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Abstract: In the field of industrial manufacturing, the most common application of machine vision is object classification. Traditional 

models face challenges in classifying objects with small features and have yet to develop a complete universal algorithm, resulting in lower 

accuracy. To address these issues and enable the model's use on portable embedded devices, as well as facilitate the classification of pipe 

components with subtle internal features, a lightweight deep learning model has been developed. This model utilizes a relatively small 

dataset comprising specific types of work pieces occurring in actual factory production. The dataset involves the use of subtle image 

features for the classification of pipe components. The proposed model combines a fine-tuning module to capture multi-scale features of 

the input image and utilizes attention mechanisms to enhance the model's generalization ability. Not only enhances detection accuracy but 

also achieves network lightweight, with an accuracy of 96.33%. A comparison with other models demonstrates an improvement in accuracy 

of at least 4%, along with a significant reduction in both total and training parameters, meeting usability requirements, possessing lower 

computational complexity is essential to ensure fast and efficient operation in scenarios with embedded devices, mobile devices, or other 

resource-constrained environments. 
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1. Introduction 

In the field of industrial manufacturing, the stable, robust 

and accurate identification of workpieces is still a frontier 

topic and difficult problem [1, 2]. According to the actual 

industrial production, and provide an important 

classification model. This is very important. High-level 

features of the target can be learned from the noisy image, 

and this feature has good robustness to the shape change of 

the target to some extent. It provides an important reference 

for the design of the future workpiece classification model, 

and is of great significance to the intelligent manufacturing 

of industrial practical applications. 

Because the traditional descriptors are the characteristics of 

manual design, when the shape of workpieces is complex 

and there are small differences between different 

workpieces, the traditional processing methods seem 

inadequate[3, 4]. The traditional method cannot well 

represent the feature difference between different 

workpieces with complex structure [5]. Therefore, how to 

detect and identify workpieces stably and efficiently is a 

problem and difficulty that has not been solved at present[6, 

7]. At present, there are few workpieces in the field of 

industrial manufacturing. The recognition method based on 

deep neural network needs to manually mark a large number 

of datasets if it needs to use the datasets created by itself, 

this is also one of the restrictive factors that the current 

methods based on deep neural network cannot be well 

extended[8, 9]. The key is that there is no universal model 

that can recognize all images.  

2. Data Collection and Processing 

During the classification process, the workpieces share the 

same external shape, but their internal structures differ. The 

internal shape of the workpiece is divided into five types: 

small circle, big circle, square, pentagon, and hexagon. In 

the dataset, there are numerous images similar, The direct 

features of the data image are not very obvious,as shown in 

Figure 1. To efficiently handle these images, a data type 

conversion is applied to emphasize their data characteristics. 

This approach allows for quicker image preprocessing with 

the aim of retaining the original features of the images as 

much as possible [10, 11]. The goal is to speed up the model 

training process while maintaining the same recognition 

accuracy in deep learning models. The image samples are 

collected comprehensively, and the images inside the 

workpiece are gathered at different distances [12, 13]. For 

the same part, multiple shots are taken, and shooting 

conditions are not limited. It is ensured that the pictures 

taken each time cannot be repeated, and each picture is 

different. Therefore, the workpieces are classified based on 

their different internal shapes.The dataset described above 

is organized in a folder structure. Additionally, the images 

within the training data folder, validation data folder, and 

test data folder are randomly selected and distributed to their 

respective folders. This randomization process enhances 

model learning effectiveness and improves model stability 

[14-16]. Within the training data folder, each category 

contains 180 images, while the validation data folder has 60 
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images per category, and the test data folder contains 60 

images per category. The entire dataset comprises 1800 

images, all in JPG format. 

  

(a) (b) 

Fig 1.  Comparison of different internal workpieces in processed dataset (a) big circle (b) small circle 

Through the series of outlined image preprocessing steps, a 

dataset was created for the proposed model. This dataset 

consists of a total of 1500 images, categorized into five 

distinct classes, with each class containing 300 workpiece 

images. Following classification, the dataset is then 

subdivided into different sets: the training dataset comprises 

900 images, the validation dataset consists of 300 images, 

and the test dataset includes 300 images.Before 

commencing training, the dataset is partitioned into training, 

validation, and test sets at a ratio of 3:1:1. The training 

process is specified to involve 75 iterations. In each 

iteration, a subset of the training dataset is randomly 

selected using the shuffle function, which shuffles the 

indices without affecting the correspondence between 

images and labels. 

