prediction of traffic flow. Initially, developed a synchronous 

spatial-temporal feature capture model that effectively 

extracts difficult local nodes dependency of spatial-

temporal. Next, developed an Ordinary Differential 

Equation Graph Convolutional Network (ODEGCN) for 

capturing high spatial-temporal dependencies through the 

STGCN model. The integration of the gated convolution 

model and spatial-temporal graph convolution attention 

module (GCAM) efficiently learned long short-term 

spatiotemporal dependency however, this method failed to 

capture the spatial correlations. 

Huang et al. [17] introduced a Spatial-Temporal Correlation 

Graph Convolutional Network (STCGCN) for traffic flow 

prediction. Initially, a merged graph structure was created to 

learn difficult spatiotemporal correlations that interrupt the 

drawbacks of the STCGCN model. Additionally, the 

STCGCN is established in a parallel way which 

incorporates a unified layer that allows to capture of both 

global and local dependencies concurrently. This model 

stacks numerous layer that learns several high-range spatial-

temporal dependencies. This model is capable of handling 

sequential information and capturing short-term 

dependencies when losing a few data in high-term 

dependencies. However, this model causes huge 

computational complications and over-smoothing issues. 

Zhang et al. [18] denoted an Attention-based Spatial-

Temporal Graph Transformer (ASTGT) for traffic flow 

prediction. The developed model mainly contains two 

components a temporal encoder and a spatiotemporal 

decoder. In the first one, the traffic data of temporal 

dynamics are captured over the self-attention technique. The 

traffic flow information is incorporated through high-term 

dependencies. Furthermore, the spatial-temporal decoder 

overlays the gated spatial GCN block to obtain spatial and 

temporal relations. This model does not perform well due to 

the complex and nonlinearity of spatiotemporal 

dependencies.  

Ma et al. [19] implemented a Spatio-Temporal Adaptive 

Graph Convolutional Network (STAGCN) for traffic flow 

forecasting. The developed technique utilized an adaptive 

graph formation block to capture the static and dynamic 

structure of network traffic. Additionally, the static and 

dynamic structures were incorporated to create adaptive 

network topology graphs. Then, these traffic flow features 

were captured through spatiotemporal convolutional blocks. 

This model can capture difficult spatial correlations and has 

better interpretability. However, this model required traffic 

information with traffic flow and speed features that were 

unable to be easily transported into other tasks dealing with 

spatiotemporal data. 

Zhao et al. [20] suggested a Spatial-Temporal Position-

aware Graph Convolutional Network (STPGCN) for the 

prediction of traffic flow. The suggested module was 

developed to represent the temporal and spatial nodes' 

position. Eventually, the suggested module flexibly reduces 

the weights of correlation for three significant relations of 

spatial-temporal. Depending on this produced relations of 

spatial-temporal were merged to graph convolution layer for 

measuring and adding features of node. The model captures 

temporal, spatial, and both correlations which make for 

faster performance. However, this model ignores 

spatiotemporal position factors when exhibiting 

spatiotemporal correlations.  

Fang et al. [21] introduced a Multi-Source Spatio-Temporal 

Network through Automatic Neural Structure Search 

(AutoMSNet) for the prediction of traffic flow. The 

AutoMSNet has the structure of an encoder and decoder. 

The structure of the encoder takes the neighbor data as an 

input and the structure of the decoder captures the periodic 

patterns of long-term. The various functions of two temporal 

features were parallelly extracted and neural structure 

search space was developed for extraction of spatial 

features. The model was time-consuming and failed to 

capture correlations. 

Xu et al. [22] presented a method of computing offloading 

for delay and energy trade-offs along traffic flow prediction 

in edge computing. Initially, developed a Graph Weighted 

Convolutional Network (GWCN) which fully removed 

connection and distance-related data between segments of 

the road for conducting the prediction of traffic flow. The 

short-term prediction outcomes were used as basic resource 

allocation adjustments of edge resources in various fields. 

The model reduces the overall time delay and energy 

consumption. The model does not take the complexity and 

variability into consideration.  

