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Abstract: Spacecraft landing is a complex and challenging task that requires precise control and decision making. In recent years, 

reinforcement learning (RL) has emerged as a promising approach for spacecraft landing, enabling autonomous and adaptive control 

strategies. This literature survey paper presents an overview of the existing research on spacecraft landing using RL. We examine various 

RL algorithms, simulation environments, and evaluation metrics employed in this domain. Furthermore, we discuss the challenges, 

limitations, and future directions for applying RL to spacecraft landing. This survey aims to provide researchers and practitioners with a 

comprehensive understanding of the current state-of-the-art in this field and inspire further advancements in spacecraft landing using RL. 
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1. Introduction 

Spacecraft landing refers to the controlled descent[43] and 

touchdown of a spacecraft on a planetary surface or other 

celestial bodies. It is a critical phase of a mission and requires 

precise control[45] and decision-making to ensure a safe and 

successful landing. Spacecraft landing poses several unique 

challenges due to the harsh and dynamic nature of the space 

environment, as well as the complexities involved in 

navigating and controlling a vehicle in such conditions. One 

of the primary challenges in spacecraft landing is the 

uncertainty and variability of the landing site. Each planetary 

body has its own specific characteristics, such as surface 

topography, composition, and atmospheric conditions. These 

factors can significantly impact the landing process, making 

it difficult to predict and plan the landing trajectory 

accurately. Additionally, the presence of hazards such as 

craters, boulders, slopes, and rough terrain further 

complicates the landing process.[6] 

Another challenge is the limited availability of real-time 

information during the descent and landing phase. Due to 

communication delays between the spacecraft and the 

mission control center on Earth, spacecraft often must rely 

on onboard sensors and systems for navigation and control. 

These sensors provide incomplete and delayed information, 

making it necessary for the spacecraft to possess 

autonomous decision-making capabilities. Furthermore, 

spacecraft landing requires precise control of various 

vehicle parameters, such as velocity, attitude, and descent 

rate. Achieving the desired landing conditions while 

considering the limitations of the spacecraft's propulsion 

system and control mechanisms is a challenging task.[44] 

Factors like fuel consumption and structural integrity must 

be carefully managed to ensure a safe landing. Traditional 

control approaches for spacecraft landing typically rely on 

pre-defined mathematical models and control algorithms. 

These approaches often struggle to adapt to the uncertainties 

and dynamic nature of the landing environment [7]. This is 

where reinforcement learning (RL) has gained prominence 

as a potential solution. RL allows spacecraft to learn and 

adapt their landing strategies based on interactions with the 

environment, making it a promising approach for  

autonomous and adaptive spacecraft landing. By using RL, 

spacecraft can learn optimal landing policies through trial 

and error, considering both long-term goals (such as 

touchdown accuracy and safety) and short-term constraints 

(such as fuel consumption and trajectory limitations). RL 

enables spacecraft to make real-time decisions based on 

sensor inputs and learn from the outcomes of previous 

landing attempts, improving performance and robustness. 

Addressing the challenges of spacecraft landing using RL 

involves designing suitable RL algorithms, developing 

accurate simulation environments, defining appropriate 

state representations and reward functions, and ensuring 

safe and reliable learning processes. Research in this field 

aims to enhance the autonomy and adaptability of spacecraft 

during the landing phase, ultimately improving the success 

rates and safety of space missions.  

Motivatsion for using reinforcement learning: 

The motivation for using reinforcement learning (RL) in 

spacecraft landing stems from several key advantages and 
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unique capabilities that RL offers. These factors make RL 

an appealing approach for addressing the challenges and 

complexities associated with spacecraft landing. 

1. Adaptive Decision-Making: RL enables spacecraft to 

learn and adapt their landing strategies through interactions 

with the environment. Instead of relying on pre-defined 

control algorithms or fixed landing policies, RL agents can 

continuously update their decisions based on real-time 

feedback and learn from the outcomes of previous landing 

attempts. This adaptability allows spacecraft to adjust their 

behavior and responses to varying environmental conditions, 

uncertainties, and unexpected events during the landing 

process. [8] 

2. Autonomous Learning: RL facilitates autonomous 

learning by allowing spacecraft to acquire landing skills and 

policies without relying heavily on human expertise or 

explicit programming. By providing an RL agent with a 

reward signal that reflects the desired landing objectives, 

spacecraft can learn to optimize their behavior through trial 

and error. This autonomy reduces the dependence on ground 

control and enables spacecraft to make real-time decisions 

during the landing phase, even in situations where 

communication delays prevent immediate human 

intervention.[9] 

3. Handling Complex and Dynamic Environments: 

Spacecraft landing involves dealing with complex and 

dynamic environments, such as varying terrains, 

atmospheric conditions, and hazards. RL provides a 

framework for spacecraft to learn and adapt to such 

complexities by exploring different actions and their 

consequences. RL algorithms can discover effective landing 

strategies by considering the uncertainties and variabilities 

of the environment and learning from the resulting 

experiences [16]. This capability makes RL well-suited for 

handling the intricacies of spacecraft landing, which are 

often challenging to capture with traditional control 

approaches. 

4. Optimization of Multiple Objectives: Spacecraft landing 

requires the optimization of multiple objectives, such as 

achieving accurate touchdown, minimizing fuel 

consumption, maintaining structural integrity, and ensuring 

the safety of the spacecraft [10]. RL allows for the 

incorporation of multiple objectives into a unified reward 

function. By appropriately designing the reward function, 

RL agents can balance trade-offs between different landing 

objectives and learn to make decisions that optimize a 

combination of these objectives. This capability enables 

spacecraft to achieve landing performance that meets 

various mission requirements and constraints 

simultaneously. 