3.  The Architecture of the Proposed Model  

An optimization model was designed to increase the depth 

of the network and optimize the activation functions of 

neural networks and perceptrons. Firstly, it is essential to 

identify key information about the shape of the workpieces 

to be classified [17, 18]. Secondly, the classification of 

workpiece categories is achieved through labeled 

categorization, forming the training dataset. The completed 

training dataset serves as the foundation for classification 

detection [19, 20]. Before training and testing data, 

standardized preprocessing is applied to enhance data 

quality. Given that this is a small-sample dataset, training 

the model with limited samples requires adapting the model 

to the specific characteristics of the data,. In tasks involving 

the processing of image datasets, the initial layer is typically 

the input layer. The input images are matrices of processed 

pixels. The input layer can handle multidimensional data. 

While adhering to the MobileNetV2 network architecture, 

the goal is to ensure model generality and reduce model 

parameters. Input neurons connect to neurons in the next 

layer to perform convolutional layer operations, which are 

then stacked. The convolutional layer is the core of 

convolutional neural networks [21]. Each node in the 

convolutional layer receives input from only a small part of 

the neurons in the previous layer. Convolution deepens the 

matrix of the upper layer, and these steps are iterated to 

extract features from the images [22, 23]. The pooling layer 

can represent a region of pixels as a single pixel, discarding 

less important information to enhance the efficiency of the 

model. 

Then, the input goes into the fine-tuning module, whose 

primary function is to adjust the pre-trained model through 

operations such as channel extraction, global average 

pooling, and reduction of feature map dimensions. Firstly, 

the channel extraction operation aids in extracting image 

features. Subsequently, the feature map dimensions are 

reduced through global average pooling, thereby decreasing 

the complexity of the model. Next, non-linearity is 

introduced through the ReLU activation function, allowing 

the model to better capture complex relationships within the 

data. Finally, the optimization algorithm of gradient descent 

is employed to fine-tune model parameters for adaptation to 

specific tasks, thereby enhancing model performance. The 

design of this module aims to make the model more 

adaptable to the new task's dataset, simultaneously speeding 

up the training process and reducing the risk of overfitting. 

After the above operations,convolution operation is 

performed on input images, followed by batch 

normalization, max pooling, and activation. Then, a new 

backbone network structure is created by combining weight 

parameter update mechanisms and the SeNet(SE) channel 

attention mechanism. As shown in Figure 2，To enhance 

the effectiveness of image features, an attention mechanism 

has been incorporated into the network to improve the 

model's fitting ability by extracting relevant information 
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further. To improve the effectiveness of image features, SE 

attention mechanism is incorporated into the network to 

enhance the model's fitting capability by further extracting 

relevant information. SENet is a Squeeze-and-Excitation 

(SE) module for collecting global information, capturing 

inter-channel relationships, and improving representational 

capabilities.The Squeeze module collects global spatial 

information through Global Average Pooling.The 

Excitation module captures inter-channel relationships 

through the use of fully-connected and non-linear layers and 

outputs an attention vector. layer to capture the relationships 

between channels and output an attention vector. Each 

channel of the input feature is then scaled by multiplying it 

with the corresponding element of the attention vector. 

Equation is shown in (1),SE module F with X as input and 

Y as output, where W denotes the weight, σ denotes the 

sigmoid function, δ denotes the nonlinear activation 

function, and GAP denotes the Global Average Pooling 

operation.This mechanism allows the model to learn the 

importance of different local regions in the images.Using 

smaller convolutional kernels can reduce the number of 

parameters in each convolutional layer.  

2 1( , ) ( ( ( )))seY sX F x X W W GAP X X  = = =  (1) 

The improved lightweight model structure, as illustrated in 

Figure 2, is characterized by the use of depth-wise separable 

convolutions instead of traditional convolutional operations. 

The channel size is gradually reduced by employing smaller 

convolutional kernels, effectively reducing the number of 

parameters. The model incorporates a fine-tuning module to 

capture multi-scale features of the input image. Adjustments 

are made through feature map blocks, maintaining a clear 

hierarchy and contributing to a more lightweight model. The 

traditional fully connected layers are replaced with global 

average pooling layers, significantly reducing the number of 

parameters. Adopting a dimensionality reduction strategy, 

adjustments to the attention mechanism aid the model in 

better adapting to diverse characteristics of input data, 

enhancing its generalization capability and overall 

adaptability. Replacing a 3x3 convolutional kernel with a 

1x1 kernel or using depth-wise separable convolutions. 

Replacing traditional fully connected layers with global 

average pooling layers can significantly decrease the 

number of parameters. Global average pooling transforms 

the entire feature map into a scalar, serving as a substitute 

for the parameters in fully connected layers. Applying these 

methods to the model can significantly reduce the number 

of parameters. 

