

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 201–208 | 201

A Novel Approach to Abstract the Design Information and Minimal

Cover from the Restructured Java Program

Aparna K. S.1 and Dr. R. N. Kulkarni2

Submitted: 15/12/2023 Revised: 20/01/2024 Accepted: 03/02/2024

Abstract: The software industry has undergone enormous development during the previous few decades. Java programming was used to

create many of the software applications needed to run the current generic applications. To support the business operations, these

applications have undergone changes based on the changing requirements of the customer or organization. Many changes performed during

these need-based updates are made only to the applications and not in the relevant documents related to the software. Further altering these

software systems could occasionally cause a software crash. It might be challenging to add new features to the old programs as there is a

possibility of redundant code.

To overcome the problems related with either redundancy of the code or documentation, a novel methodology is proposed and a tool is

developed to abstract the various components from the input java programming system such as control flow graph, data flow information

in the control flow order and the various attributes which are participating in the program. Further the data flow graph and control flow

graph are used to find the functional dependencies and attribute closures. The abstracted attributes are used to find the minimal cover,

which results in the computation of the functionality of the program.

Keywords: Restructuring, Data flow graph, Control flow graph, Referred Variable, Defined variable, functional dependency

1. Introduction

The demand to use technology and software to automate

organizational tasks has increased dramatically during the

past few decades. The utilization of application systems

constructed using Java programming has experienced

significant demand. These application systems, which were

created decades ago, have undergone several ongoing, need-

based adjustments. As the original writers were unavailable,

there was a chance of redundancy in the code, when these

changes were implemented. Moreover, the programming

language was flexible enough for the various programmers

to use alternative names for the variables, operations, and

methods. As, the success of the translation depends on the

knowledge of the translator’s expertise and experience, thus

translating the complete application to a new programming

language was equally challenging, as it needs to

comprehend the organization's entire business rules, which

gets modified periodically leading to unstructured code.

This unstructured-ness can be handled with the help of

restructuring techniques for abstracting the design

information.

Taxonomy:

Control flow graph represents graph implying the

execution flow of the overall program

Data flow graph represents graph implying the flow of data

along the control flow.

Referenced attribute get referenced in a executable

statement of a program without any modifications after

execution

Defined attribute are attributes, changing during the

execution of statement.

Restructuring is the transformation from one form to

another without changing its functionality

2. Related Work

The various methods of restructuring Java applications are

covered in [1], the preprocessing step for obtaining the

design data necessary for static analysis of the input.

Restructuring [2], benefits the memory optimization

significantly contributing to the memory management

issues required for reengineering. The study [6] presents a

novel approach for generating a descriptive file from source

code using comment lines. This method takes an existing

Java source code program and adds a description file to it

automatically. It contains the parameters functions,

conditions, and description. All of this information will

eventually be included in a text document file that the

framework creates. In our approach we are eliminating these

comment lines, blank lines and changing the multiple lines

into a single line as these comment lines will not be updated

periodically. The next step of this paper is to extract the

design information. The different approaches are discussed.

Firstly extracting the Data flow diagram from the given java

program is discussed [4]and represented in the table format

1Assistant Professor, Department of Computer science & Engineering,

RYMEC, Ballari, Research scholar, VTU, Belagavi.
2Professor and HOD, Department of Computer Science & Engineering,

Ballari Institute of Technology and Management, Ballari,

aparna.vastrad@gmail.com, rnkulkarni@bitm.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 201–208 | 202