Tang and Zeng [23] developed a Spatiotemporal Gated 

Graph Attention Network (STGGAT) for the prediction of 

traffic flow. The developed method merges a unit layer of 

gated recurrent, graph attention network layer along edge 

features, the gated approach depends on Bidirectional Long 

Short-Term (BiLSTM) Memory and residual architecture 

for extracting dependency of spatiotemporal and volumes of 

lane-level traffic. The model allows the nodes with less 

travel time and decides every significance of edge by their 
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volume however, this model failed to capture the global and 

local correlations.  

These existing methods have various applications and also 

suffer from limitations. The existing methods have issues 

like time consumption, failed to capture the spatial 

correlations, not perform well due to the complex and 

nonlinearity of spatiotemporal dependencies. Required 

traffic information with traffic flow and speed features that 

are unable to be easily transported into other tasks dealing 

with spatiotemporal data. Ignores spatiotemporal position 

factors when exhibiting spatiotemporal correlations. Hence, 

these limitations can be overcome in this manuscript by 

proposing an Attention based Spatial Temporal-Graph 

Convolutional Network (AST-GCN). 

3. Proposed Methodology 

In the proposed methodology, an Attention-based Spatial 

Temporal-Graph Convolutional Network (AST-GCN) is 

proposed for traffic flow prediction. The PEMS04 and 

PEMS08 datasets are utilized for this research which are 

public transport network datasets. The proposed AST-GCN 

is utilized for capturing dynamic correlations of 

spatiotemporal traffic networks. In the spatial dimension, 

the various locations' traffic conditions are influenced by 

each one. In the temporal dimension, the exists a correlation 

among traffic conditions at various times and the 

correlations differ under various situations. Then, the GCN 

is implemented according to spectral graphs to process 

signals directly and manipulate signal correlations on the 

network in spatial dimensions. Fig. 1 demonstrates the 

working process of the proposed methodology for traffic 

flow prediction.  

 

Fig. 1.  The overall process of the proposed methodology 

 

3.1. Dataset 

The datasets utilized for the prediction of traffic flow are 

PEMS04 and PEMS08 which are public transport network 

datasets released by Caltrans Performance Measurement 

System (PeMS) [24]. For every dataset, a spatial adjacency 

network is developed from an actual distance-based road 

network. Every detector comprises per day 288 data samples 

and it includes 3D features such as traffic flow, speed, and 

time occupancy. Table 1 illustrates the dataset description. 

Table 1. Dataset description 

Dataset PEMS04 PEMS08 

Datatype Traffic flow Traffic flow 

Time Range 1-1-2018 to 28-

2-2018  

1-7-2016 to 31-

8-2016  

Time Steps 16,992 17,856 

Edges 340 295 

Nodes 307 170 

3.2. Spatial Temporal Attention 

In this section, an attention based spatial-temporal 

mechanism is proposed to capture dynamic correlations of 

spatial and temporal traffic networks. It is a spatial network 

and these parameters and topologies are modified with time. 

These networks are significant because of numerous crucial 

applications like route finding and traffic planning services.  

3.2.1. Spatial Attention  

In the spatial dimension, various locations of traffic 

conditions are influenced by each one and mutual influence 

is extremely dynamic. This paper utilized an attention 

mechanism to capture dynamic correlation adaptively 

among nodes in spatial dimensions. Let's consider a recent 

component as an example of spatial attention which is 

shown in (1) and (2), 

𝑆 = 𝑉𝑠 ∙ 𝜎((𝑋ℎ
(𝑟−1)

𝑊1)𝑊2(𝑊3𝑋ℎ
(𝑟−1)

)𝑇 + 𝑏𝑠)      (1) 

𝑆𝑖,𝑗
′ =

𝑒𝑥𝑝 (𝑆𝑖,𝑗)

∑ 𝑒𝑥𝑝 (𝑆𝑖,𝑗)𝑁
𝑗=1

   (2) 

Where, 𝑋ℎ
(𝑟−1)