 

Fig  2.  Proposal lightweight model structure 

Learning networks can effectively address training issues 

with small-sample datasets. Before commencing training in 

the neural network, it is necessary to fine-tune the learning 

rate and configure the number of training samples per batch. 

The model's ability to extract meaningful features from 

images is a crucial factor in achieving better classification 

results. During the training process, progress is monitored 

by checking if the iteration limit has been reached. If the 

limit is not reached, training continues, and weight 

parameters are updated. This process involves observing the 

loss function and accuracy parameters to determine if they 

have reached their maximum values. Finally, when the 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 520–529 |  523 

iteration limit is reached, training is stopped, and the trained 

neural network model is output.To further analyze the 

performance and effectiveness of the trained model, it is 

crucial to evaluate its performance on the test dataset for 

small-sample image classification. 

This mechanism allows the model to learn the importance 

of different local regions in the image. During the training 

process, progress is monitored by checking whether the 

iteration limit has been reached. If the limit has not been 

reached, training continues, and the weight parameters are 

updated. This process involves observing the loss function 

and accuracy parameters to determine if they have reached 

their maximum values. Finally, when the iteration limit is 

reached, training is halted, and the trained neural network 

model is outputted. To further analyze the performance and 

effectiveness of the trained model, it is crucial to evaluate 

its performance on a test dataset for small-sample image 

classification. The effectiveness of image features can be 

understood as the model's ability to represent images 

effectively, thereby enhancing classification performance. 

This mechanism allows the model to learn the importance 

of different local regions in the image. During the training 

process, progress is monitored by checking whether the 

iteration limit has been reached. If it has not been reached, 

training continues, and the weight parameters are updated. 

This process involves observing the loss function and 

accuracy parameters to determine if they have reached their 

maximum values. Finally, when the iteration limit is 

reached, training is stopped, and the trained neural network 

model is outputted. 

The model output process is illustrated in Figure 3.，

Perform a single convolution operation, followed by batch 

normalization, max-pooling, and activation on the input 

image. Then, incorporate a weight parameter updating 

mechanism and the SeNet channel attention mechanism to 

create a novel backbone network structure. While adhering 

to the MobileNetV2 network architecture, ensure both 

model generalization and a reduction in model parameters. 

This mechanism allows the model to learn the importance 

of different local regions in the image. During training, the 

progress is monitored by checking whether the iteration 

limit has been reached. If the limit has not been met, training 

continues, and weight parameters are updated. The process 

involves observing the loss function and accuracy 

parameters to determine if they have reached their 

maximum values. Finally, when the iteration limit is 

reached, training is halted, and the trained neural network 

model is output. 

 

Fig  3.  Model Experimental Flow Chart 
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The process involves pre-processing a target set into a 

suitable array, training the MobileNetV2 with ImageNet 

weights, and implementing a customized network 

refinement. This refinement includes freezing specific 

layers, applying channel attention mechanisms, and 

utilizing fully connected layers with careful initialization 

and activation functions. The training process incorporates 

optimization and epoch checks, leading to a final step of 

global average pooling and a fully connected layer for 

classification output.1.Model Training:Train the MobileNet  

network structure.Load pre-trained weights trained on 

ImageNet.Freeze the weights of the feature extraction layer 

to ensure they remain fixed during training. 2. Fine-tuning 

Module: Through training on a specific task, this module 

adjusts model parameters to accommodate the task's 

specific features, thereby enhancing the model's 

performance on that particular task.3.Network 

Modification:Implement global average pooling.Downsize 

the number of channels in the feature map.Apply 

initialization for normalization.Utilize the Senet channel 

attention mechanism 。 4. Global average pooling, 

compression of the feature map into a feature vector, 

resizing channels, applying activation functions , and 

generating weighted feature maps. 

4.  Results and Discussion 

In classification research, accuracy serves as a metric for 

evaluating both training and prediction performance. The 

network's learning rate during training on the training and 

validation sets is set at 0.0001, with a batch size of 32 and 

75 epochs. The input dataset images are divided into 

training, testing, and validation sets in a 3:1:1 ratio. Notably, 

the network quickly achieves stability in accuracy on the 

training dataset. As shown in Figure 4(a) ， Following 

training, testing and validation accuracies exhibit gradual 

improvement with additional iterations. As shown in Figure 

4(b) presents experimental results where the model is 

trained on the validation set, and test set accuracy serves as 

the evaluation metric. It's clear that with an increase in the 

total number of model parameters and network layers, the 

model's accuracy on the validation set steadily improves. 

