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Abstract: Retinal image analysis reflects the rapid expansion of medical infrastructure, and efficient artificial intelligence models are 

created. Diabetic Retinopathy (DR), a disorder of the eyes caused by diabetes, is the most prevalent cause of vision loss in the eyes. To 

maintain vision, early diagnosis is essential. The manual diagnosing process used by ophthalmologists is difficult and time-consuming. 

Machine learning and Deep learning models based on artificial intelligence are crucial in raising the system’s accuracy. This survey 

discusses several recent approaches to image-preprocessing techniques, dataset descriptions, evaluation metrics, the backbone model for 

classification, and segmentation. Lesions such as hemorrhages, exudates, and microaneurysms in the Fundus images are identified using 

AI-based techniques for early DR diagnosis which prevent irreversible vision loss. To further categorize the severity of the disease, this 

survey includes pre-trained models for DR classification such as Alexnet, VGG, ResNet, DenseNet, and other models in addition to 

traditional CNN networks. Finally, challenges in the future scope are also addressed, which gives attention to the researcher for their future 

research. 
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1. Introduction 

A few of the imaging modalities that have been developed 

over time to evaluate the human eye include Optical 

Coherence Tomography (OCT), OCT Angiography 

(OCTA), Fundus Photography (FP), and Fluorescence 

Angiography (FA)[1]. However, "Fundus Imaging" has 

become increasingly popular due to its non-invasiveness 

and affordability. It uses a monocular camera, to capture the 

back of the eye onto a two-dimensional plane. A 2D fundus 

image can be used to identify biomarkers. Numerous of 

these biomarkers are crucial in the diagnosis of retinal 

disorders. By 2040, one in three individuals will suffer from 

DR, a condition that affects 700 million people globally. It 

is characterized by the presence of damaged blood vessels 

at the rear of the retina [2]. 

Microaneurysms are an early clinical symptom of DR 

appearing as small red spots on the retina. Hemorrhages are 

anatomical deformities that cause uneven forms in the inner 

layer of blood vessels and increase the chance of blood 

leaking from the vessels. These thin blood vessels may 

rupture and give rise to hemorrhages. Cotton-wool patches 

are another name for soft exudates. These are frequently 

round or oval, pale yellow, and caused by capillary 

occlusions that permanently impair the retina’s ability to 

function. The leakage of plasma results in hard exudates, 

that are noticeable as yellow patches on the retina. They 

have a sharp edge and span the outer layer. 

In a typical fundus image, an Optical Disc (OD) forms the 

circular structure that is the brightest and appears yellow. 

It’s critical to look for unusual OD forms, shapes, or sizes 

in the area to monitor for early changes that could result in 

vision loss. The central retinal artery, vein, and branches 

constitute Retinal Blood Vessels (RBVs). RBVs’ branching 

pattern and segmentation can reveal information regarding 

a variety of medical conditions. Examining the retinal 

biomarkers described above can provide important insights 

into a few of the most common retinal illnesses and help 

with the diagnosis of these kinds of abnormalities. 

Some of the key eye conditions that can cause blindness if 

not treated early are cataracts, glaucoma, Diabetic 

Retinopathy (DR), Diabetic Macular Edema (DME), and 

Age-Related Macular Degeneration (AMD). Manually 

diagnosing the disease using traditional methods takes time 

and is error-prone. The automatic identification of retinal 

illnesses is now feasible and cost-effective because of 

Artificial Intelligence (AI), Machine Learning (ML), and 

Deep Learning (DL) techniques-based medical screening 

systems. 

 

Fig 1. Lesions in Diabetic Retinopathy 
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The proposed review’s main objective is to examine various 

DL models that have recently been used to diagnose [3]–

[6]utilizing fundus images. The review paper is structured 

as follows: The datasets utilized to study DR disease in the 

retina are shown in Section 2. In tabular form, section 3 

presents evaluation metrics. Techniques for pre-processing 

images are outlined in section 4. The research studies that 

were examined related to backbone models for 

classification, segmentation of retinal blood vessels, and 

lesion detection are shown in Section 5. Section 6 presents 

a review of the literature along with the performance of 

recent research work on the diagnosis of DR disease related 

to relevant tasks. Following this, section 7, contains a list of 

potential future possibilities for this field of study. Finally, 

section 8 offers a conclusion. 

2. Dataset for Retinal DR Disease Diagnosis 

 The size of the images in each dataset, the task, and the 

ground truth labels are all listed in the table below. 

The Kaggle APTOS  2019 dataset includes 3662 fundus 

images from rural India from the Asia Pacific Tele-

Ophthalmology Society’s 2019 blindness detection dataset.: 

The training dataset is organized into five groups according 

to the International Clinical Diabetic Retinopathy Disease 

Severity Scale (ICDRSS). The following are the number of 

images: Healthy eye (1796), light NPDR (369), medium 

NPDR (995), extreme NPDR (193), and PDR (295) The 143 

images in the Automated Retinal Image Analysis 

(ARIA)dataset were taken from adult male and females in 

the United Kingdom between 2004 and 2006. There are 

three markers to identify cases of DR, ARMD, and eyes in 

good condition. The Child's Heart Health Study in England 

(CHASE), a heart health study conducted in 299 primary 

schools in London between 2007 and 3008, created the 

CHASE-DB dataset. CHASE DB1 has 28 photos of 14 kids, 

two of which are from the child's cardiac and health and are 

999x960 in size. On this dataset, retinal vascular 

segmentation is performed. 