= (𝑋1, 𝑋2, … , 𝑋𝑇𝑟−1
) ∈ ℝ𝑁×𝐶𝑟−1×𝑇𝑟−1 is a 

𝑟𝑡ℎ block of spatial temporal input. The 𝐶𝑟−1 is an input data 

channel in 𝑟𝑡ℎ layer when 𝑟 = 1, 𝐶0 = 𝐹. The 𝑇𝑟−1 is a 

temporal dimension length in a 𝑟𝑡ℎ layer when 𝑟 = 1, 𝑇0 =

𝑇ℎ. The 𝑉𝑠, 𝑏𝑠 ∈ ℝ𝑁×𝑁 , 𝑊1 ∈ ℝ𝑇𝑟−1 , 𝑊2 ∈ ℝ𝐶𝑟−1×𝑇𝑟−1 , 𝑊3 ∈

ℝ𝐶𝑟−1  are parameters and 𝜎 is utilized for sigmoid function.  

This 𝑆 denoted as the attention matrix which is estimated 

based on the present input layer. The element scores 𝑆𝑖,𝑗 in 

𝑆 illustrates correlation strength among node 𝑖 and 𝑗. Next, 

the SoftMax activation function is utilized to ensure nodes' 

attention weights. When accomplishing graph convolutions, 
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an adjacent matrix 𝐴 through spatial attention matrix 𝑆′ ∈

ℝ𝑁×𝑁 for dynamically adjusting the weight among nodes. 

3.2.2. Temporal Attention 

In the temporal dimension, the exists a correlation among 

traffic conditions and the correlations differ under various 

situations. This paper utilized an attention mechanism for 

attaching various significant data adaptively. Let's consider 

a recent component as an example for temporal attention 

which is shown in (3) and (4), 

𝐸 = 𝑉𝑒 ∙ 𝜎((𝑋ℎ
(𝑟−1)

𝑈1)𝑈2(𝑈3𝑋ℎ
(𝑟−1)

)𝑇 + 𝑏𝑒)   (3) 

𝐸𝑖,𝑗
′ =

𝑒𝑥𝑝 (𝐸𝑖,𝑗)

∑ 𝑒𝑥𝑝 (𝐸𝑖,𝑗)
𝑇𝑟−1
𝑗=1

   (4) 

Where, 𝑉𝑒 , 𝑏𝑒 ∈ ℝ𝑇𝑟−1 , 𝑈1 ∈ ℝ𝑁 , 𝑈2 ∈ ℝ𝐶𝑟−1×𝑁 , 𝑈3 ∈ ℝ𝐶𝑟−1  

are parameters and 𝐸 is denoted as a temporal correlation 

matrix which is defined through various inputs. The element 

value 𝐸𝑖,𝑗 in 𝐸 illustrates correlation strength among time 𝑖 

and 𝑗. Next, the SoftMax activation function is utilized to 

normalize the 𝐸. Apply directly to a standardized temporal 

matrix into an input and obtain 𝑋̂ℎ
(𝑟−1)

=

(𝑋̂1, 𝑋̂2, … , 𝑋̂𝑇𝑟−1
) = (𝑋1, 𝑋2, … , 𝑋𝑇𝑟−1

)𝐸′ ∈ ℝ𝑁×𝐶𝑟−1×𝑇𝑟−1  

for adjusting an input dynamically through integrating 

appropriate features. 

3.3. Graph Convolutional Network 

The Graph Convolutional Network (GCN) is utilized for 

extracting spatial and temporal features. The GCN is applied 

to graph-structured data directly for extracting highly 

meaningful forms and features in a space domain. The 

spectral graph simplifies the convolution operation from the 

grid-based data into graph-structure data. In general, the 

traffic networks are graph structures and every node feature 

can be viewed as signals on a graph. This paper implements 

graph convolutions according to spectral graphs for 

processing the signals and manipulating signal correlations 

directly on the network in spatial dimensions. This spectral 

technique algebraically converts a graph to examine graph 

topological attributes like graph structure connectivity.  Fig. 

2 represents the architecture of GCN. 

