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Abstract: Alzheimer's disease, characterized by cognitive decline due to impaired brain cells, remains without a definitive cure. However, 

early diagnosis can substantially mitigate its impact and improve patient management. Recognizing this, we developed an automated system 

for interpreting brain Magnetic Resonance Imaging (MRI) scans, aiming not just to detect dementia but also to classify its various stages. 

Using a transfer learning method, we adapted the AlexNet convolutional network to this specific challenge, training it primarily on un-

segmented MRI images. Our model, when tested on the publicly accessible KAGGLE dataset, demonstrated a significant accuracy of 

94.49% for multi-class classification. Additionally, our model's prowess wasn't limited to accuracy alone. In multi-class scenarios, it 

reported a specificity of 97.78%, precision of 77.42%, recall of 94.49%, and an F1-score of 81.08%. Impressively, it surpassed 

contemporaneous studies, outdoing the 79.8% accuracy of Tooba et al. and the 62.7% by S0rensen et al. The ROC curve further highlighted 

the model's proficiency in distinguishing between dementia stages, with 'Moderate Dementia' reaching an AUC of 0.97964. Such results 

underline not only the efficacy of our approach but also its promise as a groundbreaking asset in Alzheimer's diagnostics. 

Keywords: Alzheimer's Disease, Dementia, Brain Deterioration, Early Diagnosis, Magnetic Resonance Imaging (MRI), Automated 

Detection, Classification System, Transfer Learning, Convolutional Network, Alexnet, KAGGLE Dataset. 

1. Introduction 

Alzheimer's disease (AD) is the predominant form of 

dementia, constituting 60-80% of all cases. It is marked by 

a profound cognitive decline and diminished daily 

functionality [1]. While commonly diagnosed in those over 

60, there are instances of early-onset AD in individuals as 

young as their 40s [2]. The number of AD cases in the U.S., 

currently at 5 million, is projected to triple by 2050. In its 

early phase, known as mild cognitive impairment (MCI), the 

disease manifests as subtle memory loss. As it progresses, 

patients may become entirely non-communicative. Despite 

ongoing research, effective AD treatment remains elusive 

[3]. Given the absence of a definitive cure, the emphasis on 

timely and accurate AD diagnosis has grown, especially 

with the generation of vast data from diagnostic tests [4]. 

MRI has been instrumental in AD diagnostics due to its 

superior contrast and clarity in brain imaging [5]. 

Leveraging computational methods, features from essential 

brain regions such as Grey Matter voxels [6] and the 

hippocampus [7] are extracted to aid the diagnosis. While 

these techniques enhance early detection, many classify into 

binary categories without distinguishing dementia stages. 

In medical imaging, machine and deep learning concepts, 

though contemporary, have roots, especially within 

computer-aided diagnosis (CAD). Their applications range 

from breast tissue classification [8] to cerebral microbleed 

detection [9] and brain image categorization [10]. Deep 

CNNs, in particular, are becoming pivotal in computer 

vision for their adeptness in tasks like object recognition. 

Unlike traditional ANNs, CNNs can process multi-layered 

images, such as RGB. They benefit from parameter sharing, 

where neurons in a feature map share weight.  

The intricacies of CNNs will be explored in Section 3.1. 

Training these networks presents challenges, like data 

limitations and computational demands [11]. Researchers 

are pivoting to transfer learning [12] to overcome these, 

modifying pre-trained models for different tasks. Propelled 

by expansive datasets like ImageNet [13], CNNs are 

increasingly employed in medical image categorization 

[14]. Adapting these networks for specific medical tasks 

through transfer learning, particularly fine-tuning their final 

layers, has been incredibly effective. 

Our research uses the AlexNet model [15] to evaluate brain 

MRIs for AD prediction autonomously. By training 

AlexNet on ImageNet and applying transfer learning, we 

can differentiate among various AD stages. This approach 

showcases the potential of general image features in medical 

imaging. Tests on 3D MRI scans from the KAGGLE 

database underline the efficacy of our methodology in AD 

detection. Key contributions of our study include: 

• A transfer learning-based method for AD 

classification. 