Concurrently, accuracy reaches a peak of 0.95, sustaining at 

that level after 75 iterations. Deeper networks exhibit 

smaller oscillations in the loss function, and training 

accuracy improves more rapidly, indicating enhanced fitting 

capabilities. This confirms that the model meets 

convergence criteria and effectively accomplishes the 

recognition task. 

  

(a) (b) 

Fig 4.  The performance of the C-Lightweight mode (a) on the training dataset (b) on the validation dataset 

The confusion matrix score results in the train data set for 

the proposed model are shown in Figure 5. From the number 

of samples on the main diagonal of the confusion matrix, it 

is evident that the lightweight model proposed in this 

research achieved 100% recognition accuracy for each 

category on the training dataset. This demonstrates the 

model's ability to effectively distinguish between different 

categories. Furthermore, the test results in the test set are 

shown in Figure 6. The model's overall performance on the 

test dataset, as calculated from the confusion matrix, 

indicates an accuracy of 96.33%. This suggests that the 

model is capable of accurate classification, and the 

improvement in accuracy opens up the possibility for large-

scale individual detection. Additionally, the model 

stabilizes after 75 iterations. An issue arises where accuracy 

for classes A and D is lower compared to other classes. This 

could be related to the challenge of capturing features for 

these two classes in 2D images and their similarity in 

classification features, making it difficult to effectively 

differentiate between them. While accuracy in recognition 

is somewhat reduced due to features being more easily 

confused with other categories in limited image resolution, 

when features are distinctive, there is a significant 

improvement in the metrics. Overall accuracy has been 

notably enhanced. 
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Fig 5.  The performance of the Proposal lightweight model in train data set 

 

Fig 6.  The performance of the Proposal lightweight model in test dataset 

To analyze the impact of incorporating attention 

mechanisms into the proposed lightweight model, 

experiments were conducted using different attention 

mechanisms on the same test dataset. The improved model, 

with the addition of SENet, CBAM, ECA, SAM, and GAM 

attention mechanisms at the same positions, underwent 

experiments for comparison. Prior to entering the attention 

mechanism, the data passed through the Fine Tuning 

Module of the model. The fine-tuning module enables the 

model to adapt to specific features of the new task, thereby 

enhancing the model's performance in specific domains or 

applications. To ensure a fair evaluation of the impact of 

each attention mechanism, the fine-tuned model was 

included when testing the attention mechanisms. The 

detection results are shown in Table 1. Experiment A, which 

introduced the SE attention mechanism, achieved the 

highest detection accuracy while maintaining competitive 

detection speed compared to other experiments. It is 

noteworthy that Experiment F, despite incorporating the SE 

attention mechanism, did not include the Fine Tuning 

Module, resulting in lower accuracy and only marginal 

improvement in detection speed. This indicates that simply 

adding attention mechanisms to the model may not 

effectively suppress background interference. Furthermore, 
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it highlights that the proposed network model's fine-tuning 

module can efficiently extract key features of various 

objects. The experimental results demonstrate that the fine-

tuning module proposed in this paper, along with the SE 

attention mechanism, can achieve feature perception, 

enhance feature extraction in regions of interest, effectively 

strengthen feature representation, and further improve the 

model's robustness. 

Table 1. The performance results of the attention mechanism model 

Experimental Group 
Fine tuning 

module 
SENet CBAM ECA SAM GAM Accuracy 

Experiment A √ √ x x x x 0.9633 

Experiment B √ x √ x x x 0.9483 

Experiment C √ x x √ x x 0.9287 

Experiment D √ x x x √ x 0.9048 

Experiment E √  x x x √ 0.9351 

Experiment F x √ x x x x 0.9162 

 

The performance of the Proposal lightweight model was 

evaluated through dataset classification. Deep learning 

experiments were conducted, comparing the Proposal 

lightweight model with classical networks such as 

MobileNet V2, VGG16, ResNet50, Ghostnet, and 

SqueezeNet. The comparative method involved training all 

the models using the same training and validation sets and 

evaluating their performance on the same test set.The 

models' parameters were optimized using the Adam 

gradient descent optimization method, with an initial 

learning rate set to 0.0001. Only the final layer of each 

model was modified to output the five classes. The results 

of the model comparison experiment are presented in Figure 

7. It can be observed that, when compared to lightweight 

models such as MobileNet V2, Ghostnet, and EfficientNet, 

the Proposal lightweight model outperforms them in terms 

of accuracy. The traditional lightweight models mentioned 

typically exhibit accuracy rates generally below 90% on 

both the validation and test sets. In comparison to classical 

models like VGG16 and ResNet50, the Proposal lightweight 

model shows higher accuracy, with the ResNet50 model 

achieving the highest accuracy at 92%. The accuracy of The 

proposed lightweight model can reach 96.33% which At 

least 4% higher than the test model.This suggests that the 

improved Proposal lightweight model demonstrates the 

highest robustness, best generalization, highest accuracy, 

and the highest practical value among the models compared. 