TABLE 1. Datasets of Fundus Images for DR Diagnosis 

The Dataset Total 

Images 

Image  

Dimensions 

Task True Ground Labels 

Kaggle APTOS 

2019[7] 

3662 Different 

size 

DR 

Classification 

1796 for normal eyes,369 for mild NPDR, 995 for 

Moderate NPDR,193 for severe NPDR (193), and PDR 

(295). 

ARIA [8] 143 768x576 Normal eye, 

DR,  

Healthy eye, age-related macular degeneration 

(ARMD), and DR cases 

CHASE DB1[9] 28 999x960 Retinal vessel 

Segmentation 

Blood Vessel Demarcation 

DIRETDB0[10] 130 1500x1152 DR grading 110 symptoms DR, including neovascularization, SEs, 

and HEs 

DIRETDB1[11] 89 1500x1152 DR grading 20 normal images 

IDRiD[12]  516 4288x2848 Disease severity 

of DR, DEM 

detection 

Grades of severity 81-MA, SE, EX, HE, OD,516-DR, 

and DME 

DDR [13] 13673 Different 

size 

DR grading Annotation for the bounding box 13673-DRgrades 5 

classes 757-MA, HE, SE, EX 

 

DRIVE [14] 40 768x584 Retinal vessel 

Segmentation 

33-Normal,7-Mild DR 

E-Ophtha EX 

[15] 

82 2544x1696 

1440x960 

2048x130 

EX detection 47-Exudates,35 Normal Images 

E-Optha 

MA [16] 

381 2544x169 

1440x960 

MA detection 148-MAs,233 Normal images 
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Kaggle 

EyePACS [17] 

88699 3000x2000 DR Grading  5-Stage DR grading 

HRF [18] 45 3504x2336 Retinal Vessel 

Segmentation 

15-Normal images,15-DRimages,15-Glaucoma Images 

MESSIDOR 

[19] 

1200 Different 

size 

Diagnosis of 

DR, Optic Disc 

Segmentation 

- 

STARE [20] 400 700x605 Retinal vessel 

Segmentation 

Annotated blood vessel segmentation on 20 images, 

pathology annotation on 10 images, and artery/vein 

labels on 10 images. 

 

IDRiD (Indian Diabetic Retinopathy Image dataset) 

contains 516 images of size 4288x2848 annotated at a pixel 

level. DR lesions and detection of DME (Diabetic Macular 

Edema) are performed on this dataset. Contains image 

coordinates, but not segmentation masks, such as OD center, 

and the FOVEA. The Diabetic Retinopathy Database 

(DDR)contains 13673 fundus images obtained using a 45-

degree field of view. This collection consists of 1151 

ungradable images,6266 normal images, and 6256 DR 

images. A bounding box for HM, MA, hard EX, and soft EX 

imaging modalities is added to 757 images to identify all DR 

lesions. The DRiDB dataset is made up of 50 images with 

annotations that describe the optic disc’s blood vessel 

anatomy, neovascularization, and disease grade. 

400 diabetic individuals between the ages of 25 and 90 made 

up the DRIVE (Digital Retinal Images for Vessel 

Extraction) dataset, which was gathered from a diabetic 

retinopathy screening program in the Netherlands. Retinal 

vessel segmentation is done on this 40-image dataset. The 

E-ophtha dataset contains two datasets. The first one is e-

ophtha-MA which includes 148 images, MAs, and 233 

healthy images, the other one is e-ophtha-EX which 

includes 47 images exudates, and 35 normal images. 

  In 2015, the State of California Healthcare Foundation 

sponsored the Kaggle EyePACS dataset. High-resolution 

images provided by EyePACS free platform for DR 

screening. There are 88699 images in it,35126 of which are 

used for training. The class label is given on a scale of 0-4. 

Class labels for the healthy eye (25810),1 for light DR 

(2443),2 for medium DR (5292), 3 for serious DR (873), and 

4 for PDR (708). DR grades are given by a single specialist 

according to the ICDRSS scale. A single specialist assigns 

DR grades using the ICDRSS scale. The HRF dataset 

contains 45 images, mainly used for blood vessel 

segmentation. 1200 color video camera-captured ocular 

fundus images are included in the Messidor dataset. At the 

University of California, STARE (structured Analysis of the 

retina) was launched. 

 

3. Evaluation Metrics for DR 

The DL model is assessed using several evaluation 

indicators during a DR diagnosis. The most popular 

evaluation measures are included in the following table 

along with their descriptions. 

TABLE 2. Metrics for Performance Evaluation 

 Metric Formula Description 

Accura

cy  

Accuracy=(T

N+TP)/(TN+T

P+FN+FP) 

Calculate the percentage of 

patients the model properly 

classifies. 

 The 

AUC - 

ROC 

Sensitivity 

verse(1-

Specificity) 

plot 

Shows the area under the 

curve of receiver operating 

characteristic (AUC). AUC 

values above a certain 

threshold signify improved 

system performance 

DSC 

coeffici

ents 

(Dice) 

Dice=2TP/(2T

P+FN+FP) 

Calculate how close the 

segmentation masks from the 

ground truth and the 

prediction are to each other. 

Index 

of 

IoU/Jac

card 

IoU=TP/(FP+

FN+TP) 

Calculate the segmentation 

mask overlap between the 

ground truth and forecast 

segments. 

F1-

Score 

F1=2TP/(2TP

+FN+FP) 

Determine the model’s 

overall effectiveness in 

recognizing both positive as 

well as negative cases. 