using which, the design of the software is extracted. The

feature extractor method is to extract the data from the

generated XML file. Information gathered from method

names [7], variable names, and comments in the project

source code that is being analyzed. Each Java class is

presented as a document. Next, using Latent Dirichlet

Allocation (LDA), a set of topics representing the different

functionality offered by the project are identified. In

approach [2], the source code goes through various stages

of the static analysis and functionality is derived from

program slicing. The value of data representation in tables

is underlined in [3], which presents the information of the

sequence diagram in the form of useful table. In [4], a table

that serves as a static representation of the class diagram

provides complete information. Meanwhile the activity and

use case diagrams in [5] are produced using the source code,

indicating that the focus should be on other UML diagrams

to extract the design information. In [6], the Control Flow

Graph (CFG) is used to represent the source code

representing all pathways that an application will take

throughout its execution. Further this CFG is then used to

extract other related concepts. The Java programs are used

for various degrees of analysis in [7] and are rendered as

graphs. ProgQuery and Neo4J graph, among other tools, are

effective, but complexity rises with larger programs. Models

are made from the intermediate representation of the source

code and are used to extract UML models in reverse method

combining static and dynamic analysis[18,19]. The static

and dynamic analysis of bytecode is done and represented

in the form of table [9]. It emphasizes how the results of the

static code analysis for the Java programs are extracted as

graphs[10]. In[11,12], the static analysis of the tools and

techniques for locating bugs, security vulnerabilities, code

duplication, and code smells are addressed in detail.

Opensource static code analysis is one of the tools that is

accessible to find errors and different coding techniques. In

[13], the static analysis of the code is carried out utilizing

AST, assessing the many paths that the programs can take

performing a control flow and programs flow analysis. The

survey discussed above use graphical representations to

illustrate static analysis for the different application,

however these graphical representations have memory and

maintenance issues that make it difficult to retrieve and

preserve the data. These graphical representations of the

programs, presented in a variety of ways, are useful for

evaluating the program code, but they undoubtedly used a

lot of memory and added overhead retrieving the data for

later processing. As a result, alternative forms of graphical

representation, such as tabular representation, proved to be

more effective in terms of memory utilization, processing

speed, throughput analysis. The proposed work discusses

the control flow analysis of the input Java programs in a

tabular representation. The control flow and data flow is

derived from the control flow table and data flow table in

our approach. From the data flow table, the functional

dependencies are extracted and further these functional

dependencies are minimized as discussed below. In [17],

closure and the minimal cover algorithm were used to

resolve the superfluous functional dependencies. The

Armstrong axioms are used to create the F+ algorithm,

which generates closure of functional dependencies (FDs).

Finding functional relationships and minimizing them with

the minimal cover method is done for various sets of

functional dependencies, as discussed in detail [18]. A

lifetime model [15] for individual source code lines or

tokens can be used to guide preventive maintenance,

estimate maintenance effort, and, in general, find

characteristics that can increase software development

efficiency. All components involved in the software system

[14] should be able to easily comprehend and discern the

necessary components of the requirements through the

software design. In our methodology, the functional

dependencies extracted from the data flow table have lot of

redundant functional dependencies which have to

minimized because there will be an unequal distribution of

functional dependencies. Consequently, these functional

dependencies might be mentioned in other statements

explicitly or indirectly. This scenario complicates the design

extraction process. In our methodology, this problem is

resolved by applying the concept of minimal cover [20,21]

and the storage will be conserved as a result, by removing

redundant and unnecessary productions in the functional

dependencies, resulting in database optimization

3. Proposed Methodology

A. Restructuring the Input Program: Restructuring is

the method of bringing modifications to the software

structure explicitly without affecting its functionality.

In our proposed methodology, comment line

elimination, blank line elimination, and making

multiple declaration statements into a single

declaration statement is a part of the restructuring [3]

process. Other steps include statements ending with a

semicolon, curly braces insertion before the start and

end part statements in the body of the loop,

respectively, and assigning sequential line numbers to

logic statements. This process of restructuring

changes the program structure without affecting its

function. This refactored code will be a input for

extracting the design information.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 201–208 | 203

Fig 3.1: Block diagram of the proposed methodology

Consider the input java program in Figure 2 which is a

non-structured code.