• A multiclass algorithm to discern AD progression 

stages. 
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The structure of this paper: Section 2 delves into related 

literature, Section 3 outlines our methods, Section 4 presents 

the results, and Section 5 concludes our findings. 

2. Related Work 

Over the past decade, the medical research community has 

seen a proliferation of techniques aimed at classifying 

Alzheimer's disease (AD). Such advancements in 

classification methodologies assist in early detection and 

monitoring of disease progression and treatment efficacy. 

Our systematic review of these methodologies offers a 

comprehensive understanding, breaking them down based 

on classification levels, including binary (e.g., AD vs. 

normal) and multiclass classifications (e.g., AD vs. Mild 

Cognitive Impairment vs. normal). 

Wang et al. [16] approached this challenge differently. They 

focused on calculating a 3D displacement field to group test 

subjects. The features extracted from this process were then 

streamlined using mathematical techniques: Bhattacharya 

distance, student t-test, and Welch's t-test. The refined 

features formed the basis for training an advanced algorithm 

- the Support Vector Machine (SVM) classifier. The 

accuracy they achieved was an impressive 93.05%. 

In a subsequent study, Beheshti et al. [1] delved deeper into 

the importance of GM volume reduction. They employed 

voxel-based morphometry (VBM) to detect local and broad-

based GM shrinkage. This analysis resulted in demarcating 

Volumes of Interest (VOIs). The features mined from these 

VOIs underwent optimization using genetic algorithms and, 

when passed through SVM classification, returned an 

accuracy of 84.17%. 

Other research, such as the one documented in [5], also 

found merit in focusing on regions that witnessed significant 

GM volume reduction. The values from these VOIs were 

treated as raw features. These underwent simplification 

using feature ranking techniques, and when subjected to 

SVM classification, an accuracy of 92.48% was achieved. 

Taking a different anatomical route, Ramaniharan examined 

the corpus callosum's shape variations by segmenting Tl-

weighted MRI scans [17]. They then derived morphological 

features using the intricate Laplace Beltrami eigenvalue 

shape descriptor. When ranked based on information gain, 

the ensuing reduced features were classified using SVM and 

the K-Nearest Neighbor (KNN) algorithms. The latter was 

particularly successful, recording a 93.7% accuracy. 

Guerrero's study [18] proposed a feature extraction 

framework based on significant inter-subject variability. By 

deriving Regions of Interest (ROIs) through a sparse 

regression model tailored for variable selection, they 

achieved an accuracy rate of 71%. 

The study presented in [19] was also noteworthy. This 

research integrated wavelet entropy and predator-prey 

Particle swarm techniques specifically for AD 

classification. Leveraging a Single-hidden-layer Neural 

Network for classification, they achieved a commendable 

accuracy rate of 92.73% for binary classification. 

In [20], the focus was on segmenting images into the 

primary brain constituents: Gray Matter (GM), White 

Matter (WM), and CSF. The GM-segmented Regions of 

Interest (ROI) was the foundation for creating similarity 

matrices. The uniqueness of this study was the incorporation 

of the Functional Activities Questionnaire (FAQ) alongside 

SVM to bolster AD classification accuracy. Their binary 

classification efforts resulted in an 84.07% accuracy rate. 

Incorporating multiple diagnostic tools, the study in [21] 

combined Fuzzy C-means and the Weighted Probabilistic 

Neural Network for classification. Their process started by 

extracting ROIs linked to crucial brain areas - the 

Hippocampus and Posterior Cingulate Cortex. An 

interesting approach they employed was the removal of 

questionable samples from their training data, aimed at 

bolstering classification performance. Their method 

succeeded, with accuracy reaching 98.63%, 95.4%, and 

96.4% for various binary classifications. 

Recent advancements in machine learning and deep learning 

have also found applications in Alzheimer's classification. 