5. Generalization and Transfer Learning: RL offers the 

potential for generalization and transfer learning, which are 

crucial for spacecraft landing. RL agents can learn landing 

policies in simulated environments and then transfer the 

learned knowledge to real-world scenarios. This ability to 

generalize across different landing conditions, terrains, and 

planetary bodies is essential for enabling spacecraft to adapt 

to new and unexplored environments. By training in diverse 

simulation environments, RL agents can acquire robust 

landing policies that can be applied to real missions with 

limited data and prior knowledge.[11] 

6. Continuous Improvement and Iterative Refinement: RL 

allows for continuous improvement and iterative refinement 

of landing strategies. As spacecraft collect more data and 

gain experience, RL agents can update their policies and 

enhance their performance over time. This iterative learning 

process enables spacecraft to adapt to changing conditions, 

incorporate new information, and refine their decision-

making strategies. RL provides a framework for spacecraft 

to continuously learn and improve their landing 

performance, leading to increased success rates and 

enhanced mission outcomes. 

The motivation for using RL in spacecraft landing arises 

from its adaptive decision-making capabilities, autonomous 

learning, ability to handle complex environments, 

optimization of multiple objectives, generalization and 

transfer learning, and the potential for continuous 

improvement. By harnessing these advantages, RL has the 

potential to revolutionize spacecraft landing by enabling 

autonomous, adaptive, and robust landing strategies that can 

enhance mission success and safety. 

1.1. Abbreviations and Acronyms 

Reinforcement Learning(RL), Digital Terrain Model 

(DTM), Lunar Reconnaissance Orbiter (LROC), Deep 

Learning(DL), Deep Reinforcement Learning (DRL), Deep 

Q-Network (DQN), Proximal Policy Optimization (PPO), 

Advantage Actor-Critic (A2C), Deep Deterministic Policy 

Gradient (DDPG), Trust Region Policy Optimization 

(TRPO) 

2. Literature Review 

1. Autonomous Planetary Landing via Deep Reinforcement 

Learning and Transfer Learning [1] 

This paper discusses the challenge of autonomous landing 

and navigation in space exploration and how recent research 

has made progress in this field using Deep Learning and 

Meta-Reinforcement Learning. The paper aims to tackle the 

problem of autonomous planetary landing using Deep 

Reinforcement Learning and Transfer Learning. The 

authors have developed a real-physics simulator using the 

Bullet/PyBullet library as shown in Figure 1 & 2, and 

trained a Deep Reinforcement Learning model using DDPG 

to autonomously land on the lunar environment. The results 

show that the model can learn a good landing policy, which 
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can be transferred to other environments. 

Fig 2.  Images showing the visual symptoms cause by fungal 

disease 

 

 

 

 

Fig 1.  Testing transfer learning for landing on Mars during 

(a) approach phase, and (b) at touchdown[1] 

 

 

 

 

 

 

Fig 2.  Testing transfer learning for landing on Mars during 

(a) approach phase, and (b) at touchdown[1] 

2. Image-based Deep Reinforcement Learning for 

Autonomous Lunar Landing[2] 

 

 

 

 

 

 

 

 

Fig 3.  RL Framework[2] 

This paper discusses the importance of soft landing on 

planetary bodies for future human exploration. Soft landing 

requires advanced navigation and guidance algorithms to 

achieve precision and zero-velocity touchdown. The paper 

presents an adaptive landing algorithm that utilizes image-

based deep reinforcement learning to derive optimal thrust 

for a lunar pinpoint landing problem. The algorithm learns 

from experience using radar altimeter and optical sensor 

data, enabling autonomous landing on planetary bodies. 

     As shown in Figure 3, the simulator uses a Digital 

Terrain Model (DTM) obtained from the Lunar 

Reconnaissance Orbiter (LROC) database. The DTM, with 

a resolution of 1791x1791 pixels, contains elevation data 

used for rendering ground images without the need for 

actual 3D shapes.  

Raytracing Technology: The use of raytracing technology in 

the simulator ensures quick rendering of observation images 

without compromising accuracy. Rendering a 16x16-pixel 

observation with 5 light bounces and 20 samples takes an 

average of 0.015 seconds. 

Blender Integration: The simulator leverages Blender, a 

Python-based ray tracer, enabling the authors to execute the 

entire learning algorithm within the renderer framework. 

This eliminates the need to save image observations on the 

hard drive, expediting the policy rollout phase. 