In spectral, the graph is presented through Laplacian Matrix 

(LM) and graph structure properties are attained through 

examining Laplacian Matrix and its eigenvalues. The LM of 

graph is determined as 𝐿 = 𝐷 − 𝐴 and the normalized form 

is 𝐿 = 𝐼𝑁 − 𝐷−
1

2𝐴𝐷−
1

2 ∈ ℝ𝑁×𝑁, here 𝐼𝑁, 𝐴 and 𝐷 ∈ ℝ𝑁×𝑁 

are a unit, adjacent and diagonal matrix respectively by 

considering node degree 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 . The LM eigenvalue 

decomposition is 𝐿 = 𝑈⋀𝑈𝑇 , where 𝑈 is Fourier basis and 

⋀ = 𝑑𝑖𝑎𝑔([𝜆0, … , 𝜆𝑁−1]) ∈ ℝ𝑁×𝑁 is a diagonal matrix. Let 

consider, traffic at time 𝑡, every graph signal is 𝑥 = 𝑥𝑡
𝑓

∈

ℝ𝑁 and Fourier transform is determined as 𝑥̂ = 𝑈𝑇𝑥. The 

GCN is a convolutional operation which is executed through 

linear operators that diagonalized in Fourier domain to 

change classical convolutional operators. The graph 𝐺 of 

signal 𝑥 is filtered through kerel 𝑔𝜃 which is shown in (5), 

𝑔𝜃 ∗𝐺 𝑥 = 𝑔𝜃(𝐿)𝑥 = 𝑔𝜃(𝑈⋀𝑈𝑇)𝑥 = 𝑈𝑔𝜃(⋀)𝑈𝑇𝑥   (5) 

Where, ∗𝐺 is the graph convolutional operation in that the 

signal is equivalent to the signal product which has been 

converted to spectral area through the graph Fourier 

transform technique.  When the graph scale is high, the LM 

of eigenvalue decomposition is expensive to perform 

directly. Thus, the Chebyshev polynomials [25] are 

employed to tackle this issue accurately and effectively 

through (6),  

𝑔𝜃 ∗𝐺 𝑥 = 𝑔𝜃(𝐿)𝑥 = ∑ 𝜃𝑘𝑇𝑘(𝐿̃)𝑥𝐾−1
𝑘=0   (6) 

Where, parameter 𝜃 ∈ ℝ𝐾  is a polynomial coefficient 

vector. The 𝐿̃ =
2

𝜆𝑚𝑎𝑥
𝐿 − 𝐼𝑁 , 𝜆𝑚𝑎𝑥 is the highest eigenvalue 

of LM. The determination of Chebyshev polynomial is 

𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥) here, 𝑇0(𝑥) = 1, 𝑇1(𝑥) =

𝑥. Through estimated development of the Chebyshev 

polynomial is utilized to resolve corresponding 

formulations for extracting data of 0 to (𝐾 − 1)𝑡ℎ a 

neighbor which is located on every node graph with a conv 

kernel 𝑔𝜃. The final activation function of GCN is a ReLU 

that is 𝑅𝑒𝐿𝑈 (𝑔𝜃 ∗𝐺 𝑥). To adjust correlations dynamically 

among nodes, this paper accompanies 𝑇𝑘(𝐿̃) by spatial-

attention matrix 𝑆′ ∈ ℝ𝑁×𝑁, then attain 𝑇𝑘(𝐿̃)⨀𝑆′, here, ⨀ 

is a Hadamard product. Hence, the above GCN formula was 

modified as (7), 

𝑔𝜃 ∗𝐺 𝑥 = 𝑔𝜃(𝐿)𝑥 = ∑ 𝜃𝑘(𝑇𝑘(𝐿̃)⨀𝑆′)𝑥𝐾−1
𝑘=0    (7) 

The Equation (7) generalizes the determination of graph 

signals with numerous channels, considering in current 

component of input is 𝑋̂ℎ
(𝑟−1)

= (𝑋̂1, 𝑋̂2, … , 𝑋̂𝑇𝑟−1
) ∈

ℝ𝑁×𝐶𝑟−1×𝑇𝑟−1, here every node feature consumes 𝐶𝑟−1 

channels. Hence, every node is updated through the data of 

0 ∼ 𝐾 − 1 neighbors’ node. After capturing neighbor data 

for every node graph in the spatial dimension, a conv of 

temporal dimension is weighted to update node signals 

through integrating data at the neighboring time. Let's 

consider an example to take a process on 𝑟𝑡ℎ layer in the 

current component which is shown in (8), 

𝑋ℎ
(𝑟)