 

Fig 7.  Comparison of different model in accuracy 

To further affirm the lightweight nature of the proposed 

model, this experiment compares the parameters and 

computational speed of the Proposal lightweight model with 

the aforementioned models. For a more detailed 

understanding of the model's parameters, a dataset from the 

same database, tailored for an identical classification task, 

was initially selected. After training the weight parameters, 

the test accuracy of the experimental neural models was 

compared. As shown in Table 2, the experimental results 

illustrate the total model parameters and the trainable 
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parameters required for training across all models on this 

dataset. The results indicate that under the same dataset 

conditions and within the same testing environment, the 

Proposal lightweight model achieved an average 

recognition rate of 96.33% with a relatively lower number 

of parameters. It outperformed convolutional models 

(Vgg16 and Resnet50) by an average of 4% to 13%. In 

comparison to their structures, the total number of 

parameters and trainable parameters were reduced by 

approximately 88% to 98%. 

The Proposal lightweight model demonstrated a substantial 

40% to 70% improvement in the average recognition rate 

compared to relatively lightweight convolutional models 

like MobileNet V2 and Ghostnet. As shown in Table 1, 

interestingly, when considering its structure, the increase in 

the total parameter count was only approximately 4%. In 

contrast, the Proposal lightweight model utilized only 50% 

to 78% of the parameters necessary for model training. 

When compared to the ShuffleNetV2 model, although the 

Proposal lightweight model had slightly more than twice the 

total parameter count, the parameters used for training 

accounted for only 52% of those required by the 

ShuffleNetV2 model. This noteworthy reduction in 

parameter usage resulted in an impressive 79% 

improvement in accuracy. Clearly, the Proposal lightweight 

model has managed to achieve excellent predictive 

performance while significantly reducing the parameter 

count.In comparison to the EfficientNet model, not only did 

the total parameters and trainable parameters decrease 

substantially, but the accuracy also improved by an 

impressive 29% to 38%. As a result, the designed model 

demonstrates a significant advantage in recognition 

accuracy over both traditional and lightweight models. 

However, in comparison to both of these, the Proposal 

lightweight model proposed in this paper achieves a 

substantial reduction in parameter count. 

Table 2. Table of parameter quantities for different models 

Model Total params Trainable params 

Vgg16 134281029 134281029 

Mobilenet v2 2279941 2245829 

Resnet50 23571397 23518277 

Ghostnet 2695253 2673285 

ShuffleNetV2 1196565 1183361 

Efficientnet_b0 4055969 4013953 

Proposal model 2823509 565525 

To further validate the algorithm's lightweight performance 

in executing classification tasks, GFLOPs comparison 

experiments were conducted between the Proposal 

lightweight model and other models. GFLOPs, understood 

as the computational workload of the model, provide a 

metric for assessing the model's complexity. The 

experimental results, as shown in Figure 8, reveal that the 

Proposal lightweight model has a floating-point operation 

count of only 7.58E-05, which is significantly lower than 

the GFLOPs of other models. This indicates that the 

proposed Proposal lightweight model is constructed in a 

more scientifically efficient manner, offering enhanced 

generalization and real-time capabilities. It better fulfills the 

practical requirements of portable detection needs. 

 

Fig  8.  Comparison of operational performance of different models（GFLOPs） 
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6.  Conclusion 

The proposed model integrates a fine-tuning module to 

capture multi-scale features of the input image and utilizes 

an attention mechanism to enhance the model's 

generalization capability which can enhance the model's 

robustness and generalization capabilities. The proposed 

method involves designing a lightweight module for small 

target detection, enabling efficient detection of small targets 

with the fewest possible parameters. The proposed model 

attains an accuracy of 96.33%, surpassing the test model by 

at least 4%. This highlights the enhanced robustness, 

superior generalization, highest accuracy, and practical 

value compared to other models. Additionally, the proposed 

model excels in predictive performance while significantly 

reducing parameter count.This approach addresses the issue 

of low detection accuracy in traditional lightweight models 

when dealing with insufficient small sample data. It resolves 

the challenge of effectively deploying models in 

environments with limited computational resources and low 

detection rates that prevent real-time detection. 
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