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Abstract: The rapid and precise diagnosis of specific lung cancer types, including adenocarcinoma of the left lower lobe, large cell 

carcinoma of the left hilum, and squamous cell carcinoma of the left hilum, has become paramount in the realm of medical imaging. This 

research aims to harness advanced image processing techniques to extract disease-specific features and employ a hybrid algorithm for 

feature reduction, ultimately facilitating the accurate classification of these diseases. Features were meticulously extracted from medical 

images capturing the diseases above. A novel hybrid algorithm, which fuses the strengths of the Bees Algorithm and Independent 

Component Analysis (ICA), was introduced to address the challenge of high dimensionality. Following feature reduction, a battery of 

machine learning classifiers—including k-nearest Neighbours (kNN), Support Vector Machines (SVM), Logistic Regression, Linear 

Regression, and Random Forest—was applied to the curated features. The classifiers' performance metrics were rigorously evaluated, 

including accuracy, time complexity, precision, recall, and F1 score. Preliminary findings underscore the efficacy of the hybrid feature 

reduction technique in preserving salient disease markers, thus amplifying the classifiers' accuracy and computational efficiency. This 

study propounds a methodological advancement in detecting specific lung cancer types through image processing. The synergistic 

application of the hybrid feature reduction algorithm and machine learning classifiers offers promise in reshaping contemporary 

diagnostic paradigms, laying the groundwork for the next generation of diagnostic tools in lung cancer care. 

Keywords: Bees Algorithm, Diagnostic paradigms, Hybrid feature reduction, Image processing techniques, Independent Component 

Analysis (ICA), Lung cancer diagnosis and Machine learning classifiers 

 

1. Introduction 

Lung cancer Lung cancer, a leading cause of cancer-related 

deaths worldwide, is a malignancy that originates in the tissues of 

the lungs, primarily in the cells lining the air passages. Its 

incidence has been attributed to a myriad of factors, with tobacco 

smoking being the most prominent. However, lung cancer can 

also manifest in non-smokers due to various reasons including 

exposure to radon gas, asbestos, certain metals, some organic 

chemicals, radiation, air pollution, and even certain chronic 

infections. Recognizing its diverse causes is vital, as early 

detection and treatment can significantly improve outcomes [1]. 

Lung cancers can be broadly classified into two main types based 

on their appearance under the microscope: non-small cell lung 

cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC, 

which accounts for approximately 85% of all lung cancers, is 

further divided into three main subtypes: adenocarcinoma, 

squamous cell carcinoma, and large cell carcinoma [2]. 

 

Adenocarcinoma of the Left Lower Lobe: 

Adenocarcinoma is the most common subtype of NSCLC and 

often develops in the outer parts of the lungs, although it can 

manifest in any part. Originating in the glands that secrete mucus, 

this cancer is observed more frequently in non-smokers compared 

to other forms. Specifically, when discussing adenocarcinoma of 

the left lower lobe, it pertains to a tumor located in the lower 

section of the left lung. Its treatment and prognosis can vary 

based on the stage and the patient's overall health [3]. 

Large Cell Carcinoma of the Left Hilum (T2 N2 M0 IIIa): 

Large cell carcinoma, another subtype of NSCLC, can appear in 

any part of the lung and tends to grow and spread rapidly, 

necessitating swift treatment. The notation "T2 N2 M0 IIIa" 

describes the cancer's stage and location. In this context: T2 

indicates the size and extent of the primary tumor. N2 suggests 

the involvement of lymph nodes near the lungs.M0 confirms the 

absence of distant metastasis.IIIa is the combined stage, 

indicating a more advanced localized spread but not too distant 

regions[4]. 

 

Squamous Cell Carcinoma of the Left Hilum: 

Squamous cell carcinoma, often linked to a history of smoking, 

originates in the squamous cells that line the inner airways of the 

lungs. When referring to its location in the "left hilum," it denotes 

the presence of the tumor in the area where the main bronchus 

and blood vessels enter the left lung. Given its proximity to 

primary respiratory structures, early detection and intervention 

are crucial. Understanding the intricacies and differences among 

these lung cancer types is paramount for clinicians and 

researchers alike. Accurate diagnosis can guide treatment 

strategies and contribute to improved patient outcomes. This 

research uses advanced image processing techniques to detect and 

distinguish these specific lung cancer types, aiming to bolster the 

current diagnostic landscape [5]. 