1. import java.util.Scanner;

2. public class Quad

3. {

4. public static void main(String[] args)

5. {

6. double a1,b1,c1;

7. //determinant is det

8. double det;

9. //r1=root1 and r2=root2

10. double r1,r2;

11. Scanner in =new Scanner(System.in);

12. //reading values of a1,b1,c1

13. System.out.println("Enter the value of a");

14. a1=in.nextDouble

15. System.out.println("Enter the value of b");

16. b1= in.nextDouble();

17. System.out.println("Enter the value of c")

18. c1= in.nextDouble();

19. /*comparing the values and chking for

determinanat*/

20. if(a1==0|| b1==0||c1==0)

21. {

22. System.out.println("Invalid input:Enter non-zero

co-effeceints”);

23. System.exit(0);

24. else

25. {

26. d1=b1 *b1 – 4 *a1 * c1

27. if(d1>0)

28. {

29. //calculation of root1 and root2 for positive det

values

30. r1 = (-b1+ Math.sqrt(d1)) / (2 * a1);

31. r2 = (-b1 - Math.sqrt(d1)) / (2 * a1);

32. System.out.println(“root1 and root2 are”, r1, r2);

33. }

34. else if(d1= =0)

35. {

36. //executed when roots are same

37. r1 = r2 = -b1 / (2 * a1);

38. System.out.println("Roots are real and equal" +r1);

39. System.out.println("Root1 = Root2 = "+ r1);

40. }

41. else

42. {

43. //calculating the negative part

44. double rpart = -b1/ (2 *a1);

45. System.out.println("Roots are complex and

imaginary");

46. //printing values of roots

47. System.out.println("r1="+rpart+"+i"+

imaginaryPart+"r2="+rpart+"-i"+ imaginaryPart);

48. }//else ends

49. }//if ends

50. Sc.close();

51. }//main ends

52. }//quadratic ends

Fig 3.2:Input java Program

From Figure 3.3, it is very clear that the CPU execution time

varies a lot with the given input size of the program

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 201–208 | 204

Fig 3.3:Graphical analysis of the Restructuring It is obvious

that the varied execution time (in seconds) implies the effect

of restructuring process. Considering the input size of 50

lines, the graph in Figure 3 illustrates that after restructuring

the execution time has reduced a lot and for the same input

size the execution time is comparatively less, which

indicates the effect of restructuring the input code.

B. Abstraction of Control flow graph from Java Program:

The program is represented in the form of a graph, where

each node in the control flow graph represents either a

conditional statement, computational statement, or the

invocation of a member function. An edge connecting those

vertices represents the control flow between the statement.

The program execution control flow is shown on the Control

Flow Graph (CFG). Each line in Java can include a

computational statement, a predicate statement, or an

invocation statement. When the program is represented as

a graph with one vertex (or node) assigned to each

statement, the joining edge between the two vertices

represents the control flow. This representation is

considered inefficient due to the bulk size of java

applications, hence these CFG are represented in tabular

form using the four columns, where column1 implies start

of the program, column2 represents the point of occurrence

of the first control statement, third column represents the

point of true block(Trans1) and fourth column indicates the

false block(Trans2). Usually Trans1=start of the program

and Trans2= end of the program and the same procedure

gets repeated for all the control statements like if-else,

while, for, do-while, switch, break, continue, return. The

function invocation present in the input program are handled

by putting the point of callee function in trans1 and trans2

will be obviously empty as it is not having the true and false

blocks. Further these true and false blocks are analyzed and

the above procedure is followed for any nested control

structures occurring in it. The concept of defining nodes and

Usage/Referenced nodes are used to construct the control

flow table.

 Algorithm for abstraction of Design information

Input: java program after restructuring

Output: Tables depicting control flow, data flow

and minimal cover of attributes

Step 1: [Java program preprocessing with restructuring]

• Input Java Program is scanned

• Appending main program with the imported

packages

• Comment line elimination

• Blank lines elimination

• Single line statements got by converting

multi statement line and multiline statements

• Each statement are given the physical line

numbers

These restructuring steps help in the efficient representation

of the input program, required for analyzing the design

information in the form of control and data tables

Step2: [Control flow table abstraction from the

Restructured Java program]