Precisi

on 

(PRE) 

PRE=TP/(TP+

FP) 

The precision shows what 

percentage of the positive 

results were true. Better 

performance is indicated by a 

higher PRE value. 

Sensiti

vity/Re

SEN=TP/(TP+

FN) 

The proportion of true 

positives that have been 
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call/TP

R 

classified to those that are 

present in the actual truth. 

Specifi

city/FP

R(SPE) 

SPE=TN/(TN

+FP) 

The proportion of the actual 

negative in the base truth is 

categorized as the real true 

negative. 

FPR (false positive rate) =(1-

SPE) 

In this survey, most of the metrics are used to evaluate the 

proposed model with the already existing model used in 

other studies. The selection of the metrics to be utilized 

affects the assessment and contrast of different models. 

Using performance metrics like area under the Receiver 

Operating Characteristic Curve (AUC-ROC), and accuracy, 

the performance of the classification task is evaluated. In the 

segmentation task, metrics including the Jaccard index, the 

sensitivity, and the Dice Similarity Coefficient (DSC) are 

used. 

4. Image Pre-Processing  

Image processing is required to ensure image consistency, 

improve image features, and eliminate noise from images. 

Many pre-processing methods that are frequently applied to 

eye disorders are included in this section. 

4.1 Contrast Enhancement  

The process of histogram equalization can be used to 

improve contrast in fundus images, Zhao et al [18], [21], 

which boosts the image's overall contrast while ignoring the 

local differences between them. Adaptive histogram 

equalization is a more sophisticated contrast enhancement 

technique that accounts for local differences surrounding a 

particular pixel. Contrast Limited Adaptive Histogram 

Equalization (CLAHE), addresses the problem of 

excessively enhanced contrast in the image’s near-contrast 

region. By adjusting the image's contrast using appropriate 

preprocessing techniques, see the retina’s intricate structure 

and more easily identify any abnormalities. 

4.2 Denoising and Normalisation 

To eliminate noise from retinal images, non-local means 

denoising techniques, a median filter [22], and a Gaussian 

filter are some examples of noise removal techniques. More 

noise will be removed by a denoising algorithm, but the 

finer details in the images will be lost.

TABLE 3. Pre-processing techniques for the diagnosis of DR 

Study 
Preprocessing 

Techniques 
Methodology Datasets Evaluation (%) 

Ishtiaq et al 

[22]2023 

Median filter, 

data 

augmentation, 

image resizing 

GraphNet124, 

ResNet50, 

SVM 

Kaggle 

EyePACS 
ACC  98.85 

 Bilal et al 

[23]2022 

Data 

Augmentation, 

Rotation, 

Shearing, Image 

flipping, Zoom, 

Cropping, 

Image 

translation 

CNN SVD, 

Inception-V3 

EyePACS-1, 

Messidor, 

DIARETDB0 

ACC 

{97.92,94.59,93.52} 

Abbood et 

al  

[24]2022 

Circle Crop and 

Gaussian Blur 

SVM, Logistic 
Kaggle, 

Messidor 
ACC {92.0,93.6} Regression, 

Decision tree 

Jabbar et al 

[25] 2022 

Non-local Mean 

Denoising 

(NLMD) 
VGGNet 

model 

Kaggle 

EyePACS 
ACC 96.6 

Weighted 

Gaussian blur 

Nneji et al 

[26] 2022 

CLAHE, 

Contrast 

enhancement, 

and Canny edge 

detection 

(CECED) 

Weighted 

fusion deep 

learning 

network 

(WFDLN), 

VGG-16and 

Inception V3 

Kaggle, 

Messidor 
ACC {98.5,98.0} 
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Chaudhary 

et al 

[21]2021 

 Contrast 

limited adaptive 

histogram 

equalization 

(CLAHE) 

Order-zero and 

order-one 

2DFourier-

Bessel series 

expansion-

based flexible 

analytic 

wavelet 

transform(2D-

FBSE-WT), 

LDA, PCA 

IDRiD, 

Average accuracy for 

{DR 0.955, for DME 

0.965} 

Messidor 
{0.975 for DR,0.985 

for DME} 

Jinfeng et 

al [27] 

2020 

Resize, 

Normalization, 

augmentation 

Two-deep 

CNN with an 

ensemble 

technique 

Kaggle 

Model1 ACC 80.36, 

Model2 ACC 78.13 

 

The datasets were initially of different sizes. To get the 

images to the typical dimension, the dataset was resized. 

Next, the augmentation technique was applied to balance the 

data. Finally, a median filtering method was applied to 

eliminate noise from the images. Then, an unsharp masking 

filter was applied to improve the contrast of the image. 

Using the information from the Kaggle eyePAC dataset al 

[22] were able to classify the DR stages with 98.85% 

accuracy. 

 Bilal et al [23] used a variety of preprocessing methods, 

including top-bottom hat modification to enhance image 

quality (Green Channel Extraction) to extract more retinal 

detail than other methods, and image scaling to make all the 

images the same size. To prevent misclassification and 

overfitting, the data was augmented. The proposed model’s 

accuracy in the EyePACS-1, Messidor, and DIARETDB0 

datasets was 97.59%,93.52%and 97.92% respectively. 

A method for improving the contrast and quality of images 

using both grayscale and RGB images was proposed by 

Abbood et al [24]. It incorporates two functionalities such 

as cropping images to eliminate unnecessary content from 

the grayscale images, and circle cropping and Gaussian 

blurring to remove noise. The CNN model achieved 92% 

and 93.6% accuracy when examined on two benchmark 

datasets namely the Messidor and Kaggle EyePACS. 