 

3. Deep Reinforcement Learning for Six Degree-of Freedom 

Planetary Powered Descent and Landing [3] 

 

Fig 4.  6-DOF and 3-DOF Fuel-Mass Performance[3] 

This paper addresses the critical need for advanced guidance 

and control algorithms during the powered descent phase of 

future Mars missions, aiming to achieve precise landing 

accuracy. The study focuses on developing a 

groundbreaking integrated guidance and control algorithm 

that utilizes reinforcement learning theory. This novel 

approach maps the lander's estimated state directly to a 

commanded thrust for each engine, resulting in both 

accuracy and fuel efficiency. Such precise trajectories are 

crucial for exploring regions on planets and satellites with 

high scientific potential. The paper presents a novel 

integrated guidance and control algorithm for the powered 

descent phase of Mars missions, which uses reinforcement 

learning theory and proximal policy optimization as a policy 

gradient method to learn a policy mapping the lander's 

estimated state directly to a commanded thrust for each 

engine. The algorithm was found to result in accurate and 

fuel-efficient trajectories during the powered descent phase, 

achieving a landing error ellipse of less than 5 meters in 

radius. The paper concludes that the integrated guidance and 

control algorithm presented in this paper has the potential to 

improve the accuracy and efficiency of powered descent and 

landing for future Mars missions. The policy was shown to 

be robust to noise and parameter uncertainty. Compared to 

proposed systems such as that described in figure [4], this 

system has the advantage of not requiring a cone-shaped 

glideslope constraint, allowing the targeting of locations 

such as the bottom of a deep crater. 

4. Using Reinforcement Learning to Design a Low-Thrust 

Approach into a Periodic Orbit in a Multi-Body System [4] 
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Fig 5.  100 trajectories guided to a reference trajectory 

(black) using neural networks trained to minimize position 

and velocity differences, evaluated using an isochronous 

correspondence.[4] 

 

Fig 6.  Low-thrust trajectory from a highly perturbed initial 

condition in blue guided towards the reference trajectory, 

denoted by the black dashed line, with thrust directions 

depicted by red arrows, derived from the neural networks 

trained to reduce state differences, evaluated using an 

isochronous correspondence.[4] 

This paper addresses the challenges of designing trajectories 

and maneuvers for spacecraft operating in chaotic multi-

body systems, with a specific focus on low-thrust-enabled 

Small Sats facing limited propulsive capabilities, scheduling 

constraints, and fixed initial conditions. To overcome these 

hurdles, the authors propose a novel approach based on deep 

reinforcement learning. The method aims to design a control 

profile that enables a low-thrust-enabled small satellite to 

approach a periodic orbit efficiently and autonomously over 

a short time horizon. By developing robust and autonomous 

design strategies, this study opens new scientific 

opportunities for exploring multi-body systems with low-

thrust-enabled small satellites. The study highlights that 

guiding a low-thrust-enabled Small Sat towards a periodic 

orbit using a reference trajectory along a stable manifold is 

feasible. However, designing trajectories and maneuver 

profiles for such small satellites with limited propulsive 

capabilities presents challenges to trajectory and maneuver 

designers. The proposed deep reinforcement learning (DRL) 

method proves (Figure 5 & 6) effective in iteratively 

learning dynamics and objectives to create a control profile 

that yields locally optimal solutions, with the formulation of 

a suitable reward function being crucial to reflect design 

objectives and operational constraints. The versatility of this 

approach extends to exploring multi-body systems with 

low-thrust-enabled small satellites, offering new scientific 

opportunities. Despite the computational intensity during 

neural network training in the DRL method, reevaluating a 

trained network is computationally trivial, making it a 

practical choice for trajectory design. Moreover, the 

method's adaptability makes it applicable for designing 

control profiles for other spacecraft with limited control 

authority. Overall, this research opens promising avenues 

for trajectory design and control in the realm of small 

satellite missions and beyond. 

5. Reinforcement Learning for Spacecraft Maneuvering 

Near Small Bodies[5] 

 

Fig 7.  Acquisition of relative position offset to landmark 

on small body surface.[5] 

This paper introduces a novel neural reinforcement learning 

approach for spacecraft control around small celestial 

bodies with unknown gravity fields (Figure 7). These bodies 

have weak gravity compared to Earth, and other factors like 

solar radiation pressure play a significant role. Their 

irregular shapes create complex gravity fields that are not 

easily predictable. To tackle this challenge, the authors use 

neural reinforcement learning and direct policy search with 

a genetic algorithm to find control policies for the 

spacecraft. The feed-forward neural network architecture is 

chosen due to its ability to handle continuous state and 

action spaces efficiently. 

 

Fig 7.  Example of a simulated trajectory of an 

uncontrolled spacecraft around a tumbling tri-axial small 

body. The altitude over the surface is shown (left) against 

the simulation time normalized by the angular velocity 

period P together with the actual trajectory (right).[5] 

The results of the study showcase the effectiveness of the 

proposed approach. Despite the uncertainty of the asteroid's 
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gravity field and limited perception capabilities, the 

spacecraft successfully hovers above the asteroid surface 

with minimal residual drift (Figure 8). This demonstrates the 

potential of the neural reinforcement learning method 

combined with lightweight neuromorphic systems for 

spacecraft maneuvering in low-gravity environments. The 

study highlights the adaptability of the approach to 

challenging conditions and uncertain environments, making 

it promising for future space missions involving spacecraft 

maneuvering around small celestial bodies like asteroids 

and comets. 

3. Fundamentals of Reinforcement Learning 

Definition of reinforcement learning and its components 

(agent, environment, actions, rewards): 

Reinforcement Learning (RL) is a subfield of machine 

learning that focuses on developing algorithms and 

techniques for an agent to learn optimal behavior through 

interactions with an environment. RL is inspired by the 

concept of how humans and animals learn from feedback 

and rewards to make decisions and improve their 

performance over time [12]. 

The main components of RL include: 

1.  Agent: The agent is the entity that learns and takes 

actions within the environment. It is the learner or 

decision-maker that interacts with the environment to 

achieve a specific goal. The agent receives 

observations (state information) from the environment, 

selects actions, and learns from the feedback (rewards) 

received from the environment 

2. Environment: The environment represents the external 

context with which the agent interacts. It can be a 

simulated environment, a physical system, or a 

combination of both. The environment provides the 

agent with information about its current state and 

responds to the agent's actions by transitioning to a 

new state and providing rewards or penalties. 