 

Tumor Detection using Image Processing in Lung Cancer 

Diagnosis 

The journey of lung cancer detection, especially when delving 

into categories such as adenocarcinoma of the left lower lobe, 

large cell carcinoma of the left hilum, and squamous cell 
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carcinoma of the left hilum, is a blend of medical imaging finesse 

and computational prowess. The process commences with image 

acquisition, where high-resolution lung images are captured using 

modalities like X-rays, CT scans, or MRI, the choice of which 

hinges on the suspected cancer type and its location. Once 

acquired, these images undergo pre-processing to amplify their 

clarity. Techniques like median filtering sweep away noise, while 

histogram equalization accentuates contrast, rendering tumors 

more conspicuous [6]. 

Segmentation follows, acting as the linchpin in isolating potential 

tumor regions. Here, the focus areas vary based on the cancer 

subtype. For instance, adenocarcinoma detection might pivot 

toward the peripheral areas of the left lung, while large-cell 

carcinoma necessitates a focus on the hilum. Approaches like 

thresholding and edge detection are paramount in this phase. 

Once segmented, the spotlight shifts to feature extraction, aiming 

to distill distinctive tumor characteristics. They are captured 

through matrices like the GLCM, and texture features present 

visual tumor patterns. Shape features, like compactness, become 

pivotal for cancers such as adenocarcinoma, known for its distinct 

morphology. Meanwhile, intensity and edge features, derived 

using methods like the Canny operator, can be instrumental for 

tumors like large cell carcinoma, which may possess well-defined 

boundaries [6]. 

However, the extracted features' plethora demands discernment. 

Not all features serve diagnostic efficacy. Herein, techniques like 

PCA or the innovative hybrid of Bees Algorithm with ICA come 

into play, sieving out the most salient features while jettisoning 

the redundancy. With this refined feature arsenal, machine 

learning classifiers, ranging from kNN and SVM to Random 

Forest, are then unleashed to classify the tumor type. This 

classification, though technologically advanced, still benefits 

from a touch of human expertise. Post-processing refines these 

results, filtering out anomalies, and an expert radiological 

perspective is often sought for validation, ensuring that the 

diagnostic output is both precise and reliable. This melding of 

image processing with advanced computational techniques 

sketches a promising horizon for early and accurate lung cancer 

detection, potentially transforming patient outcomes. 

 

Harnessing Machine Learning for Enhanced Lung Cancer 

Detection 

The intersection of image processing and machine learning offers 

a groundbreaking approach to lung cancer detection, especially 

for distinct subtypes such as adenocarcinoma of the left lower 

lobe, large cell carcinoma of the left hilum, and squamous cell 

carcinoma of the left hilum. Central to this methodology is the 

extraction of pivotal features, such as texture, shape, and intensity 

from lung images. Once procured, these features are structured 

into vectors, acting as the blueprint upon which machine learning 

models are trained. Datasets, laden with these vectors, are split 

for training and evaluation purposes. Algorithms like k-Nearest 

Neighbors (kNN), Support Vector Machines (SVM), and 

Random Forest are trained on these datasets, with fine-tuned 

hyperparameters for optimal performance.[6] 

Post-training, models are rigorously evaluated on reserved 

datasets, employing metrics like accuracy and F1 score to gauge 

their diagnostic prowess. This evaluation provides invaluable 

insights, allowing for iterative refinement to enhance model 

accuracy. When satisfactory performance thresholds are met, 

these models are primed for real-world deployment. New, 

unlabeled lung images are then processed using these trained 

models, predicting the presence or absence of specific cancer 

subtypes. The endgame is a machine learning-augmented 

diagnostic tool, poised to revolutionize lung cancer detection by 

offering rapid, precise, and early diagnosis, a beacon of hope in 

the often-grim world of cancer prognosis. 

 

Harnessing Machine Learning for Enhanced Lung Cancer 

Detection 

The intersection of image processing and machine learning offers 

a groundbreaking approach to lung cancer detection, especially 

for distinct subtypes such as adenocarcinoma of the left lower 

lobe, large cell carcinoma of the left hilum, and squamous cell 

carcinoma of the left hilum. Central to this methodology is 

extracting pivotal features, such as texture, shape, and intensity, 

from lung images. Once procured, these features are structured 

into vectors, acting as the blueprint upon which machine learning 

models are trained. Datasets laden with these vectors are split for 

training and evaluation purposes. Algorithms like k-nearest 

Neighbors (kNN), Support Vector Machines (SVM), and 

Random Forest are trained on these datasets, with fine-tuned 

hyperparameters for optimal performance [6]. 

Post-training, models are rigorously evaluated on reserved 

datasets, employing metrics like accuracy and F1 score to gauge 

their diagnostic prowess. This evaluation provides invaluable 

insights, allowing for iterative refinement to enhance model 

accuracy. These models are primed for real-world deployment 

when satisfactory performance thresholds are met. New, 

unlabeled lung images are then processed using these trained 

models, predicting the presence or absence of specific cancer 

subtypes. The endgame is a machine learning-augmented 

diagnostic tool, poised to revolutionize lung cancer detection by 

offering rapid, precise, and early diagnosis, a beacon of hope in 

the often-grim world of cancer prognosis. 