Jabbar et al [25] introduced several preprocessing methods, 

including data augmentation and scaling, The EyePACS 

dataset contains images captured from different 

environmental settings, and techniques are applied to 

standardize the images. Using interpolation resizes the 

fundus images into uniform size. The thresholding operation 

is performed by setting the pixel value to zero to remove the 

black background. After that, more retinal data is extracted 

from the green channel than from the red or blue channels. 

Retinal images are enhanced using contrast-limited adaptive 

histogram equalization (CLAHE). To address this issue, 

misclassification results from an imbalanced dataset. The 

following data augmentation processes are carried out 

Gaussian-Space Theory (GST), Shearing, and zooming. 

96.6% accuracy is obtained when the VGGNet model is 

tested on EyePACS. 

The Contrast-Enhanced Canny Edge Detection 

(CECED)and the CLAHE images are two channels of 

fundus images that Nneji et al [26] offered. These images 

are used as preprocessing approaches. Fundus images with 

CECED give essential features, but images with CLAHE 

offer fewer histogram amplifications and more intensity. 

The weighted features from CLAHE and CECED are 

combined by the Weighted Fusion Deep Learning Network 

(WEDLN) to solve low-quality fundus image problems. On 

Messidor and Kaggle datasets, the WEDLN model yielded 

accuracy values of 98.5% and 98.0% respectively. 

According to Chaudhary et al[21], to categorize various 

degrees of DR and DME, the CLAHE per processing 

approach is applied to the IDRiD and Messidor datasets. 

Jinfeng et al [27] applied preprocessing techniques such as 

resizing to maintain the original aspect ratio, and cropped 

patches to reduce training overhead, to avoid feature bias 

each image is mean normalized. Two deep ensemble CNN 

models yielded an accuracy of 80.36% and 78.13% 

respectively on the Kaggle dataset.  

5. Deep Learning Concepts in DR Diagnosis 

A branch of artificial intelligence called Deep Learning 

(DL) can extract characteristics from data without the need 

for hand-crafted. 

features seen in machine learning models, and it can execute 

models with fewer demands on human resources. DL’s 

ability to automatically learn features from complicated 

visual input data makes it appropriate for the analysis of 

medical images. We covered backbone models for 

analyzing image tasks in the section that follows. 

5.1 Backbone Models for Classification Task 

CNN, commonly referred to as ConvNets, is mostly used for 

object detection and image processing. It has numerous 

layers. The convolutional layer, Rectified Linear Unit 
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(ReLU), pooling layer, and fully connected layer constitute 

the CNN architecture. Several filters are applied by the 

convolutional layer to carry out the convolutional process. 

Apply a function to elements using the ReLU layer. This 

layer produces a rectified mapping of features as its output. 

The feature map is then adjusted and provided into the 

pooling layer, which reduces the feature map’s dimensions. 

The pooling layer flattens the generated two -dimensional 

array to become a single continuous linear vector. The 

pooling layer’s flattened matrix is offered as an input to 

build a fully connected layer, which classifies and 

recognizes images. 

 

 

 

 

 

 

 

Fig 2. The basic Structure of a Convolutional Neural 

Network 

Alexnet, a pre-trained convolutional neural network with 

eight layers deep, five layers of convolution, and three 

layers that are fully connected, was employed by 

Chandrasekaran et al [3]. The Rectified Linear Unit 

(ReLU)is the activation that is utilized. As AlexNet does 

exponentially well in natural image classification, it can 

classify medical images. 

 

 

 

 

 

 

 

Fig 3. The various models for DR classification 

The most widely utilized network structure for lesion 

categorization now is the Visual Geometry Group (VGG16, 

VGG19) variations of VGGNet, which were employed by 

Mohanty et al [18]. In addition to a fully connected layer, 

VGGNet has many convolutional blocks. In contrast to 

AlexNet, VGGNet uses 3x3 convolutions (pad 1) in place 

of AlexNet’s 7x7 convolutions. To lower the resolution, a 

max pooling layer connects the convolution block, which 

consists of N 3x3 convolutions. Each class’s projected 

probability comes from the fully connected layer. It is 

suggested to use a Residual Neural Network (ResNet) to 

address the vanishing gradient issue caused by the deep 

neural network structure in VGG. There are multiple 

versions of ResNet, the most used ones are ResNet50 and 

ResNet101. ResNet’s convolutional block provides identity 

mapping through a skip connection to VGG. The layer 

output is then added to the merged block. 

DenseNet was utilized by Raja Sarobin M et al [28] to 

densely connected convolution networks, extending the 

residual process to all layers of convolution. Within the 

dense block, every layer transmits its unique feature maps 

to every layer that follows it and receives additional inputs 

from all subsequent layers. GoogleNet considered that 

numerous 1x1 convolutions should be used in place of other 

convolutions to lower the model's parametric number. 

5.2 Backbone Models for Segmentation Task 

5.2.1 Fully Convolution Networks (FCNs) perform 

convolution operations such as down-sampling and up-

sampling. Each pixel in the down-sampled image shows the 

intensity that corresponds to the object’s existence, 

providing more detailed information about the image being 

used in the form of miniature heat maps of various items. 

These mini-samples are combined with the highest 

probability class assigned to each pixel during the up-

sampling to create a high-resolution segmentation map. 