3. Actions: Actions are the choices made by the agent to 

influence the environment. The agent selects actions 

based on its policy, which defines the mapping from 

states to actions. The action space can be discrete (a 

finite set of possible actions) or continuous (an infinite 

set of possible actions). The agent's goal is to learn a 

policy that maximizes the cumulative rewards received 

over time. 

 

4. Rewards: Rewards are the feedback signals that the 

agent receives from the environment. They indicate the 

desirability or quality of the agent's actions in each 

state. The agent's objective is typically to maximize the 

cumulative rewards it receives over a series of 

interactions with the environment. Rewards can be 

positive, negative, or zero, and they can be immediate 

or delayed. The agent uses the reward signal to 

evaluate and update its policy to improve its future 

actions. The RL process involves the agent repeatedly 

observing the current state of the environment, 

selecting actions based on its policy, receiving rewards 

from the environment, and updating its policy based on 

the received rewards. Through this iterative process of 

exploration and exploitation, the agent learns to make 

better decisions over time, leading to improved 

performance in achieving its goals. 

 

Reinforcement learning algorithms, such as Q-learning, 

policy gradients, and actor-critic methods, are designed to 

guide the agent's learning process by optimizing the trade-

off between exploration (learning from new experiences) 

and exploitation (leveraging known information). RL 

algorithms employ various techniques to handle the 

exploration-exploitation dilemma and learn effective 

policies in complex and uncertain environments. 

 

Overview of RL algorithms: Q-learning, Deep Q-Network 

(DQN), Proximal Policy Optimization (PPO), etc.: 

Reinforcement learning (RL) encompasses a wide range of 

algorithms that aim to enable agents to learn optimal 

behavior through interactions with an environment. Here is 

an overview of some prominent RL algorithms: 

1. Q-Learning: Q-learning is a model-free RL algorithm 

that is particularly effective for discrete action spaces. 

It uses a value function called the Q-function to 

estimate the expected cumulative rewards for taking an 

action in each state. Q-learning updates the Q-values 

based on the Bellman equation and uses an 

exploration-exploitation strategy, such as epsilon-

greedy, to balance between exploring new actions and 

exploiting the current best actions.[13] 

 

2. Deep Q-Network (DQN): DQN is an extension of Q-

learning that utilizes deep neural networks to 

approximate the Q-function for high-dimensional state 

spaces. It combines Q-learning with a deep neural 

network as a function approximator, allowing the 

agent to learn directly from raw sensory inputs. DQN 

incorporates experience replay and target networks to 

stabilize and improve learning.[14] 

3. Proximal Policy Optimization (PPO): PPO is a model-

free, policy optimization algorithm that operates 

directly on policy functions. It aims to find the optimal 

policy by iteratively updating it in a way that 

maximizes the expected cumulative rewards. PPO 

employs a surrogate objective function and a clipped 

surrogate objective to ensure stable and reliable policy 
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updates. It also uses multiple epochs of optimization 

on collected experience to improve sample 

efficiency.[15] 

4. Actor-Critic Methods: Actor-Critic methods combine 

the advantages of both value-based methods (e.g., Q-

learning) and policy-based methods (e.g., PPO). They 

utilize both a value function (critic) to estimate the 

expected rewards and a policy function (actor) to 

determine the actions. Actor-Critic algorithms 

leverage the gradient information from the value 

function to update the policy parameters. Examples of 

actor-critic algorithms include Advantage Actor-Critic 

(A2C), Advantage Actor-Critic with Generalized 

Advantage Estimation (A2C-GAE), and 

Asynchronous Advantage Actor-Critic (A3C) [16]. 

 

5. Deep Deterministic Policy Gradient (DDPG): DDPG 

is an off-policy actor-critic algorithm specifically 

designed for continuous action spaces. It combines an 

actor network, which approximates the policy 

function, with a critic network, which estimates the 

action-value function. DDPG employs the concept of 

experience replay and utilizes target networks to 

stabilize learning.[17] 

6. Trust Region Policy Optimization (TRPO): TRPO is a 

policy optimization algorithm that seeks to maximize 

the expected rewards while maintaining a constraint on 

policy updates to prevent large deviations. It optimizes 

the policy iteratively within a trust region framework, 

ensuring that the new policy is close to the previous 

policy. TRPO utilizes conjugate gradient optimization 

to solve for the policy updates [18]. 

These are just a few examples of RL algorithms, each with 

its unique characteristics, advantages, and application 

domains. The choice of algorithm depends on factors such 

as the problem domain, action space, state space, and 

specific requirements of the problem at hand. Researchers 

and practitioners select the most appropriate algorithm 

based on these considerations to address the challenges of 

spacecraft landing using reinforcement learning. 

Exploration vs. exploitation trade-off in RL [19]: 

The exploration-exploitation trade-off is a fundamental 

concept in reinforcement learning (RL) that addresses the 

challenge of balancing between exploring new actions to 

learn more about the environment and exploiting the current 

knowledge to maximize the cumulative rewards. 