Scan the input Java program starting from the string ‘Public

static void main’ and search for the control keys of the input

program comparing with that of VERBS(control

statements) as discussed above. If the scanned control keys

belongs to VERBS, then represent that information in the

table format representing statement number of the first line

of the program in column1, column2 is the point where the

first control key occurs column3 is Tr1 representing the

transition to the starting point of the true block and column4

is Tr2 representing the transition to the starting point of the

false block and this process gets repeated for all the control

keys present in the input program and as well for the nested

control structures

Step 3: [Data flow table abstraction from the

Restructured Java program]: The flow of data variables

in the program is based on the control flow order. These

data variables are defined and referred at several points of

the program. Identification of these referred and defined

variables in every line of the input program is noted in the

tabular format, where first column indicates input program

line number, second column is for defined variables and

third column is for referred variables .

Step4: [Finding the minimal cover of the functional

dependencies]. From the data flow table, the functional

dependency existing between these variables are extracted.

These functional dependences are minimized to extract

minimal cover of attributes eliminating redundant attributes.

The minimal cover is done using these steps:

i. Representing the Functional Dependencies in a

canonical form where RHS should have a single

attribute.

ii. Remove the redundant FDs (which can be derived from

the transitive principles).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 201–208 | 205

iii. Remove the extraneous attributes, by finding the

closure of all the LHS attributes of the Functional

dependencies having non-single attribute. If

CLOSURE(A)= ABC then BC are extraneous

attributes and have to be removed.

iv. Apply the Armstrong principles and try to group FDs

using common LHS

4. Results and Discussion

Refactored code :

1. import java.util.Scanner;

2. public class Quad

3. {

4. public static void main(String[] args)

5. {

6. double a1,b1,c1,d1,r1,r2;

7. Scanner in =new Scanner(System.in);

8. System.out.println("Enter the value of a");

9. a1=in.nextDouble

10. System.out.println("Enter the value of b");

11. b1= in.nextDouble();

12. System.out.println("Enter the value of c")

13. c1= in.nextDouble();

14. if(a1==0|| b1==0||c1==0)

15. {

16. System.out.println("Invalid input:Enter non-zero

co-effeceintsâ€);

17. System.exit(0);

18. else

19. {

20. d1=b1 *b1 - 4 *a1 * c1

21. if(d1>0)

22. {

23. r1 = (-b1 + Math.sqrt(d1)) / (2 * a1);

24. r2 = (-b1 - Math.sqrt(d1)) / (2 * a1);

25. System.out.println(“root1 and root2 are”, r1, r2);

26. }

27. else if(d1= =0)

28. {

29. r1 = r2 = -b1 / (2 * a1);

30. system.out.println("Roots are real and equal" +r1);

31. system.out.println("Root1 = Root2 = "+ r1);

32. }

33. else

34. {

35. double rpart = -b1 / (2 *a1);

36. System.out.println("Roots are complex

andimaginary");

37. System.out.println("r1="+rpart +"+i"+

imaginaryPart+" r2= "+ rpart+"-i"+

imaginaryPart);

38. }

39. Sc.close();

40. }

41. }

Fig 4.1: Restructured Java program

In this program, the static analysis of the code is done. The

execution starts from the main. In this methodology, the

control statements are scanned from main. These control

statements are analyzed based on their structure, the

different block of statements get executed. In the above

program, we have the control statement at line no 14, and

true block starts at line 15 and false block from line 19. In

true block, further we have exit statement at line 17, so the

control jumps to line 42. In the false block, further there is

another condition checking for determinant at line 21, where

true block moves to line 22 and completes its execution at

26 and in false block, the control statements are checked, if

true moves to 28 and the block from 28 to 32 gets executed

and the else block gets executed from 34 to 38 and both the

blocks get terminated at line 40. The control flow table is as

shown in the Figure 4.1. The data flow table in Figure 4.2,

represents the flow of the variables at different control

points of the program.