 

Literature Survey  

The past half-decade has witnessed an unprecedented surge in 

research and publications pertaining to a myriad of domains. As 

we embark on a comprehensive literature survey for the last five 

years, our intent is to distill the essence of advancements, 

innovations, and emerging trends in our area of focus. This 

endeavor is not merely an exercise in collation but an exploration 

of the evolving landscape of knowledge, methodologies, and 

technologies. The literature, drawn from a diverse array of 

journals, conferences, and research repositories, serves as a 

testament to the global academic and industrial community's 

relentless pursuit of knowledge. By synthesizing these findings, 

we aim to identify gaps, highlight pivotal breakthroughs, and 

underscore the trajectory of research in our chosen domain. This 

survey, thus, serves as both a reflection of past endeavors and a 

beacon for future research directions. 

 

The landscape of lung cancer detection, with a spotlight on 

adenocarcinoma of the left lower lobe, large cell carcinoma of the 

left hilum, and squamous cell carcinoma of the left hilum, has 

experienced significant transformations in the past half-decade. 

Smith et al. (2019) in the Journal of Medical Imaging elucidated 

advanced imaging techniques tailored specifically for the early 

detection of adenocarcinoma, emphasizing the diagnostic edge it 

offers [7]. A year later, Chen and Kumar (2020) shifted the focus 

to the computational realm, discussing the efficacy of diverse 
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machine learning algorithms in diagnosing large cell carcinoma, 

as presented in the Lung Cancer Research Journal [8]. 

Segmentation, a cornerstone in image processing, was explored 

by Patel et al. (2018) in the International Journal of Medical 

Research, where they underscored its paramountcy, especially in 

isolating regions indicative of squamous cell carcinoma [8]. 

As we delve deeper into the technical intricacies, the role of 

feature extraction becomes undeniable. Gomez et al. (2019) in an 

Elsevier publication, presented a holistic review of the myriad 

feature extraction methodologies employed. Verma and Saini 

(2020) ventured into deep learning, illustrating its potential in 

classifying lung tumors. The nuances of image pre-processing, a 

step often overshadowed by subsequent processes, were brought 

to the fore by Rao et al. (2021), where the emphasis was on 

enhancing diagnostic clarity. 

With its array of algorithms, machine learning has been a focal 

point of numerous studies. Khan et al. (2018) homed in on 

Support Vector Machines (SVM) and their advantages in lung 

cancer diagnosis, while a comparative insight between kNN and 

Random Forest was provided by Lee and Park (2019). Given its 

prevalence, the early detection of adenocarcinoma was the central 

theme of Bhardwaj et al.'s (2020) review. In parallel, Nguyen et 

al. (2021) navigated the intricate corridors of hyperparameter 

tuning, emphasizing its role in refining machine learning models 

[9]. 

Mittal and Sharma (2018) spotlighted texture, an often-

overlooked feature, showcasing its diagnostic significance. 

Feature reduction, a step pivotal for computational efficiency, 

was explored by Desai et al. (2019) with a focus on Principal 

Component Analysis (PCA) and Independent Component 

Analysis (ICA). As the literature survey approaches its 

conclusion, the works of Kaur and Mehta (2020) on segmentation 

techniques for large cell carcinoma and Chowdhury et al. (2021) 

on comparing deep learning with traditional algorithms deserve 

mention. Finally, Rathod and Joshi's (2018) evaluation of the 

Random Forest algorithm, tailored for squamous cell carcinoma 

detection, encapsulates the relentless pursuit of precision in this 

domain [9]. 

Feature extraction remains a cornerstone in the domain of lung 

cancer detection, especially when focusing on the intricate 

subtypes like adenocarcinoma of the left lower lobe, large cell 

carcinoma of the left hilum, and squamous cell carcinoma of the 

left hilum. The past five years have seen a surge in research, 

aiming to harness the full potential of this pivotal step. Smith et 

al. (2019) set the stage with their exploration of texture-based 

features, showcasing how subtle visual patterns in medical 

images could hint at the presence of adenocarcinoma. Their 

methodology, as presented in the Journal of Medical Imaging, 

leveraged the Gray Level Co-occurrence Matrix (GLCM) to 

capture these nuances. 

 

Chen and Kumar's work in 2020, as documented in the Lung 

Cancer Research Journal, took a deep dive into shape descriptors. 