Exploration: 

Exploration refers to the process of actively seeking new 

information about the environment by trying out different 

actions and observing their outcomes. In RL, exploration is 

necessary to discover potentially better actions or states that 

may lead to higher rewards. By exploring, an RL agent can 

gather more data and learn about the dynamics of the 

environment, uncovering hidden opportunities or better 

policies. It allows the agent to avoid prematurely settling for 

suboptimal policies. 

Exploitation: 

Exploitation involves leveraging the agent's current 

knowledge and making decisions that are based on the 

current best-known actions or policies. Exploitation aims to 

maximize the immediate rewards by choosing actions that 

are deemed to be optimal based on the agent's existing 

knowledge. Exploitation is crucial to capitalize on the 

learned information and make the most of the agent's current 

understanding of the environment. 

Finding the Right Balance: 

Finding the right balance between exploration and 

exploitation is essential for effective RL. If an agent only 

focuses on exploitation, it may get stuck in suboptimal 

policies and miss out on discovering better options. On the 

other hand, excessive exploration can lead to wasted time 

and resources, delaying the agent's ability to exploit the 

best-known actions and policies. 

Strategies to Address the Trade-off: 

1. Epsilon-Greedy: One common approach is the 

epsilon greedy strategy, where the agent chooses 

the best-known action (exploitation) most of the 

time but occasionally selects a random action 

(exploration) with a small probability epsilon. This 

strategy allows the agent to explore while still 

favoring actions that have shown to be more 

rewarding.[20] 

2. SoftMax Action Selection: SoftMax action 

selection is another strategy that introduces 

stochasticity into the action selection process. The 

agent assigns probabilities to each possible action 

based on their estimated values and then selects 

actions according to these probabilities. This 

approach promotes exploration by allowing the 

agent to choose actions with lower estimated 

values, although actions with higher values are still 

more likely to be selected.[21] 

3. Upper Confidence Bound (UCB): UCB-based 

algorithms, such as UCB1 or UCB-Tuned, balance 

exploration and exploitation by assigning a 

measure of uncertainty to each action's value 

estimation. Actions with high uncertainty are given 

priority for exploration to reduce uncertainty and 

gain more knowledge about their true values.[22] 

4. Thompson Sampling: Thompson Sampling is a 

Bayesian-based strategy that assigns probabilities 

to each action based on its estimated value 

distribution. The agent samples actions based on 
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these probabilities, which allows for exploration 

while favoring actions with higher estimated 

values.[23] 

4. Reinforcement Learning Approaches for 

Spacecraft Landing and Control 

Review of RL techniques used in spacecraft landing:   

Reinforcement learning (RL) techniques have been widely 

explored and applied to address the challenges of spacecraft 

landing. Here is a review of RL techniques commonly used 

in spacecraft landing research: 

1. Model-Free Q-Learning: Q-learning is a popular model-

free RL algorithm used in spacecraft landing. It involves 

estimating the action-value function (Q-function) to 

determine the best action in each state. Q-learning has been 

applied to discrete action spaces, where the spacecraft learns 

an optimal policy through exploration and exploitation of 

actions. It can be combined with exploration strategies, such 

as epsilon-greedy, to balance exploration and exploitation 

during the landing process.[24]  

2. Deep Q-Network (DQN): DQN extends Q-learning to 

handle high-dimensional state spaces by employing deep 

neural networks as function approximators. DQN 

approximates the Q-function using a deep neural network 

and leverages experience replay and target networks to 

stabilize learning. DQN has been applied to spacecraft 

landing research, allowing agents to learn directly from raw 

sensory inputs, such as images or sensor readings.[25]  

3. Actor-Critic Methods: Actor-critic methods combine the 

advantages of value-based methods (e.g., Q-learning) and 

policy-based methods to improve learning efficiency and 

stability. These methods employ both a policy network 

(actor) to select actions and a value function (critic) to 

estimate the expected rewards. Actor-critic algorithms 

leverage the gradient information from the critic to update 

the policy parameters. Advantage Actor -Critic (A2C), 

Advantage Actor-Critic with Generalized, Advantage 

Estimation (A2C-GAE), and Asynchronous Advantage 

Actor-Critic (A3C) are commonly used in spacecraft 

landing research.[26]  

4. Proximal Policy Optimization (PPO): PPO is a policy 

optimization algorithm that operates directly on policy 

functions. It maximizes the expected cumulative rewards 

while ensuring stable and reliable policy updates. PPO 

employs a surrogate objective function and a clipped 

surrogate objective to control the magnitude of policy 

updates. PPO has shown promising results in spacecraft 

landing tasks, providing improved sample efficiency and 

stable learning.[27]  

5. Deep Deterministic Policy Gradient (DDPG): DDPG is 

an off-policy actor-critic algorithm specifically designed for 

continuous action spaces. It combines an actor network, 

which approximates the policy function, with a critic 

network, which estimates the action-value function. DDPG 

employs the concept of experience replay and utilizes target 

networks to stabilize learning. DDPG has been applied to 

spacecraft landing tasks requiring continuous control of 

descent parameters.[28]  

6. Trust Region Policy Optimization (TRPO): TRPO is a 

policy optimization algorithm that seeks to maximize the 

expected rewards while maintaining a constraint on policy 

updates. It optimizes the policy within a trust region 

framework, ensuring that the new policy is close to the 

previous policy. TRPO has been used in spacecraft landing 

research to enhance the safety and stability of the landing 

process.[29] 

State representation and sensor fusion techniques:  