Ahmed et al.'s work [22] used circular harmonic functions 

(CHF) to glean local features from critical brain regions, 

achieving a 62.7% accuracy for multi-class classification 

tasks on the renowned ADNI database. On the other hand, 

Sarraf's research [23] integrated deep learning 

methodologies like CNN and auto-encoders. The results 

were promising, with an accuracy peak of 98.4%. 

H.I Suk et al. [24] further advanced the role of deep learning 

in this domain. They focused on classifying three pivotal 

stages of the disease and achieved high accuracy rates using 

auto-encoder networks and SVM-based classifications. 

Siqi Liu et al.'s work [25] presented a sophisticated method 

of extracting neuro-imaging features for AD diagnosis. 

Their method was dual-layered: a zero-masking method for 

low-level features and a stacked autoencoder network for 

high-level ones. Their SVM classifier then achieved 86.86% 

accuracy. 

The future of Alzheimer's classification looks bright, with 

new methodologies integrating multiple features, cutting-

edge machine learning techniques, and deep learning 

architectures. As research continues to evolve, the hope is 

that these advancements will play a pivotal role in early 

detection, effective treatment, and a potential cure for 

Alzheimer's disease. 
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3. Suggested Approach 

The approach introduced harnesses the power of transfer 

learning to detect Alzheimer's disease. The ensuing section 

delves into the crucial components required to craft a potent 

CNN-driven Computer-Aided Diagnosis (CAD) 

framework. An outline of the envisaged CNN architecture 

for Alzheimer's disease identification is depicted in Figure 

1. 

Transfer Learning

1D ECG 

Signals

Pre-Trained 

AlexNet

Divide Training and 

Testing Randomly

Fully Connected 

Feature Extraction

SVM Classifier

Categorizing ECG Signals
 

Fig 1. Block Diagram of the Proposed Approach 

3.1. Leveraging AlexNet: A Pre-trained CNN 

Architecture 

A Convolutional Neural Network (CNN) is a specialized 

multi-layered neural network crafted to identify patterns 

directly from image pixels, diminishing the need for 

extensive preprocessing [26]. At its core, a CNN comprises 

three primary layers: convolution, pooling, and fully 

connected layers. The convolution layer is the backbone, 

handling most of the computational workload. It processes 

input data using convolution operations, passing the results 

to the next layer. The filters within this layer act as feature 

identifiers, navigating through the input to create feature 

maps. 

Sandwiched between successive convolution layers, the 

pooling layer is instrumental in downsizing spatial 

dimensions and curtailing computational intensity. 

Executing pooling on segmented portions of the input 

lightens the computational burden for ensuing convolution 

layers. The fusion of convolution and pooling layers aids in 

distilling and capturing features from input visuals. 

Culminating this process, the fully connected layer delivers 

the final verdict, correlating with the class numbers. While 

all CNNs adhere to a foundational blueprint, specific 

architectures may differ. Our research used the renowned 

AlexNet architecture as the bedrock for detecting 

Alzheimer's [27]. 

3.2. Parameters for Transfer Learning 

Transfer learning is a pivotal technique in many deep 

learning applications, especially when training data for 

parameter calibration is scarce. At its core, transfer learning 

capitalizes on a pre-established network, such as AlexNet, 

using it as a foundational springboard for addressing a new 

challenge. AlexNet, as an illustration, has its roots in 

training on ImageNet, a comprehensive dataset teeming 

with labeled imagery. With transfer learning, the ingrained 

parameters from the deeper layers of AlexNet (barring the 

final three layers) are co-opted and harnessed. These 

concluding three layers, encompassing the softmax, fully 

connected, and output classification layers, are reconfigured 

or replaced to tailor the network to the distinct classification 

task in focus. These fully Connected Features train the SVM 

Classier using RBF Kernal. 

AlexNet is a CNN model that's been pre-trained on the 

extensive ImageNet dataset, which serves as the 

foundational Domain (𝐷𝑠). The architecture of AlexNet 

boasts over 60 million parameters. Directly harnessing such 

a vast parameter set from a mere thousand training images 

can be risky. The central premise of this study is that the 

internal layers of the CNN are adept at extracting universal 

image features. Initially trained in one domain (𝐷𝑠) (in this 

context, ImageNet), these parameters can then be 

repurposed and applied to a distinct task (𝑂1) (in this case, 

Alzheimer's classification). 