= 𝑅𝑒𝐿𝑈 (𝛷 ∗ (𝑅𝑒𝐿𝑈(𝑔𝜃 ∗𝐺 𝑋̂ℎ
(𝑟−1)

))) ∈ ℝ𝐶𝑟×𝑁×𝑇𝑟   

 (8) 

Where, Φ is a temporal dimension conv kernel parameter, ∗ 

is the standard conv operation and 𝑅𝑒𝐿𝑈 is an activation 

function. The spatial-temporal conv model is capable of 

capturing spatiotemporal features of traffic information. The 

spatiotemporal block is formed through its conv model and 

attention mechanism. Numerous spatiotemporal blocks are 

stacked to extract high-range dynamic spatiotemporal 
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correlations. At last, the Fc layer is attached to ensure every 

component output has an equal shape and dimension by the 

predicting target. The final FC layer utilized the ReLU as an 

activation function.  

 

Fig. 2.  Architecture of GCN 

4. Experimental Result 

In this paper, the proposed AST-GCN is stimulated by 

utilizing a Python environment with the system 

configuration: OS: Windows 10, processor: intel core i7 and 

RAM:16GB. Parameters like Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), and Root Mean 

Square Error (RMSE) are utilized to estimate model 

performance. The mathematical representation of these 

parameters is shown in (9), (10) and (11), 

𝑀𝐴𝐸 =
1

𝑁
(∑ |(𝑦𝑖 − 𝑦𝑖̂

𝑁
𝑖=1 )|)   

 (9) 

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑁

𝑖=1    

 (10) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
(∑ |(𝑦𝑖 − 𝑦𝑖̂

𝑁
𝑖=1 )|)    (11) 

Where, 𝑁 is the number of observations, 𝑦𝑖  and 𝑦𝑖̂ is the 

actual and predicted value of 𝑖th observations.  

4.1. Quantitative and Qualitative Analysis 

This section shows the quantitative and qualitative analysis 

of the proposed AST-GCN model using MAE, MAPE and 

RMSE shown in Tables 2 and 3. Table 2 illustrates the 

performance of a proposed model on PEMS04 dataset and 

Table 3 illustrates the performance of the proposed model 

on PEMS08 dataset. The GNN required substantial memory 

and computation which makes them ineffective for large-

scale networks. The GCN faces scalability issues, 

particularly dealing with large graphs which makes them 

less practical for real-world applications. The proposed 

AST-GCN model attains better prediction performance and 

decreases prediction errors. 

Table 2. The performance of the proposed AST-GCN on 

PEMS04 dataset 

Methods MAE MAPE (%) RMSE 

GNN 23.74 18.48 35.2 

GCN 20.8 15.53 32.47 

STPGCN 18.46 12.01 30.15 

STPGNN 15.25 10.37 24.51 

AST-GCN 12.8 8 19.33 

 

Fig. 3.  Performance of proposed AST-GCN on PEMS04 dataset 
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Table 2 and Fig. 3 show the performance of the proposed 

AST-GCN model on the PEMS04 dataset. The performance 

of Graph Neural Network (GNN), Graph Convolutional 

Network (GCN), Spatial-Temporal Position-aware Graph 

Convolutional Networks (STPGCN), and Spatial-Temporal 

Position-aware Graph Neural Networks (STPGNN) are 

measured and matched with the proposed AST-GCN model. 

The obtained result shows that the proposed AST-GCN 

model achieves better results by utilizing performance 

metrics like MAE, MAPE, and RMSE values of about 12.8, 

8% and 19.33 correspondingly while comparing other 

models.  