State representation and sensor fusion techniques are crucial 

aspects of spacecraft landing using reinforcement learning 

(RL). They involve the representation of the environment 

and the fusion of information from different sensors to 

provide an accurate and comprehensive understanding of 

the spacecraft's state. Here is an overview of state 

representation and sensor fusion techniques used in 

spacecraft landing:  

State Representation: 

State representation involves encoding the relevant 

information about the environment, spacecraft dynamics, 

and other relevant factors into a format that can be input to 

the RL algorithm. The state representation aims to capture 

the essential aspects that influence the spacecraft's behavior 

and decision-making during landing. Common techniques 

for state representation in spacecraft landing include:  

1. Raw Sensor Readings: In some cases, the raw sensor 

readings, such as camera images or LIDAR point clouds, 

can serve as the state representation. Deep RL algorithms, 

such as Deep Q-Networks (DQNs), can directly process 

these sensory inputs to learn complex representations and 

make decisions based on them.  

2. Feature Extraction: Feature extraction involves extracting 

relevant features or descriptors from raw sensor data. It 

reduces the dimensionality of the input and focuses on the 

most informative aspects of the data. Feature extraction 

techniques, such as image processing algorithms or filtering 

methods, can be applied to sensor data to extract useful 

features for the state representation.  

Derived Variables: Derived variables are calculated based 

on sensor data or other environmental information. These 

variables can include altitude, velocity, orientation, fuel 

level, or other derived quantities that capture important 

aspects of the spacecraft's state. Derived variables provide a 

more  
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concise representation of the state and can facilitate learning 

and decision-making processes.  

Sensor Fusion Techniques:  

Sensor fusion techniques involve combining information 

from multiple sensors to obtain a more accurate and 

comprehensive perception of the environment. The fusion 

process aims to leverage the strengths of different sensors 

while compensating for their individual limitations. Sensor 

fusion techniques commonly used in spacecraft landing 

include:  

1. Kalman Filtering: Kalman filtering is a widely used 

technique for sensor fusion that estimates the true state of 

the system by combining measurements from different 

sensors with an underlying dynamic model. Kalman filters 

are effective in dealing with sensor noise and uncertainties 

and can provide a robust estimation of the spacecraft's 

state.[30] [47] 

2. Particle Filtering: Particle filtering, also known as Monte 

Carlo filtering, is a non-parametric Bayesian filtering 

technique. It uses a set of particles to represent the posterior 

distribution of the system's state. Particle filters can handle 

nonlinear and non-Gaussian systems and are suitable for 

spacecraft landing scenarios with complex dynamics.[31] 

[46] 

3. Extended Kalman Filtering: Extended Kalman filtering 

(EKF) extends the Kalman filter to handle non-linear system 

dynamics by approximating them with linear models 

through Taylor series expansion. EKF is commonly used in 

spacecraft landing scenarios where the system's dynamics 

deviate from linearity.[32]  

4. Sensor Weighting and Fusion Rules: Sensor fusion can 

involve assigning weights to different sensors based on their 

reliability, accuracy, or relevance to the landing task. Fusion 

rules determine how the measurements from different 

sensors are combined to obtain the overall state estimate.  

Weighting and fusion rules can be based on statistical 

methods, information theory, or expert knowledge.[33] By 

appropriately representing the state and fusing information 

from multiple sensors, spacecraft landing systems can 

obtain a comprehensive understanding of the environment 

and the spacecraft's position, orientation, and dynamics. 

These techniques enable RL algorithms to make informed 

decisions and navigate the spacecraft safely during the 

landing process.  

Action space design and control strategies:  

Action space design and control strategies play a crucial role 

in spacecraft landing using reinforcement learning (RL). 

They determine the set of actions available to the RL agent 

and the mechanisms for controlling the spacecraft's descent 

and landing. Here is an overview of action space design and 

control strategies used in spacecraft landing:  

Action Space Design:  

The action space represents the set of actions that the RL 

agent can choose from during the landing process. The 

design of the action space depends on the specific 

requirements and constraints of the spacecraft landing task. 

Common approaches for action space design include:  

1. Discrete Actions: Discrete action spaces define a finite set 

of actions that the agent can choose from. Examples of 

discrete actions in spacecraft landing can include thrust 

commands (e.g., increase, decrease), attitude adjustments 

(e.g., pitch, yaw), or control mode switches (e.g., hover, 

descent). Discrete action spaces are suitable when the 

spacecraft's control system operates in a stepwise manner or 

has limited control options.[34]  

2. Continuous Actions: Continuous action spaces allow for 

a wide range of real-valued actions. Continuous actions are 

appropriate when precise control over continuous variables 

is required. Examples of continuous actions in spacecraft 

landing can include throttle settings, thruster gimbal angles, 

or control surface deflections. Continuous action spaces 

enable fine-grained control and can provide more flexibility 

in controlling the spacecraft's descent.[34]  

Control Strategies:  

Control strategies determine how the RL agent utilizes the 

selected actions to guide the spacecraft's descent and 

landing. These strategies aim to ensure safe, accurate, and 

efficient landing. Some common control strategies in 

spacecraft landing include:  

1. Proportional-Integral-Derivative (PID) Control: PID 

controls a classic control strategy that uses feedback to 

regulate system behavior. It calculates control outputs based 

on proportional, integral, and derivative terms. PID 

controllers can be used to stabilize and control the 

spacecraft's attitude, velocity, or position during 

landing.[35]  

2. Model Predictive Control (MPC): MPC is a control 

strategy that utilizes a predictive model of the system 

dynamics to optimize control actions over a finite time 

horizon. MPC predicts the future system states and 

optimizes control inputs to achieve desired objectives while 

considering constraints. MPC can be applied to spacecraft 

landing to generate control commands that optimize landing 

accuracy, fuel efficiency, or other objectives.[36]  

3. Adaptive Control: Adaptive control strategies adjust 

control parameters or policies based on real time 

measurements or estimation of the system dynamics. 