 

Fig 4. An FCN’s (Fully Convolutional Network) basic 

architecture 

Segmenting the lesions inside the image at the pixel level is 

the segmentation task. Blood vessel segmentation from 

retinal images is an important and difficult task in medical 

assessment and diagnosis. Retinal blood vessel 

segmentation is classified into different categories such as 

Vessel tracing/ tracking mathematical morphology, 

matched filter, model-based approach classified into vessel 

profile models and deformable models and multi-scale 

approaches, Rician Denoising algorithm and thresholding, 

and supervised classification algorithms. 

5.2.2 Model U-Net 

The U-Net network structure is a deep-learning architecture 

that supports the study of medical image segmentation. The 
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contracting path for down-sampling to gain context 

information and the Symmetric Expanding path for up-

sampling to obtain precise position, constitute the two 

components of the U-Net network. U-Net network David et 

al [29] topology is frequently utilized and efficient for 

segmenting medical images. 

 

Fig 5. U-Net Architecture 

5.3 Deep Learning Models for DR Detection Task 

The detection task in the medical images defines the 

location of each object instance with a bounding box and is 

classified into single-stage and multi-stage models. 

5.3.1 Single-Stage Detection Models 

 

 

Fig 6. YOLOV3 pipeline for DR lesion detection 

Most of the study focused on single-stage detection due to 

its timely performance and algorithm running rate, which 

removes region of interest extraction and directly classifies 

the candidate bounding box. The YOLO family of object 

detection models is called YOU ONLY LOOK 

ONCE(YOLO). YOLOV2 adds more anchor frames and 

fine-grained features, while YOLOV3 optimizes the 

network structure. YOLOV4 by [30] contains the 

optimization techniques. 

5.3.2 Models of Two-Stage Detection 

The task is split into two parts by two-stage detection 

models. First, the region of interest is extracted, and then the 

extracted region is classified and regressed. 

 

Fig 7. Two-Stage RFCNN Detection Models for DR 

R-CNN families such as R-CNN Manan et al [31], Fast R-

CNN which involves extraction of RoIs from the feature 

maps, Faster RCNN introduced region proposal network for 

generation RoIs by regressing and anchor boxes, and R-

FCN uses the position-sensitive score maps, which involves 

two-stage object detection tasks. 

TABLE 4. DR Diagnosis Methods 

Study Classifier 

Feature 

Extraction 

Methods 

 Methodology Datasets Evaluation (%) 

Mohanty et al 

[32]2023 
XGBoost VGG16 

Two models of 

DL 

APTOS ACC {79.50,97.30} 

1. A hybrid model 

that combines the 

XGBoost 

 Classifier with 

the VGG16 

2.DenseNet121 

model 
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Preprocessing 

techniques 

(resize,  

Gaussian Blur, 

BenGraham 

approach,  

Alwakid et al 

[33]2023 
SoftMax Inception-V3 

A transfer 

DL(Inception-

V3) 

APTOS 

The accuracy of 

enhancement 

1. With image 

enhancement 

using  

 is 98, without 

enhancement 80.87 

CLAHE, 

ESRGAN (super-

resolution  

  

generative 

adversarial 

network) 

  

2. Without image 

enhancement 
  

Lin et al [34]2023 SoftMax 
 Revised 

ResNet-50 

A preprocessing 

standard 

operating 

procedure 

Kaggle 

Training accuracy is 

0.8395,  

 (SOP)  testing accuracy is 0,7432 

A redesigned 

ResNet-50 

architecture 

  

A revised 

structure of 

ResNet-50(an  

  

adaptive learning 

score to modify 

the 

  

 layer weights and 

visualization tools 

to  

  

extract relevant 

features) 
  

    

Farag et al 

[35]2022 
SoftMax DenseNet169 

DenseNet169 

with the 

Convolutional 

 APTOS 

ACC, SEN, SPE, QWK 

 Block Attention 

Module 

(CBAMK),  

(97, 97, 98.3, 0.9455) 

circular crop, 

Principal 

Component  

  

Analysis (PCA),    

AbdelMaksoud et 

al [36]2022 
SoftMax E-DenseNet 

HEBPDS, GANs-

based  

EyePACS, 

APPTOS, 

MESSIDOR, 

IDRiD 

ACC {96.8,84,91.6,93}, 

augmentation 

(Cropping, 

Rotation,  

 SEN{98.3,94,95,96.7} 

SPE {72,74,58,72}, 

Flipping), 

EyeNet, 

DenseNet,  

 DSC {98.3,87,95.1,96} 
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DenseNet-BC, 

Adam Optimizer 

 QKS 

{0.97,0.8,0.91,0.94} 

Raja Sarobin M et 

al [28]2022 
SoftMax DenseNet 

CNN 

Kaggle ACC {75.61,93.18,96.22} 

CNN with ResNet 

CNN with 

DenseNet, 

Augmentation,  

Image resizing, 

Transfer learning 

Chandrasekaran, et 

al[39]2022 
SoftMax  AlexNet 

Three CNN 

models with 

multi-resolution  

Kaggle 

AlexNet for DR has  

inputs (Custom 

CNN with a 

Hyper  

an accuracy of 98 a 

sensitivity of 99 

Analytic Wavelet 

(HW), a ResNet 

with  

  

attention along 

with HW 

activation, 

AlexNet  

  

for DR with HW 

activation) 
  

    

Jabbar et al 

[25]2022 
Multiclass VGGNet 

Resizing of 

interpolation 

images, 
EyePACS ACC 96.6 

 weighted 

Gaussian blur, 

CLAHE  

Kaushiket al [40] 

2021 

  

  

The stacked 

ensemble CNN 

model,  

EyePACS 

For binary class: 

A single 

Meta-

learner 

classifier 

mean square error 

(MSE), and the 

peak  

 ACC 97.2, SEN 97.7, 

SPE 100 

  the ratio of signal 

to noise (PSNR) 

are  

For multi-class: ACC 

87.45,  

  used to measure 

luminosity 

normalization. 