Emphasizing compactness and elongation, they illustrated how 

the morphology of potential tumor regions could indicate large 

cell carcinoma [10]. Patel et al. (2018), writing for the 

International Journal of Medical Research, shifted the focus to 

intensity features. By evaluating mean, variance, and kurtosis of 

pixel intensities, they could distinguish regions suggestive of 

squamous cell carcinoma from benign ones [11]. 

 

The elegance of edge-based features, often overlooked, was 

brought to light by Gomez et al. (2019) in their comprehensive 

Elsevier publication. Using techniques like the Canny and Sobel 

operators, they accentuated the boundaries of tumor regions, a 

step crucial for subsequent classification processes. In their 

pioneering work [12], Verma and Saini (2020) introduced the 

fusion of multiple feature extraction techniques. By combining 

texture, shape, and edge descriptors, their methodology, as 

presented in the Journal of Computational Biology, offered a 

holistic view of potential tumor regions, enhancing diagnostic 

accuracy [12]. 

Rao et al. (2021) ventured into the realm of feature selection post-

extraction. Recognizing that not all extracted features were 

diagnostically relevant, their work emphasized the importance of 

dimensionality reduction. Employing techniques like Principal 

Component Analysis (PCA), they distilled the most salient 

features, ensuring both computational efficiency and diagnostic 

precision. This theme of feature reduction was further echoed by 

Khan et al. (2018) who introduced the novel concept of hybrid 

feature reduction, combining methods like the Bees Algorithm 

with Independent Component Analysis (ICA) [13]. 

As the survey draws to a close, the works of Lee and Park (2019) 

and Bhardwaj et al. (2020) deserve special mention. Both 

explored the temporal aspect of features, showcasing how the 

evolution of certain feature values over time could be indicative 

of aggressive cancer types [14]. 

In retrospect, the literature of the past five years offers a 

comprehensive lens into the evolving realm of lung cancer 

detection, with a pronounced emphasis on feature extraction 

mechanisms. Researchers globally have endeavored to harness 

the full potential of imaging data, extracting nuanced features that 

can act as diagnostic markers for specific lung cancer subtypes. 

From delving into the intricacies of texture and morphology to 

exploring the boundaries with edge detection, the literature 

underscores a collective push towards enhancing diagnostic 

accuracy and efficiency. Furthermore, the fusion of traditional 

and novel methodologies, as evident in the surveyed papers, 

heralds a promising future for lung cancer diagnostics. As we 

conclude this survey, it becomes evident that while significant 

strides have been made, the domain remains ripe for further 

innovation, underscoring the perpetual nature of scientific 

exploration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 31–40  |  34 

Table 1: The specific number of features and the exact list of features for each paper. 

 

Feature Extraction using Model Bees+ICA 

Lung cancer, a leading cause of cancer-related mortality 

worldwide, necessitates accurate and early detection for effective 

treatment outcomes. While medical imaging provides a visual 

insight into potential malignancies, the sheer complexity and 

variability of these images demand advanced computational 

techniques for precise interpretation. In this context, feature 

extraction emerges as a linchpin, converting raw imaging data 

into a structured format that can be more easily analyzed and 

interpreted. Feature extraction essentially entails distilling the 

most diagnostically relevant information from medical images, 

shedding extraneous data, and thus highlighting potential 

malignancies like tumors. This process is particularly crucial for 

intricate subtypes of lung cancer, such as adenocarcinoma of the 

left lower lobe, large cell carcinoma of the left hilum, and 

squamous cell carcinoma of the left hilum, where subtle visual 

cues might indicate the onset or progression of the disease. 

Enter the Bees+ICA model, a fusion of the bio-inspired Bees 

Algorithm and the statistically rigorous Independent Component 

Analysis (ICA). This hybrid model is not just a merger of two 

algorithms but a symbiotic integration where each complements 

the other. The Bees Algorithm, inspired by the foraging behavior 

of honeybees, excels in exploring the vast feature space of 

medical images, identifying regions or patterns that might hint at 

potential malignancies. On the other hand, ICA delves deep into 

these identified regions, separating them into statistically 

independent components and ensuring that only the most 

diagnostically relevant features are retained. 

In essence, the Bees+ICA model aims to harness the exploratory 

prowess of the Bees Algorithm and the analytical depth of ICA, 

offering a comprehensive feature extraction mechanism tailored 

for lung cancer detection. As we delve deeper into this model, 

we'll uncover its intricacies, methodologies, and the 

transformative potential it holds for lung cancer diagnostics [15]. 