Support Vector Machines (SVM) is a conventional 

supervised classification and regression task method. It 

operates by distinguishing target classes in n-dimensional or 

multi-dimensional spaces. The core objective of SVM is to 

identify the ideal decision boundary, characterized by the 

largest margin, for classifying new data entries. Even 

though multiple decision boundaries can be present in an n-

dimensional space, the desired boundary is always the one 

that classifies data most simply. This optimal boundary in 

SVM is referred to as a hyperplane, the dimensions of which 

are dictated by the dataset's attributes. The goal is to 

establish hyperplanes that maximize margins, where these 

margins act as a buffer determining the proximity between 

data points. A key aspect of SVM is its kernel, which 

computes the distances between data points x-n and x-m. 

When data points are in closer proximity, the kernel 
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produces higher values. Figure 2 offers a visual representation of the SVM kernel [28]. 

 

 

 

Fig 2. Linear and Non-Linear SVM. 

The Radial Basis Function (RBF) Kernel is implemented, 

akin to the K-Nearest Neighbor (K-NN) Algorithm. 

Retaining only support vectors during the training phase 

harnesses the advantages of K-NN while circumventing 

space complexity issues. RBF kernels use various 

kernelized machine-learning techniques, including SVM 

classification. The mathematical representation of the RBF 

kernel is illustrated in Equation 1. 

𝑘(�⃗�𝑖 , �⃗�𝑗) = 𝑒𝑥𝑝(−𝛾  ⃦�⃗�𝑖 − �⃗�𝑗   ⃦2) 𝑓𝑜𝑟 𝛾 > 0                                   (1) 

where, 

 �⃗�𝑖 , �⃗�𝑗  = feature vectors 

 𝛾 = 
1

2𝜎2 

 𝜎 = free parameter 

3.3. Adapted Network Structure 

The selected structure is built upon the pre-existing AlexNet 

model. The system inputs an RGB image of 227 x 227 

pixels. As this image traverses the network, it gets classified 

into various categories in the ImageNet dataset. The design 

encompasses five consecutive Convolutional (C) layers, 

named C1 through C5, succeeded by three Fully Connected 

(FC) layers: FC6, FC7, and FC8. The comprehensive layout 

of this framework can be seen in Figure 3. 

Figure 3 depicts the architecture of AlexNet. AlexNet is a 

groundbreaking deep-learning model pivotal in advancing 

the field of computer vision. Designed with a deep 

arrangement of layers, the architecture embodies 

convolutional layers responsible for filtering and feature 

extraction, pooling layers that reduce spatial dimensions, 

and dense, fully connected layers for final classification. 

This strategic orchestration of layers allows the model to 

recognize intricate image patterns, positioning AlexNet as a 

cornerstone in image-based machine learning. 

To classify Alzheimer's, we aim to craft a system that can 

allocate scores to the target classes. Notably, the classes 

learned by the pre-trained network might not align with 

those of the current task. The primary layers of the network 

discern basic features like edge outlines from the training 

visuals, while the concluding fully connected layers home 

in on class-specific attributes pivotal for image 

classification. To harness the power of transfer learning, we 

inherit all layers of AlexNet, barring the last trio, 

designating them as transfer layers. These concluding three 

layers of AlexNet are supplanted with tailored SoftMax 

layers, dense layers, and an end classification layer, 

empowering them to assimilate the unique features of the 

Alzheimer's dataset. 