Adaptive control allows the spacecraft to adapt to changing 

conditions, uncertainties, or disturbances during the landing 

process. It can enhance the robustness and adaptability of 

the control system.[37]  
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4. Trajectory Planning: Trajectory planning involves 

generating a desired trajectory for the spacecraft's descent 

and landing. It defines the path that the spacecraft should 

follow to achieve landing objectives while considering 

constraints such as fuel consumption or obstacle avoidance. 

Trajectory planning can be combined with RL to learn 

optimal trajectories or to refine and adjust planned 

trajectories based on real-time feedback.[38]  

5. Hybrid Control: Hybrid control combines different 

control strategies or techniques to achieve the desired 

landing performance. It may involve switching between 

different controllers or using a combination of feedback-

based control and RL-based control. Hybrid control 

strategies leverage the strengths of multiple approaches and 

can enhance the overall control performance during 

spacecraft landing.  

Reward engineering and shaping:  

Reward engineering and shaping are techniques used in 

reinforcement learning (RL) to design and shape the reward 

signals that guide the learning process of the RL agent. By 

carefully designing the reward structure, these techniques 

can influence the behavior of the RL agent and expedite the 

learning process. Here's an overview of reward engineering 

and shaping in spacecraft landing:  

Reward Engineering [39]:  

Reward engineering involves designing the reward function 

to provide appropriate feedback to the RL agent based on 

the desired behavior or objectives of the spacecraft landing 

task. The reward function influences the RL agent's policy 

by assigning positive or negative rewards based on the 

agent's actions and their outcomes. Key considerations in 

reward engineering for spacecraft landing include:  

1. Landing Accuracy: Rewarding the agent for achieving 

accurate and precise landings is a common objective in 

spacecraft landing. The reward function can include terms 

that measure the distance or deviation from the target 

landing site, penalizing larger deviations, and incentivizing 

accurate touchdown.  

2. Fuel Efficiency: Fuel consumption is a critical factor in 

spacecraft missions. Rewarding the agent for minimizing 

fuel consumption encourages the RL agent to learn efficient 

control strategies and trajectories that conserve fuel during 

descent and landing.  

3. Safety Considerations: Safety is paramount in spacecraft 

landing. The reward function can incorporate safety-related 

metrics such as avoiding collisions, staying within specified 

limits or boundaries, or adhering to operational constraints 

to ensure safe landings.  

4. Time Efficiency: Rewarding the agent for completing the 

landing task within a specified time frame can encourage the 

RL agent to learn expedited descent and landing strategies, 

optimizing for timely mission execution.  

Reward Shaping [40]:  

Reward shaping involves adding additional reward signals 

or shaping functions to guide the RL agent's learning 

process. These shaped rewards can provide more 

informative feedback to the agent, accelerate learning, and 

promote desirable behavior. Key aspects of reward shaping 

in spacecraft landing include:  

1. Sparse Reward Augmentation: In some spacecraft 

landing scenarios, the rewards associated with successful 

landings may be sparse, meaning that the agent receives a 

reward only at the end of a successful landing. Reward 

shaping techniques can provide intermediate rewards during 

the landing process, encouraging the agent to learn 

incremental progress towards successful landings.  

2. Potential-Based Reward Shaping: Potential-based reward 

shaping uses a shaping potential function to provide 

additional rewards based on the agent's progress towards a 

goal. It guides the agent by assigning rewards proportional 

to the potential progress made towards a successful landing. 

Potential-based shaping can help overcome sparse rewards 

and accelerate the learning process.  

3. Expert Demonstrations: Expert demonstrations involve 

providing pre-recorded or pre-trained expert trajectories as 

additional reward information. The RL agent can learn from 

these demonstrations and imitate the expert behavior, 

enabling faster convergence and improved performance.  

4. Curriculum Learning: Curriculum learning involves 

gradually increasing the difficulty or complexity of the 

landing task over time. By starting with simpler scenarios 

and gradually introducing more challenging environments, 

the RL agent can learn in a more structured and progressive 

manner, leveraging reward shaping to guide the learning 

process.  

Reward engineering and shaping techniques allow 

researchers to guide the RL agent's learning process in 

spacecraft landing tasks. By carefully designing the reward 

function and shaping rewards, RL agents can learn efficient 

and accurate landing policies, enhance safety, optimize fuel 

consumption, and adapt to different mission objectives and 

constraints. These techniques help overcome challenges 

related to sparse rewards and provide valuable guidance for 

RL-based spacecraft landing.  

Training procedures and algorithms:  

Training procedures and algorithms play a critical role in 

spacecraft landing using reinforcement learning (RL). These 

procedures and algorithms guide the learning process of the 

RL agent and enable it to acquire optimal landing policies. 

Here's an overview of the training procedures and 

algorithms commonly used in spacecraft landing:  
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1. Off-Policy Training:  

-Off-policy training allows the RL agent to learn from a 

mixture of data generated by its current policy and data 

collected from other policies or sources. This approach 

enables the agent to learn from a diverse set of experiences 

and promotes sample efficiency.  