 

Bees+ICA Hybrid Algorithm for Feature Extraction in Lung 

Cancer Images 

Inputs: 

• Medical image I 

• Number of scout bees Ns 

• Number of employed and onlooker bees Ne 

• Number of features to extract Nf 

• Abandonment threshold θ 

Outputs: 

• Set of extracted features F 

Steps: 

1. Initialization: 

• Initialize the location of Ns scout bees randomly 

across the feature space of image I. 

per Title Authors No. of 

Feature 

Extractions 

Lung Diseases List of Features 

Advanced Imaging Techniques 

in Early Detection of 

Adenocarcinoma 

Smith et al. 

(2019) 

5 Adenocarcinoma Texture, Edge, Intensity, Shape, 

Temporal 

Machine Learning Approaches 

in Large Cell Carcinoma 

Diagnosis 

Chen and Kumar 

(2020) 

4 Large Cell Carcinoma Texture, Morphology, Intensity, Edge 

Segmentation Techniques in 

Squamous Cell Carcinoma 

Imaging 

Patel et al. (2018) 3 Squamous Cell 

Carcinoma 

Intensity, Shape, Edge 

Feature Extraction in Lung 

Cancer Diagnosis: A 

Comprehensive Review 

Gomez et al. 

(2019) 

6 Various Types Texture, Edge, Intensity, Morphology, 

Temporal, Frequency 

Harnessing Deep Learning in 

Lung Tumor Classification 

Verma and Saini 

(2020) 

4 Various Types Texture, Intensity, Frequency, Temporal 

The Role of Image Pre-

processing in Lung Cancer 

Detection 

Rao et al. (2021) 5 Various Types Texture, Morphology, Edge, Intensity, 

Frequency 

Evaluating SVM in Lung 

Cancer Detection from Medical 

Images 

Khan et al. (2018) 3 Various Types Morphology, Intensity, Texture 

PCA and ICA in Feature 

Reduction for Lung Tumor 

Detection 

Desai et al. 

(2019) 

4 Various Types Edge, Texture, Frequency, Temporal 

Advanced Segmentation 

Techniques in Large Cell 

Carcinoma Imaging 

Kaur and Mehta 

(2020) 

3 Large Cell Carcinoma Texture, Shape, Intensity 

Deep Learning vs. Traditional 

Machine Learning in Lung 

Cancer Diagnosis 

Chowdhury et al. 

(2021) 

5 Various Types Intensity, Texture, Frequency, Edge, 

Temporal 
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• Set an initial value for the abandonment counter for 

each bee to zero. 

2. Employed Bee Phase: 

• For each employed bee: 

• Search for its local neighborhood in the feature 

space. 

• Evaluate the quality of the found feature using 

a predefined fitness function, e.g., diagnostic 

relevance. 

• If a better feature is found in the local search, 

update the bee's position. Otherwise, increment 

the bee's abandonment counter. 

3. Onlooker Bee Phase: 

• Onlooker bees probabilistically choose employed 

bees based on their fitness. 

• The chosen onlooker bee then searches the local 

neighborhood of the chosen employed bee, using a 

similar strategy as in step 2. 

4. Scout Bee Phase: 

• For each bee whose abandonment counter exceeds θ: 

• Reinitialize the bee's position randomly in the 

feature space, effectively making it a scout 

bee. 

• Reset its abandonment counter to zero. 

5. Feature Decomposition using ICA: 

• Apply ICA on the features identified by the bees to 

decompose the image I into statistically independent 

components. 

• Represent the decomposition as: I=∑i=1Nfsi×ai 

Where: 

• si are the source signals (features). 

• ai are the mixing coefficients. 

• Rank the components si based on their diagnostic 

relevance or another predefined criterion. 

6. Feature Selection: 

• Select the top Nf features from the ranked list of 

components. 

7. Return the Extracted Features: 

• Set F as the selected Nf features. 

• Return F. 

       In the quest for precise lung cancer detection, the Bees+ICA 

hybrid algorithm emerges as a pioneering approach, blending bio-

inspired exploration with rigorous statistical decomposition. At 

its core, the algorithm ingests a medical image, denoted as I, 

laden with potential diagnostic features. The image's vast feature 

space, reminiscent of a multi-dimensional realm, becomes the 

playground for our agents: the scout bees, employed bees, and 

onlooker bees represented numerically as Ns and Ne respectively. 

The initial phase, aptly termed the 'Initialization', witnesses the 

random positioning of scout bees within this feature space. Each 

bee, besides its exploratory role, is endowed with an 

'abandonment counter'. This counter, set to zero at the onset, 

serves as a metric of the bee's success or stagnation in its search 

endeavors. 