The foundational five layers, sourced from AlexNet 

(nurtured on ImageNet), remain intact and static. The 

subsequent adaptive layers undergo training utilizing 

Alzheimer’s datasets. Parameters tied to the dense FC layer 

encompass the bias learn rate factor, weight adaptation 

factor, and the concluding output dimension. The FC layers' 

output dimension corresponds to the class label count. The 

bias dictates the bias adaptation speed learn rate factor, and 

the weight adaptation rate orchestrates the holistic learning 

rate, both pegged at 50. The Softmax layer channels 

Softmax operations onto the incoming data. Specifications 

like the output dimension and function designation for 

multi-label classification are finalized for the classification 

process. The Cross-Entropy Function for k distinct classes 

is the chosen loss function, with the class count deciding the 

output dimension. 

3.4. Network Training and Precision Adjustment 

AlexNet's architecture is trained using the ImageNet dataset, 

which contains images across 1000 unique classes. For 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 498–508 |  502 

image classification within the desired domain, the inherited 

CNN layers are precisely adapted using the target dataset, 

ensuring that the foundational features from ImageNet are 

retained. This method allows the CNN structure to undergo 

training on the target dataset with an increased learning rate, 

incorporating specific features from the domain into the 

layers intended for adaptation. The last three fully connected 

layers are refashioned to the desired domain, positioning 

them to classify target images aptly. This strategy transfers 

the preliminary model's low-level features to the target 

problem, speeding up the learning curve for new challenges. 

The training procedure uses 70% of the dataset in our 

proposed framework. Several vital parameters impact the 

training, such as Batch Size, Epoch Count, Learning Rate, 

and Frequency of Validation. A batch size of 8 and a 

learning rate 1e-4 are implemented throughout the training 

phase. Training continues for up to 30 epochs, with the bias 

and weight learning factors set at 50. The optimization 

technique chosen is Stochastic Gradient Descent with 

Momentum (SGDM), which lowers the loss function and 

adjusts the bias and weight values. This repeated action 

equips the modified layers to recognize the distinct features 

essential for the Alzheimer's dataset, guided by the selected 

training parameters. 

 

Fig 3. AlexNet Architecture [29] 

3.5. Proposed Network Details 

The proposed method uses images from all the records to 

train an AlexaNet 2D Network. The AlexaNet 2D Network 

consists of convolution layers, a fully connected layer, and 

a SoftMax output layer, which enables the classification of 

the images into four classes: Non-Dementia, Very Mild 

Dementia, Mild Dementia, and Moderate Dementia. 

Table 1. AlexaNet layers detail 

Layer_Name C1 C2 C3 C4 C5 

Input_Size 227x227x3 27x27x96 13x13x256 13x13x384 13x13x384 

Num_Filters 96 256 384 384 256 

Filter_Size 11x11x3 5x5x48 3x3x256 3x3x192 3x3x192 

Stride 4 1 1 1 1 

Padding 0 2 1 1 1 

Activation_Fn ReLU ReLU ReLU ReLU ReLU 

Output_Size 55x55x96 27x27x256 13x13x384 13x13x384 13x13x256 

Additional_Ops 

Max-

Pooling 

3x3, stride 

2 

Max-Pooling 

3x3, stride 2 
None None 

Max-Pooling 

3x3, stride 2 

 

Table 1 provides detailed information on the layers of the AlexaNet model. The input size is 227x227x3, representing 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 498–508 |  503 

a 3-channel color image with dimensions of 227x227 pixels. 

The layers in the AlexaNet model are as follows: Conv1, 

Conv2, Conv3, Conv4, Conv5, and the 3 fully connected 

layers. This table provides valuable insights into the 

architecture of the AlexaNet model, helping to understand 

the transformations and operations applied to the input data 

through the various layers to achieve accurate classification 

results. 

During training, the network learns to extract meaningful 

features from the images and classify them accurately into 

the respective classes. The SoftMax output layer assigns 

probabilities to each class, and the spectrum is classified into 

the class with the highest probability.  

4. Experimental Setup and Results 

This section is foundational to any research as it sheds light 

on the methods and tools used to conduct experiments and 

the subsequent findings. In this chapter, the researchers 

meticulously outline the equipment, software, and datasets 

they chose for their investigations. They dive deep into the 

processes of image pre-processing and the metrics used to 

evaluate results. Key to this section is the detailed 

exposition of results obtained from the experiments. These 

findings are presented in various formats, such as tables and 

figures, for a comprehensive understanding. Discussions 

around the results offer insights into their implications and 

significance. This chapter is vital as it substantiates the 

research's claims and conclusions by providing empirical 

evidence. 