Table 3. The performance of the proposed AST-GCN on 

PEMS08 dataset 

Methods MAE MAPE 

(%) 

RMSE 

GNN 22.44 17.45 32.15 

GCN 19.3 13.72 27.43 

STPGCN 13.81  9.06 23.58 

STPGNN  11.25 7.391 19.71 

AST-GCN 8.67 5.67 15.23 

 

Fig. 4.  Performance of proposed AST-GCN on PEMS08 dataset

Table 3 and Fig. 4 show the performance of the proposed 

AST-GCN model on PEMS08 dataset. The performance of 

GNN, GCN, STPGCN, and STPGNN are measured and 

matched with the proposed AST-GCN model. The obtained 

result shows that the proposed AST-GCN model achieves 

better results by utilizing performance metrics like MAE, 

MAPE and RMSE values of about 8.67, 5.67%, and 15.23 

correspondingly while comparing other models.  

4.2. Comparative Analysis 

This section demonstrates the comparative analysis of the 

proposed AST-GCN model with performance metrics like 

MAE, MAPE and RMSE as shown in Tables 4 and 5. The 

existing result such as [16], [17], [18], [19], and [20] are 

utilized to evaluate the ability of the model. The proposed 

model is trained, tested, and validated using PEMS04 and 

PEMS08 datasets. The results obtained from Tables 4 and 5 

show that the proposed model attains better performance 

when compared with the existing methods. In the PEMS04 

dataset, the proposed model attains MAE, MAPE and 

RMSE values of 12.8, 8% and 19.33. In the PEMS08 

dataset, the proposed model attains MAE, MAPE and 

RMSE values of 8.67, 5.67% and 15.23 correspondingly.  

 

 

 

Table 4. Comparative analysis of the proposed method on 

PEMS04 dataset  

Methods MAE MAPE (%) RMSE 

LSTFGCN [16] 19.71 13.01 31.39 

STCGCN [17] 13.53 8.71 20.54 

ASTGT [18] 20.58 12.89 32.74 

STAGCN [19] 19.65 13.20 31.53 

STPGCN [20] 18.46 12.01 30.15 

Proposed AST-GCN 12.8 8 19.33 

 

Table 5. Comparative analysis of proposed method on 

PEMS08 dataset  

Methods MAE MAPE (%) RMSE 

LSTFGCN [16] 16.03 10.15 25.18 

STCGCN [17] 9.83 6.71 18.68 

ASTGT [18] 15.56 9.05 25.04 

STAGCN [19] 15.85 10.21 25.08 

STPGCN [20] 13.81 9.06 23.58 

Proposed AST-GCN 8.67 5.67 15.23 
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4.2.1. Discussion 

In this section, the advantages of the proposed method and 

the limitations of existing methods are discussed. The 

existing method has some limitations such as the LSTFGCN 

[16] model failed to capture the spatial correlations. The 

STCGCN [17] technique causes huge computational 

complications and over-smoothing issues. The ASTGT [18] 

model does not perform well due to the complex and 

nonlinearity of spatiotemporal dependencies. The STAGCN 

[19] model required traffic information with traffic flow and 

speed features that were unable to be easily transported into 

other tasks dealing with spatiotemporal data. The STPGCN 

[20] model ignores spatiotemporal position factors when 

exhibiting spatiotemporal correlations. The proposed AST-

GCN model overcomes these existing model limitations. 

Additionally, the AST-GCN model attains better prediction 

performance and decreases prediction errors. 

5. Conclusion 

In this paper, an Attention-based Spatial Temporal-Graph 

Convolutional Network (AST-GCN) model is proposed for 

predicting traffic flows. This research utilized PEMS04 and 

PEMS08 datasets which are publicly available transport 

network datasets. In the spatial dimension, the various 

locations' traffic conditions are influenced by each other and 

mutual influence is extremely dynamic. In the temporal 

dimension, the exists a correlation among traffic conditions 

and the correlations are differ under various situations. The 

GCN is used for extracting spatial and temporal features that 

are applied to graph-structured data directly for extracting 

highly meaningful forms and features in a space domain. 

The GCN builds a graph between two neural network layers 

that is a graph edge weight. The obtained result shows that 

the proposed model achieves 12.8 of MAE, 8% of MAPE, 

and 19.33 of RMSE on PEMS04 dataset and 8.67 of MAE, 

5.67% of MAPE, and 15.23 of RMSE on PEMS08 dataset 

correspondingly. The future work is to integrate the AST-

GCN with deep learning models for better learning of 

spatiotemporal features in hidden traffic data. 
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