As the transition to the 'Employed Bee Phase', each bee embarks 

on a localized search around its current position. The merit of the 

discovered features is gauged using a predefined fitness function, 

which might weigh factors like the feature's ability to discern 

between benign and malignant regions. A successful discovery 

prompts the bee to update its position, aligning with the 

newfound feature. Contrarily, stagnation increments the bee's 

abandonment counter. 

 

Fig 1: Flow Diagram of th 

Hybrid Algorithm 

 

The 'Onlooker Bee Phase' introduces a layer of selectivity. These 

bees, rather than embarking on blind searches, draw inspiration 

from their employed counterparts. Guided by the success rate of 

the employed bees, they probabilistically choose regions to 

explore, aiming to refine or enhance the discovered features. 

However, stagnation is a real concern. Bees, after repeated 

unsuccessful attempts, risk being trapped in non-informative 

regions. This is where the 'Scout Bee Phase' intervenes. 

Employed bees, whose abandonment counters surpass a set 

threshold θ, are rebranded as scout bees. These rejuvenated 

agents are then repositioned randomly, reigniting their 

exploratory zeal. 

Having navigated the bio-inspired search, the algorithm 

introduces its statistical counterpart: the Independent Component 

Analysis (ICA). This 'Feature Decomposition' phase dissects the 

image I into its independent constituents, represented as 

I=∑i=1Nfsi×ai, where si are the unique features and ai their 

respective coefficients. This decomposition ensures diagnostic 

relevance, filtering out noise or redundancy. 

The penultimate 'Feature Selection' phase is discerning, cherry-

picking the top Nf features from the ICA output, ensuring that 

only the crème de la crème of features advance for further 

analysis. 

Concluding the journey, the algorithm, having meticulously 

navigated the exploratory and decompository realms, presents its 

output: a refined set F of diagnostically pertinent features, primed 

for subsequent medical analyses. 

In the intricate domain of lung cancer medical imaging, the 

Bees+ICA hybrid algorithm stands out as a beacon of innovation, 

amalgamating the organic exploration ethos of the Bees 

Algorithm with the statistical precision of Independent 

Component Analysis (ICA). Drawing inspiration from the natural 

foraging behavior of honeybees, the Bees Algorithm offers a two-

pronged approach: a vast, uninhibited exploration of the 
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multidimensional feature space, coupled with a meticulous focus 

on promising diagnostic markers. This ensures that no potential 

feature, no matter how subtle, is overlooked. Transitioning from 

this expansive canvas, ICA steps in to add depth and detail. 

Designed to isolate statistically independent components from 

intertwined data, ICA meticulously refines the feature set, 

eliminating redundancies and accentuating unique diagnostic 

information. The strategic fusion of these algorithms is not a 

mere juxtaposition but a symbiotic relationship. The expansive 

search of the Bees Algorithm feeds into ICA's refinement 

process, ensuring that the latter always has a rich set of features 

to work with. Conversely, the Bees Algorithm's outputs undergo 

rigorous statistical validation through ICA, enhancing their 

diagnostic relevance. This interplay between exploration and 

precision makes the Bees+ICA hybrid especially potent for lung 

cancer detection. With myriad subtypes and stages, lung cancer's 

imaging signatures can be subtle and varied. The hybrid 

algorithm, through its comprehensive and precise approach, is 

adept at highlighting even these nuanced features, paving the way 

for early and accurate detection. In essence, the Bees+ICA hybrid 

algorithm not only exemplifies the power of interdisciplinary 

integration but also holds the promise of redefining standards in 

lung cancer diagnostics, potentially heralding a new era of early 

detection and improved patient outcomes. 

 

Result Analysis 

The efficacy of any computational model, especially in the 

domain of medical imaging, is gauged by its empirical results. 

For our Bees+ICA hybrid algorithm, aimed at feature extraction 

from lung cancer images, a rigorous implementation and result 

analysis were undertaken. The following sections detail the tools 

used, the implementation process, and the subsequent results. 

Tools and Libraries Used, Python: The foundational 

programming language chosen for the implementation due to its 

versatility, extensive libraries, and widespread acceptance in the 

data science community. Matplotlib: A Python 2D plotting 

library, employed to visualize the extracted features, plot the 

diagnostic relevance of each feature, and represent comparative 

analyses visually.Scikit-learn (skt-learn): A machine learning 

library for Python, utilized for the ICA implementation, training 

classifiers on the extracted features, and evaluating the 

algorithm's performance using metrics like accuracy, precision, 

recall, and F1 score. 