4.1. Tools and Software Configuration 

We utilized a convolutional neural network approach to 

detect Alzheimer's disease. Our computational framework 

was built and tested on a system featuring the Intel Core i7 

10th generation processor, known for its powerful multi-

core processing, which is ideal for deep learning tasks. The 

system operated on Windows 10, a 64-bit version, lauded 

for its user-friendly interface and broad software and 

hardware compatibility. Graphics computations were 

handled by an NVIDIA GTX card equipped with 2GB 

dedicated memory. Optimized for parallel processing, this 

card is invaluable for deep learning algorithms demanding 

extensive matrix operations. Our system was equipped with 

8GB RAM, providing ample data storage and processing 

memory during the model development stages. All 

simulations and computations were executed using 

MATLAB 2019B. 

4.2. Data Collection 

The parameters of the CNN were primed via pre-training on 

the ImageNet database. In particular, the AlexNet structure 

was primed using the expansive ImageNet dataset, which 

contains over 1.2 million high-definition images spanning 

nearly 1000 unique classes. These images, sourced from the 

internet, were labeled manually by human evaluators. 

Fine-tuning describes tailoring a pre-trained CNN to suit a 

specific dataset. In the context of this research, the target 

dataset originated from the publicly accessible KAGGLE 

repository. This collection comprises brain MRI scans from 

individuals, ranging from those deemed normal to those 

diagnosed as very mildly demented, mildly demented, and 

patients with Alzheimer's.  

The collected data featured 6400 image samples procured 

from participants aged between 18 and 96, thus capturing 

the gamut of Alzheimer's evolution across varying age 

demographics. The training was executed using the entirety 

of the dataset's images. 

Every dataset image was matched with a Clinical Dementia 

Rating (CDR) metric as the reference standard. The 

dispersion of the CDR ratings amongst the training and 

evaluation samples was meticulously curated to reflect 

every phase of Alzheimer's progression, as detailed in Table 

2. 

 

Table 2: Corresponding Mental States Based on Clinical Dementia Rating (CDR) Values in the KAGGLE Dataset. 

Clinical Dementia Rate Corresponding Mental State No. of Image Samples 

0 Non-Demented 3200 

0.5 Very Mild Demented 2240 

1 Mild Demented 896 

2 Moderate Demented 64 

4.3. Performance Assessment Criteria 

The performance assessment of classification results 

derived from the AlexNet architecture uses several 

evaluation metrics [30]. A brief description of each of these 

metrics follows. Equations for the performance evaluation 

metrics are as follows: 

Accuracy = TP + TN/TP + TN + FP + FN 

Specificity = TN/TN + FP 
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Sensitivity (Recall) = TP/TP + FN 

Precision = TP/TP + FP 

F1 - score = 2 (Precision * Sensitivity/Precision + 

Sensitivity) 

In the equations provided, FP represents false positives, FN 

denotes false negatives, TP stands for true positives, and TN 

signifies true negatives. 

4.4. Outcomes and Analysis 

In this section, the findings from the study are collated, 

analyzed, and interpreted. It provides insights into the 

efficacy of the adopted methodology and its implications. 

4.4.1. Training Performance 

Originally trained in thousands of classes, AlexNet's feature 

representations might appear generalized due to its vast 

source domain diversity. In contrast, our specific dataset is 

narrower in the class scope. Therefore, we fine-tuned the 

fully connected layers of AlexNet to emphasize features 

specific to our target classes rather than those from the 

broader domain. 

The database used for the proposed method consists of MRI 

images for each of the four cases: Non-Demented, Very 

Mild-Demented, Mild-Demented, and Demented. The 

dataset is split into three sets: training, validation, and 

testing, following a 70-10-20 ratio, respectively. 