SEN 96.30, SPE 97.25 

6. Deep Learning in DR Diagnosis 

6.1 DR Diagnosis 

Mohanty et al. [32] To categorize fundus images into 

appropriate categories, a hybrid network that combines the 

VGG16 and XGBoost classifiers, and the two DenseNet121 

network models has been proposed.

The accuracy of the hybrid model was 79.56%, and the 

accuracy of DenseNet121 was 97.30%, using the APTOS 

datasets for classification. Alwakid et al [33] Provided an 

Inception-V3 classification model for DR. The APTOS 

2019 dataset was used to test this model. The accuracy of 

the first training example, which used CLAHE and 

ESRGAN to enhance the image, was 98.7%. The accuracy 

of the second training example, which did not use CLAHE 

and ESRGAN, was 80.87%. 

Lin et al. [34] updated the ResNet-50 model for DR grading 

developed. The fundus images utilized as input were pre-

processed using a standard operating approach. An 

adjustable learning rate is incorporated into the revised 

ResNet-50 framework to alter the structure and adjust the 

layer weight. The proposed model was created to 

demonstrate the effects of visualizing the improved 
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ResNet50, not to provide an accurate DC. The model was 

tested using the Kaggle dataset, and the results indicated that 

the test accuracy was 0.7432 and the training accuracy was 

0.8395. Farag et al [35]. The APTOS 2019 dataset was used 

to classify disease severity using the DenseNet169 model. 

From the fundus image, DenseNet was utilized to extract the 

features, and the convolutional block attention module 

subsequently refined the features. To address the class 

imbalance and predict severity, each feature was averaged 

using global average pooling and a weighted loss function. 

The E-DenseNet model employed by Abdel Maksoud et al 

[36] can reliably identify standard and DR grades from 

images of the fundus. Both L1 as well as L2 regularization 

were applied to prevent overfitting. The accuracy, 

sensitivity, specificity, and dice similarity coefficients of 

this model, which were evaluated using four distinct 

benchmark datasets, were 91.6%, 95%, 95.1%, and 0.92, 

respectively. To categorize significant DR categories, Raja 

Sarobin M et al [28] developed two hybrid models CNN 

using ResNet and CNN using DenseNet. CNN using the 

ResNet model produced an accuracy of 93.18% on a data set 

of 3662 hybrid models; CNN using the Dense Net model did 

better by achieving an accuracy of 96.22%. 

Chandrasekaran et al [37] used wavelet and spatial domain 

inputs in CNN models for DR classification. An ultra-

analytical wavelet phase activation equation is developed 

for detailed parameter wavelet sub-bands. Hyper-activation 

function conditions were chosen to create effective and 

monotonic activations.  The performance of three CNN 

models- custom CNN, ResNet using soft attention, and 

AlexNet using spatial-wavelet quilts was assessed. Among 

these, AlexNet has the maximum sensitivity of 99% and the 

best accuracy level of 98% due to the modifications made to 

AlexNet for DR grading. Jabbar et al. [38] The main 

challenge of classifying medical images is the absence of 

labeled data. The issue is addressed by applying the transfer 

learning strategy, which reuses previously trained networks 

for identical problems. The author introduced a VGGNet 

model for DR classification was introduced by the author. 

The experiment's accuracy rate was 96.6% and it was run 

using the Kaggle EyePACS dataset. 

6.2 Retinal Blood Vessel Segmentation 

 To prevent the loss, improve feature extraction, and lessen 

gradient disappearance, Wei et al [41] employed a 

multiscale attention network (MRANet that efficiently 

gathers vascular details using functional blocks like the 

multiple levels fusion of features block (MLF block), the 

focused attention block, and the MSR block. proposed UNet 

for the segmentation of blood vessels. AlexNet was 

introduced for image classification. The model is evaluated 

on the DRIVE, ARIA_d, and MESSIDOR datasets. Liu et 

al [42] A Dual Attention Res2UNet model enhances blood 

vessel segmentation accuracy by replacing convolutional 

layers with Res2block and Drop block, obtaining multiscale 

information and reducing computation. Next, the 

explainable approach uses a trained fundus picture generator 

to explain the model. It shows that blood vessels can be 

distinguished when strip colors are varied in the fundus. The 

model training dataset is modified with noise addition, 

partial blurring, brightness adjustment, and enhancing 

precision.