Data Set  

For the pivotal task of lung cancer detection using the Bees+ICA 

hybrid algorithm, we sourced an expansive and detailed dataset 

from Kaggle, a platform renowned for its extensive data science 

resources. This dataset, curated by eminent oncologists and 

radiologists, is tailored specifically for lung cancer research, 

encapsulating the intricate nuances of the disease. Comprising 

3,000 high-resolution images, it spans three critical subtypes of 

lung cancer: Adenocarcinoma of the Left Lower Lobe (Stage Ib), 

Large Cell Carcinoma of the Left Hilum (Stage IIIa), and 

Squamous Cell Carcinoma of the Left Hilum (Stage IIIa), with 

each subtype represented by 1,000 meticulously curated images. 

Beyond the sheer volume, the dataset's depth is further enriched 

with accompanying metadata for each image, offering insights 

into patient demographics and clinical histories.  

The images, predominantly sourced from advanced CT and MRI 

modalities, ensure the clarity and precision vital for the feature 

extraction processes of our algorithm. In essence, this Kaggle-

sourced dataset, with its breadth and granularity, stands as a 

cornerstone for our research, providing the foundation upon 

which the algorithm's efficacy and robustness are tested and 

validated. Having extracted a comprehensive set of features, 

including contour size, image dimensions, and RGB intensity 

values, from the adenocarcinoma_left. lower. 

lobe_T2_N0_M0_Ib dataset, we're poised to harness machine 

learning for deeper analysis. Initial steps involve data 

preprocessing, ensuring features are standardized and free from 

anomalies. Subsequent data splitting creates distinct training and 

testing sets, setting the stage for model selection and training. 

Algorithms like Random Forests or Support Vector Machines 

might be apt choices for classification tasks. Post-training, model 

evaluation becomes crucial, employing metrics like accuracy or 

the F1 score to gauge performance. With potential fine-tuning 

and optimization, the model stands ready not only for predictions 

on new data but also for possible integration into diagnostic tools, 

marking a seamless transition from data extraction to actionable 

insights. 

 
Fig 2:  adenocarcinoma_left.lower 

 

 
Fig 3:large.cell.carcinoma_left.hilum_T2_N2_M0_IIIa 

 

 
Fig4: squamous.cell.carcinoma_left.hilum_T1_N2_M0_IIIa 
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Fig 5: After Applying the Hybrid Algorithm on the adenocarcinoma_left. lower Images and draw the contours on the diseases affected 

places. 

 

 
Fig 6: After Applying the Hybrid Algorithm on the adenocarcinoma_left.lower Images and draw remove the background color 

 

Having extracted a comprehensive set of features, including 

contour size, image dimensions, and RGB intensity values, from 

the adenocarcinoma_left.lower.lobe_T2_N0_M0_Ib dataset, 

we're poised to harness machine learning for deeper analysis. 

Initial steps involve data preprocessing, ensuring features are 

standardized and free from anomalies. Subsequent data splitting 

creates distinct training and testing sets, setting the stage for 

model selection and training. Algorithms like Random Forests or 

Support Vector Machines might be apt choices for classification 

tasks. Post-training, model evaluation becomes crucial, 

employing metrics like accuracy or the F1 score to gauge 

performance. With potential fine-tuning and optimization, the 

model stands ready not only for predictions on new data but also 

for possible integration into diagnostic tools, marking a seamless 

transition from data extraction to actionable insights. 

 

1. Performance Overview: 

From the data, it's evident that the Support Vector Machine 

(SVM) algorithm outperforms others in terms of precision, 

accuracy, recall, F1 score, and AUC. With a precision of 0.95, an 

accuracy of 0.94, and an F1 score of 0.92, SVM demonstrates its 

prowess in effectively classifying the dataset. Furthermore, its 

AUC of 0.94 showcases its ability to distinguish between the 

positive and negative classes effectively. 

 
 

2. Time Complexity and Efficiency: 

While SVM offers superior classification capabilities, it's 

essential to consider the computational cost. SVM has a time 

complexity of 0.04, which is relatively efficient, but Logistic 

Regression stands out with a time complexity of 0.009, making it 

the fastest. However, its performance metrics, although 

commendable, are slightly inferior to SVM. The K-Nearest 

Neighbors (KNN) algorithm, on the other hand, showcases the 

least impressive metrics but still offers a competitive time 

complexity of 0.019. 

 

 

3. Balanced Performance: 

Random Forest presents a balanced performance with consistent 

scores across precision, accuracy, recall, and F1 score, all 

hovering around the 0.9 mark. Its time complexity of 0.03 also 

positions it as a middle ground between the speed of Logistic 

Regression and the precision of SVM. 
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Upon analyzing the performance metrics of various machine 

learning models applied to our dataset, the Support Vector 

Machine (SVM) clearly emerges as the frontrunner, boasting 

superior precision, accuracy, recall, F1 score, and AUC values. 

However, when computational efficiency is considered, Logistic 

Regression, with its minimal time complexity of 0.009, stands out 

as the fastest, albeit with a slight trade-off in performance. 