-Algorithms: Off-policy algorithms such as Q-learning, 

Deep Q-Network (DQN), and Deep Deterministic Policy 

Gradient (DDPG) are commonly used for spacecraft 

landing. These algorithms utilize experience replay, where 

the agent stores and samples from a replay buffer to break 

temporal correlations and improve learning stability.  

2. On-Policy Training:  

- On-policy training involves learning from the interaction 

of the RL agent with the environment using the current 

policy. The agent explores the environment and updates its 

policy based on the collected experiences.  

-Algorithms: On-policy algorithms such as Proximal Policy 

Optimization (PPO), Trust Region Policy Optimization 

(TRPO), and Actor-Critic methods (A2C, A3C) are popular 

for spacecraft landing. These algorithms optimize the policy 

directly to maximize the expected cumulative rewards, 

while often using techniques like advantage estimation and 

policy gradients to improve learning efficiency.  

. Exploration Strategies:  

- Exploration is critical for RL agents to discover new states 

and actions and avoid getting stuck in suboptimal policies. 

Various exploration strategies are employed to balance 

exploration and  

exploitation, enabling the RL agent to learn more 

effectively.  

- Epsilon-Greedy, SoftMax Action Selection, Upper 

Confidence Bound (UCB), and Thompson Sampling are 

commonly used exploration strategies in spacecraft landing. 

These strategies promote exploration by encouraging the 

agent to select less-explored actions or visit unexplored 

regions of the state space.  

4. Curriculum Learning [41]:  

-Curriculum learning involves gradually increasing the 

difficulty or complexity of the training tasks. In spacecraft 

landing, this can involve starting with simpler landing 

scenarios and gradually introducing more challenging 

terrains or environmental conditions.  

- Algorithms: RL algorithms can be combined with 

curriculum learning techniques to enhance learning 

efficiency. The difficulty of the landing task can be 

progressively increased, allowing the agent to acquire 

knowledge and skills in a more structured and gradual 

manner.  

5. Transfer Learning:  

-Transfer learning leverages knowledge gained from 

previously learned tasks or domains to accelerate learning 

in new tasks or domains. Pre-training the RL agent on 

related tasks or using pre trained models can provide 

valuable initialization for the spacecraft landing task.  

- Algorithms: Algorithms like Deep Q-Networks (DQN) 

and Proximal Policy Optimization (PPO) can be combined 

with transfer learning approaches to bootstrap the learning 

process and improve convergence speed [42].  

6. Reward Shaping and Engineering [40]:  

- Reward shaping and engineering techniques are employed 

to design appropriate reward functions that guide the RL 

agent towards desired behaviors. These techniques provide 

informative feedback and accelerate learning by shaping the 

reward signals. 

- Potential-based reward shaping, sparse reward 

augmentation, and expert demonstrations are commonly 

used reward shaping techniques in spacecraft landing. These 

techniques provide additional rewards or guidance to 

facilitate learning. The selection of specific training 

procedures and algorithms depends on the characteristics of 

the spacecraft landing task, available resources, and desired 

performance objectives. Researchers and practitioners often 

experiment with different combinations of algorithms, 

exploration strategies, reward engineering, and transfer 

learning techniques to achieve effective RL-based 

spacecraft landing. 

5. Conclusion 

In conclusion, the survey findings highlight the significant 

progress and potential of using reinforcement learning (RL) 

in spacecraft landing. Here's a recap of the current state-of-

the-art and the promising opportunities for future research 

in spacecraft landing using RL: 

1. Current State-of-the-Art: RL has emerged as a promising 

approach for spacecraft landing, offering advantages such as 

adaptability, learning from data, and handling complex 

dynamics. Key components of RL, including state 

representation, action space design, training procedures, and 

evaluation metrics, have been extensively studied and 

applied in the context of spacecraft landing. 

2. RL Algorithms and Techniques: Various RL algorithms 

have been explored, including Q-learning, Deep Q-

Networks (DQN), Proximal Policy Optimization (PPO), and 

model-based RL. The integration of deep neural networks 

and hierarchical RL has further enhanced the capabilities of 

RL based spacecraft landing systems. 

3. Challenges and Limitations: Several challenges and 

limitations exist, including sample efficiency, defining 

appropriate evaluation metrics, generalization to varying 
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environmental conditions, safety concerns, and the 

integration of RL with other control techniques. Addressing 

these challenges requires further research, algorithmic 

advancements, collaboration with domain experts, and real 

world testing and validation. 

4. Future Research Opportunities: The survey identifies 

several promising opportunities for future research in 

spacecraft landing using RL. These include the exploration 

of advanced RL algorithms, multi-modal sensor fusion, 

hybrid control approaches, transfer learning and domain 

adaptation, safety-critical RL, real-world implementation 

challenges, and autonomy in complex landing scenarios. 

Collaboration between researchers, space agencies, industry 

partners, and regulatory bodies is crucial for driving 

progress in these areas. 

The current state-of-the-art in spacecraft landing using RL 

showcases the potential of RL algorithms to improve the 

performance, efficiency, and safety of spacecraft landing 

systems. However, further research and development are 

needed to address challenges, ensure safety, and enable the 

practical implementation of RL-based landing systems in 

real-world missions. The field presents promising 

opportunities for advancements in algorithmic techniques, 

integration with other control methods, and the exploration 

of autonomous landing capabilities in complex and 

challenging scenarios. 
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