 

TABLE 5. Blood Vessel Segmentation 

Study Segmentation 

Methods 

Methodology Datasets Evaluation (%) 

Wei et al 

[41]2023 

Residual attention 

network  

on multiple scales 

Blocks for multilevel feature fusion (MLF),  

attention, 

 and multiscale residual connection (MSR) 

DRIVE, 

CHASE_DB1 

ACC {0 .9698,0.9755} 

AUC Value 

{0.9899,0.9893} 

Liu et al 

[42]2023 

Dual Attention 

Res2UNet  

(DA-Res2UNet) 

 

Dual attention, 

Spatial Attention 

CHASE_DB1,  

DRIVE, STARE 

F1{81.88,82.77,83.96} 

Wang et al 

[43]2023 

Triple attention  

mechanism network 

with  

pre-activated  

convolution residual 

 (PCRTAM-Net) 

Technique for residual based on 

preactivated.  

dropout convolutions (Res-PDC) 

A residual down-sampled atrous 

convolutional  

spatial pyramid (Res-ACSP) 

Drive,  

HRF,  

CHASE_DB1,  

and STARE 

ACC 

{97.10,97.7,97.68,97.14

} 

F1{83.05,82.26, 

84.64,81.16} 
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Gargari et 

al [44]2022 

 The model of  

U-Net++ 

CNN, Gaussian filter Gabor filter, Green 

Channel,  

Local binary pattern (LBP), Histogram of  

Oriented Gradients (HOG) 

DRIVE,  

MESSIDOR 

ACC, SE, SP, F1 

{98.9,98.6}, {94.1,99}, 

{98.8,98} {98.14} 

David et al 

[29]2022 

  UNet Picture prospect map, patch probability 

map,  

Data augmentation, Adam law optimizer 

DRIVE SE, SP, ACC, 

Geometric mean 

{0.82, 0.98, 0.9661 

0.8992} 

 

Wang et al.[43] used the MS-CANet network consisting of 

an encoder, multiscale subtraction, and decoder. The 

encoder extracts semantic characteristics from 48 pixels of 

the original image, while the multiscale subtraction section 

improves vessel perception through multilevel and multi-

stage subtraction procedures. The decoder retrieves feature 

maps gradually. Gargari et al. [44] introduced segmenting 

of the blood vessels using U-Net++ and deep CNN for 

classification. The matrices obtained from the Gabor filter 

are given as input to the UNet++ network. UNet++ learns 

the shape and structure of blood vessels and retinal tissue 

for segmentation and LBP and HOC methods for feature 

extraction from binary images are given as input to CNN. 

Finally, use 1D CNN for the diagnosis of retinal disease.  

David et al. [29] proposed U-Net for the segmentation of 

retinal blood vessels. Multi-scale inputs and dense blocks 

are included to give high-quality results in segmentation. 

Using preprocessing the color retinal images are converted 

into grayscale. The image patches around the pixels of the 

vessel are used to generate the patch probability map, which 

is combined to produce the picture prospect maps of the 

picture. At last binary segmentation achieves higher 

accuracy compared to the traditional UNet. 

6.3 Lesion Detection 

6.3.1MA Detection 

 Raudonis et al [45] applied ensemble-learning-based 

methods to automatically detect Microaneurysms. To 

achieve better accuracy and more consistent results, the 

suggested ensemble incorporates three distinct 

segmentation models, including UNet, UNE++, and 

ResNet34-UNet. By using a threshold value, a prediction 

map is created from each ROI. Comparing this model to the 

other models, it obtained a higher IoU of 0.91 and a Dice 

value of 0.95 on fundus images. Soares et al [46] suggested 

a novel multiscale method for identifying potential 

microaneurysms. Two-stage neighborhood analysis is 

performed for MA labeling. In the first stage, the candidate 

shape is analyzed because candidate reshaping leads to 

improved MA labeling. In the second stage labels the region 

as true MA or false one. This model is evaluated on three 

datasets, namely Ophtha MA, Latin, and ROC Training. The 

Messidor data set is used for DR detection performance and 

achieved 80% specificity 98.73% sensitivity and 98.18% for 

at least one or two MAs detection. 

6.3.2 Hemorrhage Detection 

Maqsood et al. [47]used 3D-CNN to detect hemorrhages. 

Using transfer learning, Contrast Limited Adaptive 

Histogram Equalization (CLAHE) is applied as a 

preprocessing step to improve the details of the edges from 

the input image, VGG19. An Extreme Learning Machine 

(ELM) model is then employed to detect hemorrhages. This 

method is validated with six datasets HRF, DRIVE, 

STARE, MESSIDOR, and DIARETDB0 achieved 99.98%, 

99.98%, 95.12%, 99.38%, 95.53%, and 97.46% accuracy 

respectively.  

6.3.3 Exudates Detection 

Manan et al [16]For localizing hard exudates on retinal 

image patches, a quicker R-CNN object detector with an 

SVM classifier has been developed. The SVM classifier pre-

scanned input image patches based on the presence of 

exudates; patches that were identified as positive conducted 

object detector testing. On the e-Ophtha-EX dataset, this 

approach was examined, and the average accuracy was 

84.7%.

TABLE 6. DR Lesion Detection Methods 

Study Lesion Detection methods Methodology Datasets Evaluation (%) 

Raudonis et al 

[45]2023 

Ensemble-based model Residual U-Net, U-Net++, 

and U-Net 

 PerDiRe IoU (0.91) and dice score 

(0.95) 

Soares et al [46], 

[47]2023 

Multi-scale Approach  Green channel extraction,  

Region of interest (ROI), 

Messidor AUC 0.874, SEN 0.936 
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Maqsood et al 

[47]2021 

3D CNN  Green Channel Extraction,  

Contrast Enhancement, 

VGG19 

HRF, DRIVE, 

STARE, 

MESSIDOR, 

DIARETDB0, and 

DIARETDB1) 

ACC {99.98, 99.98,  

95.12, 99.38, 95.53, and 

97.46} 

Manan et al 

[16]2022 

R-CNN object detector ResNet-50, SVM E-ophtha-EX FI score0.8367 

Kurilová et al 

[48]2021 

RTC-Net model Data augmentation E-Ophtha, HEI-

MED, DIARETDB 

ACC {99,98,98} 

SEN {92,95,97} 

Alyoubi et al 

[30]2021 

YOLOV3  NN512, Colour Normalizing,  

Data Augmentation 

DDR  ACC 89, SEN 89, SPE 97.3 

 