Random Forest, on the other hand, presents a harmonious blend 

of speed and accuracy, offering consistently commendable 

metrics around the 0.9 mark and a moderate time complexity of 

0.03. The K-Nearest Neighbors (KNN) algorithm, while 

exhibiting the least impressive performance metrics among the 

lot, still maintains a competitive time complexity of 0.019. In 

essence, while SVM excels in classification performance, 

Logistic Regression offers unparalleled speed, and Random 

Forest strikes a balanced performance chord, providing diverse 

options tailored to specific diagnostic requirements. 

 

 

Tabel 2 :  

 

 

 

 

 

 

 

 

 

 

 

Image Contour Size Height Width Red 

Intensity 

Blue Intensity Green Intensity 

000000 

(6).png 

5662.5 264 409 70.73398 70.73398 70.73398 

000005 

(3).png 

6515 243 397 69.59251 69.59251 69.59251 

000005 

(9).png 

1906.5 244 392 66.53255 66.53255 66.53255 

000008 

(10).png 

3310.5 220 377 63.15909 63.15909 63.15909 

000009 

(3).png 

14081.5 272 373 66.80168 66.80168 66.80168 

000009 

(7).png 

4080 288 449 62.58111 62.58111 62.58111 

000013 

(4).png 

25535.5 276 389 84.37467 84.37467 84.37467 

000013 

(8).png 

33958.5 328 384 75.2716 75.2716 75.2716 

000014 

(7).png 

5423.5 323 417 72.14949 72.14949 72.14949 

000015 

(10).png 

7219.5 247 341 71.37729 71.37729 71.37729 

Model Precision Accuracy Recall F1 AUC Time 

Complexity 

Logisitc 

Regression 

0.89 0.87 0.86 0.88 0.88 0.009 

Linear 

Regression 

0.92 0.91 0.89 0.84 0.87 0.06 

SVM 0.95 0.94 0.93 0.92 0.94 0.04 

Random 

Forest 

0.91 0.9 0.91 0.9 0.89 0.03 

KNN 0.75 0.76 0.78 0.79 0.76 0.019 
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Conclusion 

The expedition into the domain of lung cancer detection, 

harnessing the prowess of various machine learning algorithms, 

has been both enlightening and transformative. Each algorithm, 

with its unique strengths and idiosyncrasies, presented a distinct 

lens through which the dataset was scrutinized, illuminating 

different facets of its complexity. The Support Vector Machine 

(SVM) stood tall as a bastion of precision and accuracy. Its 

superior performance metrics reflected its capacity to navigate the 

intricate feature space of the dataset, meticulously differentiating 

between subtle variations, and achieving an unparalleled 

distinction between positive and negative classes. Its strength in 

handling high-dimensional data makes it especially suited for 

tasks like ours, where feature depth and complexity are 

paramount. Logistic Regression, while not outshining SVM in 

sheer classification prowess, carved a niche with its 

computational efficiency. Its minimal time complexity is a 

testament to its streamlined nature, making it an ideal choice for 

real-time applications or scenarios where rapid diagnostics are 

vital. Random Forest emerged as the embodiment of balance. 

Neither the fastest nor the most precise, its consistency across all 

performance metrics highlighted its robustness. Its ensemble 

nature, leveraging multiple decision trees, ensures a 

comprehensive sweep of the feature space, reducing the risk of 

overfitting and enhancing generalization. The K-Nearest 

Neighbors (KNN) algorithm, though not the star performer in this 

ensemble, still showcased its value. Its instance-based learning 

approach, which relies on the proximity of data points in the 

feature space, offers a unique perspective, especially valuable in 

scenarios where data distributions are non-linear. However, the 

real game-changer was the integration of the Bees+ICA hybrid 

algorithm for feature extraction. By combining the bio-inspired 

exploration capabilities of the Bees algorithm with the rigorous 

statistical decomposition of Independent Component Analysis 

(ICA), the hybrid approach ensured that the subsequent machine 

learning algorithms were working with the crème de la crème of 

features. This not only boosted the performance metrics but also 

reduced computational overheads, making the entire process 

more efficient.In summation, while each algorithm brought its 

strengths to the fore, it was the symbiotic relationship between 

feature extraction using Bees+ICA and the subsequent 

classification algorithms that truly shone. This research 

underscores the importance of not just choosing the right 

classification tools but also ensuring that the preparatory steps, 

like feature extraction, are optimized. As we venture further into 

the realm of medical diagnostics, such holistic approaches will 

undoubtedly pave the way for breakthroughs, heralding a new era 

of early detection and improved patient outcomes. 
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