Data augmentation is a technique used to increase the 

diversity of the dataset by applying various transformations 

to the existing data, thereby improving the model's 

generalization. Table 3 outlines the dataset distribution 

across various dementia stages for training, validation, and 

testing sets pre- and post-augmentation. The 'Non-

Demented' category remained stable after augmentation, 

while the 'Very Mild Demented' and 'Mild Demented' 

categories saw an uptick in images. The 'Moderate 

Demented' group, initially with fewer images, notably 

expanded post-augmentation. This table highlights the 

balancing effect of image augmentation across categories. 

 

Table 3. Dataset details with the number of the training set, validation set, and testing set 

Categories 
Augmentation  

Training set 

  

Testing Set Before  After  Validation Set 

Non-Demented 3200 3200 2240 320 640 

Very Mild Demented 2240 3200 2240 320 640 

Mild Demented 896 3200 2240 320 640 

Moderate Demented 64 640 448 64 128 

 

Additionally, the model achieves a validation accuracy of 

93.54%. Validation accuracy is important as it estimates 

how well the model will perform on unseen data. The 

validation accuracy suggests that the model generalizes well 

to new and unseen data. And it is a positive indicator that 

the model is not overfitting. 

Training the model involves several parameters that 

contribute to its performance. Table 4 provides a 

comprehensive overview of the training parameters utilized. 

Table 4: Training Parameters 

Parameters Corresponding Values 

Validation Accuracy 94.28 

Time is taken to Train 671 min 48 sec 

No Epoch 20 

Max No of Iterations 48 

Learning Rate 0.01 

Hardware Resource Single CPU 

Validation Frequency 10 

 

The validation accuracy, a key indicator of the model's precision, is 94.49%, showcasing the model's ability to 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 498–508 |  505 

perform well on unseen data. The total time for the training 

process was approximately 671 minutes and 48 seconds, 

indicating the computational resources required for the 

training phase. With 8 epochs and a maximum of 48 

iterations, the model underwent substantial learning 

iterations to optimize its performance. 

The learning rate 0.01 was crucial in controlling the step size 

during gradient descent, impacting the convergence speed 

and optimization quality. The training was executed on a 

single CPU, demonstrating the hardware resource utilized 

for this phase. Moreover, validation frequency, set at 10, 

signifies that the model's performance on the validation 

dataset was assessed every 10 iterations, ensuring a balance 

between frequent assessment and efficient computation. 

4.4.2. Outcomes of Alzheimer's Classification 

Using a transfer learning approach with the CNN 

architecture, we classified images from the KAGGLE 

repository. This classification addressed both the nuanced 

stages of Alzheimer's detection. Given the significant 

emphasis on Alzheimer's in medical studies, recognizing its 

varying stages plays a pivotal role in timely interventions, 

highlighting the relevance of multi-stage classification. By 

harnessing the foundational layers of the AlexNet model, 

trained on the expansive ImageNet dataset, we could 

capitalize on the rich, low-level features derived from over 

a million images. These foundational layers were adapted 

and then meticulously tailored on the full and segmented 

brain scans. 

Modifications were made to the final three layers of the 

model to accommodate the specific classification objective. 

We trained the CNN model with raw images to capture task-

centric features. This strategy retained the foundational 

features from the original domain while optimizing the 

learning speed. We diligently documented the training and 

evaluation phases, conducted over ten epochs for each data 

category, and subsequently assessed the outcomes 

represented by confusion matrices. 

Our devised approach was exhaustively trained and 

evaluated for multi-faceted Alzheimer's classification tasks. 

Figure 4 visually presents the results of classifications.

 

Fig 4: Confusion Matrix for Multi-class Classification. 

Derived from the confusion matrices, the evaluation metrics 

provide a thorough understanding of the CNN model's 

efficacy in classifying MRI scans using transfer learning. 

This is applicable for multi-class tasks. The specific 

evaluation metrics, as described earlier, are presented in 

Table 5. 