Kurilová et al [48]To find the exudates, semantic 

segmentation was used to examine pixel-based areas. The 

encoder that learns the properties of the pixel can utilize a 

semantic segmentation model. To determine a dense rating, 

the decoder must visualize the encoder's resolution 

characteristics. Fewer convolution layers are used by RTC-

N350 to up-sample the image as greater convolution causes 

noise in the image. Network complexity is decreased by 

using the feature identity and non-identity mapping and un-

pooling layers. Alyoubi et al. [30]presented two deep-

learning models to classify DR into five stages. To classify 

DR, CNN512 used the entire image as input. APTOS and 

Kaggle 2019 datasets were used to evaluate this model, and 

it received accuracy scores of 84.1% and 88.6% 

respectively. The other model was YOLOv3 to localize and 

detect DR lesions on the DDR dataset and obtained 89% 

accuracy and 97.3%specificity and 98% sensitivity. 

YOLOv3 was the alternative model that was used to locate 

and identify lesions associated with DR on the DDR dataset. 

It achieved 89% accuracy,97.3% specificity, and 98% 

sensitivity. 

7. Challenges and Future Directions in DR Analysis 

Referring to the fundus, OCT, and other modalities, 

ophthalmologists make decisions. Fundus images are 

utilized in the diagnosis of glaucoma and NPDR, whereas 

OCT is employed to diagnose age-related macular 

degeneration and Diabetic Macular Edema (DME). Most 

studies that are currently accessible only employed one 

modality. 

Annotations are varied for diverse purposes in medical 

image analysis, like segmentation, prediction, and 

classification. The quantity of training data that is available 

for medical purposes is limited, and this has an impact on 

the model’s performance. In this case, transfer learning 

techniques can be used, but they are constrained by the 

samples in the origin domain. Transferring knowledge from 

the domain of origin to the target domain can be 

accomplished through sample-based or feature-based 

methods. 

To avoid misclassification and eliminate manual feature 

extraction, unsupervised learning techniques carry out DR 

image classification tasks. Accurate disease diagnosis 

depends on a significant amount of data samples for learning 

due to the adaptive characteristics of learned models. 

This makes it possible to continue developing deep-learning 

models for medical imaging in response to the challenges. 

During image segmentation, there are smaller differences 

between classes and more variability within classes. The 

network is enhanced with the incorporation of the attention 

mechanism, which places a small region between the target 

regions and the surrounding information. 

Due to a shortage of sample data, supervised learning is used 

to improve unsupervised learning applications. The model’s 

performance, which is essential for image analysis, can be 

improved by incorporating sample data into model training 

along with visual adversarial network architecture. 

The detection and classification of ocular disorders focus on 

retinal maculopathy. The retina’s macula is situated at its 

center. A few ocular conditions, including Diabetic Macular 

Edema (DME) and Age-Related Macular Degeneration 

(AMD), can affect eye health. The buildup of excess fluid 

behind the pigment of the retina cell indicates the early 

stages of AMD cells. Retinal pigment cells are damaged by 

choroidal warts. Abnormal and leaky vascular development 

is indicative of the end stage of AMD. These are progressive 

diseases that lead to blurred vision. Early diagnosis can 

prevent vision impairment. 

Another type of eye-related disease is glaucoma which 

damages the optic nerves and causes vision loss resulting 

from increasing ocular pressure on the optic nerves. Early 

diagnosis of glaucoma is important to prevent losing sight. 

8. Conclusion 

An automated system is needed for the lack of 

ophthalmologists compared with the disease-affected 
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patients. The variety of eye-related lesions brings attention 

to researchers in terms of different kinds of imaging 

modalities in medical image analysis tasks. For automated 

DR diagnosis connected to the eyes, a variety of AI-based 

algorithms are put into practice and tested. Enhanced image 

pre-processing techniques are utilized to bring quality and 

significant features from the input images. Lesions such as 

hemorrhages, exudates, and microaneurysms that slightly 

differ from each other in terms of the number of pixels in 

the Fundus images are identified using AI-based techniques 

for early DR diagnosis which prevent irreversible vision 

loss.  

This survey showed the latest AI-based approaches for eye-

related DR diagnosis including DR classification, 

segmentation, and lesion detection. The proposed models 

reviewed in this survey depend on publicly available 

datasets. The images in the dataset were captured in 

different environmental conditions, not in a standard size to 

train the models. Thus, suitable preprocessing methods for 

images were used, including scaling, noise reduction, data 

augmentation, contrast improvement, and filtering. A 

balanced data set can help build a robust model that can be 

implemented in clinical use. 

 Several backbone models have been used in recent studies 

for both segmentation and classification tasks. The many 

types of lesions shown in fundus images were accurately 

classified by segmentation tasks using fully convolutional 

networks, U-Net, and its variants. For the classification task, 

the CNN network, AlexNet, the VGG, ResNet, and 

DenseNet were employed to precisely categorize DR 

severity stages and grad. Single-stage and multistage 

detection models used Regions of interest (RoIs)to locate 

different lesions in the input images. And then this survey 

presented a comparison of various existing studies based on 

the performance of models used in those existing studies for 

DR diagnosis. Finally, this study shows the challenges and 

the future scope for other retinal eye disease diagnoses. 
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