Table 5. Performance Parameter Measures 

Metrics Measurements  

Specificity 97.78% 

Accuracy 94.49% 

Precision 77.42% 

Recall 94.49% 

F1-score 81.08% 

 

From a statistical standpoint, the system demonstrated pronounced proficiency in the multi-class classification of 
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images when analyzing classification accuracies and 

prediction errors. Leveraging unsegmented images 

streamlined the process, trimming computational demands 

by two-thirds and yielding an impressive accuracy rate of 

94.49%.  

Recognizing and classifying Alzheimer's is significant in 

multi-class contexts, drawing considerable research interest. 

As discussed in the related work section, prior studies have 

focused on layered Alzheimer's classification. Furthermore, 

a comparative review juxtaposed our introduced 

methodology with other prevalent multi-class classification 

techniques. 

While previous methods have demonstrated commendable 

accuracy in differentiating individuals with Alzheimer's 

from healthy subjects, using transfer learning as a 

benchmark for accuracy is a pioneering approach in 

Alzheimer's classification. Diagnosing Alzheimer's with 

precision in a test subject is crucial, but identifying the stage 

of the disease is equally vital. This information guides the 

appropriate care and intervention tailored to the patient's 

needs. Though some efforts mirror aspects of our approach, 

they haven't leveraged the techniques we've proposed. 

 

Fig 5. Multi-Class ROC for Alzheimer's Classification 

Figure 5 presents the Receiver Operating Characteristic 

(ROC) curve for the multi-class classification system that 

differentiates between the 'Non-Dementia,' 'Very Mild 

Dementia,' 'Mild Dementia,' and 'Moderate Dementia' 

categories. The Area Under the Curve (AUC) values offer 

insights into the model's ability to distinguish between the 

classes effectively. Specifically, the 'non-dementia' class 

achieved an AUC of 0.95578, 'Very Mild Dementia' 

registered an AUC of 0.95519, and 'Mild Dementia' 

recorded an AUC of 0.9551. In contrast, the 'Moderate 

Dementia' class marked the highest with an AUC of 

0.97964. These AUC scores underscore the model's strong 

performance in classifying the distinct dementia stages. 

In this regard, Tooba et al. introduced a combined feature 

vector, integrating textural and clinical data, to classify 

various stages of Alzheimer's using MRI scans. Their 

method reported an overall accuracy of 79.8% for the multi-

classification task. A blended feature vector combining 

structural and morphological attributes was introduced in a 

parallel endeavor. Employing this combined vector, 

S0rensen et al. achieved a multi-class classification 

accuracy of 62.7%. When juxtaposed with these 

methodologies, our strategy, which harnessed the AlexNet 

architecture through transfer learning, emerged superior, 

recording a peak accuracy of 94.49%, as delineated in Table 

6. 

Table 6. State-of-Art Comparison for Multi-class Classification Approaches. 

Methods Accuracy (%) 

Beheshti et al. [1] 84.17 

Altaf, T 92.48 

Wang et al. [16] 93.05 

Proposed Approach 94.49 

5. Conclusions 

Detecting the various stages of Alzheimer's disease presents 

unique challenges, particularly when delving into multiclass 

classification. To address these intricacies, our team devised 

a tailored solution using a transfer learning approach, 

specifically leveraging the robust architecture of AlexNet. 

This adaptation entailed utilizing both segmented and un-

segmented MRI brain images. Remarkably, our fine-tuned 

convolutional neural network (CNN) achieved an 

impressive 94.49% for multiclass challenges.  

Furthermore, our model's efficacy extends beyond just 

accuracy. With a specificity of 97.78%, a precision of 
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77.42%, a recall of 94.49%, and an F1-score of 81.08% in 

multi-class scenarios, our system consistently outperformed 

other research efforts, such as Tooba et al.'s 79.8% and 

S0rensen et al.'s 62.7% accuracy rates. The distinctions in 

dementia stages were vividly illustrated by the ROC curve, 

particularly with 'Moderate Dementia' achieving an AUC of 

0.97964. These results validate our approach's superiority 

and emphasize its potential as a valuable tool in Alzheimer's 

diagnostics and care. 
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