S E TR1 TR2

1 14 15 19

15 17 42

19 21 22 27

22 26 37

27 27 28 34

28 32 42

34 39 40

Fig 4.2: Control flow table of Figure 4.1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 201–208 | 206

Line No Defined Vars Referred Vars

2 Quad

9 a1

11 b1

13 c1

14 a1 b1 c1

20 d1 a1 b1 c1

21 d1

23 r1 a1, b1, d1

24 r2 a1, b1, d1

27 - d1

29 r1, r2 b1, a1

30 - r1

31 'r1'

35 rpart b1 a1

Fig 4.3: Data flow table of Figure 4.2

This proposed tool is tested for different combinations of

inputs and the tool is compared for its efficiency. The

existing tools are building the control flow order using the

graphical representation. This graphical representation has

lot of concerns with respect to memory issues. The proposed

tool analyzes the static analysis of the code which is very

easily traceable and consumes very less execution time and

gives good throughput analysis as discussed below. From

the Data flow table, rows in which there exists both referred

and defined variables are identified and

such rows imply the functional dependencies between the

variables. The following FunctionalDependencies(FD) are

extracted from the data flow table.

a1 b1 c1→d1

a1 b1 d1→r1

a1 b1 d1→ r2

a1 b1 →r1 r2

a1 b1→rpart

After applying step1 of the minimal cover algorithm , we

get

a1 b1 c1→d1

a1 b1 d1→r1

a1 b1 d1→ r2

a1 b1 →r1

a1 b1→r2

a1 b1→rpart

Applying step2, we get the same FDs, as we do not have

redundant FDs. Applying step3 we consider the LHS having

more than two attributes. The closure rule is applied and

checked to see any extraneous attributes. All FDs are

equally important and hence all FDs are retained.

Applying the step4, group all FDs having the common LHS

together.

a1 b1 c1 →d1

a1 b1 d1 → r1, r2

a1 b1 → r1 r2 rpart

This is the minimal cover obtained which is equivalent to

the original set of FDs having fewer number of FDs. The

minimization of the functional dependencies in a program

code is done using the minimal cover process. These

functional dependencies are minimized and the redundant

and irrelevant attributes are removed, which are added by

the different programmers during the maintenance phase to

keep the structure of the application program intact with

business policies.

Before restructuring

After restructuring

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 201–208 | 207

Figure 4.3: Throughput graph of the input program before

and after restructuring

The graph (before restructuring) in Figure 4.3 varies a lot

with the number of operations per second as the program is

not restructured. The number of operations per second is

competitively less after restructuring as shown in

Figure4.3(after restructuring)

5. Conclusion and Future Work

This paper presents an automated tool for abstraction of the

design information of the input Java program in the form of

control flow graph and data flow graph and stored in the

form of Control flow table and data flow table. The

functional dependencies are extracted from the Data flow

table and minimized to get the optimal set of attributes using

which the code can be comprehended. The proposed tool is

tested for its correctness and completeness by applying on

different programs of varying complexities. The tool

generates expected output for all the given programs and the

functional dependencies abstracted from the Data flow table

are further minimized. From these minimized attributes, the

different program slices are extracted using backward

slicing. Using these slices, the different functionalities

present in the input Java program are identified and

extracted.

Author contributions

The two authors have mutually discussed and analysed and

worked on the methodology and conducted different tests

for its effectiveness

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Dr. R. N. Kulkarni and Aparna K.S, “A Novel

Approach to Restructure the Input Java Program”,

International. Journal of Advanced Networking and

Applications Volume 12 ISSN: 0975-0290 4621,

2020.

[2] R. N. Kulkarni, Venkata Sandeep Edara, “Memory

Optimization Using Distributed Shared Memory

Management for Re-engineering”, International

Journal of Intelligent systems and applications in

Engineering, IJISAE, 2023.

[3] Dr. R. N. Kulkarni and Padma priya Patil, ”Abstraction

of Information Flow Table from a Restructured

Legacy ‘C’ Program to be amenable for Multicore

Architecture”, 5th International conference on

innovations in computer science and engineering.

[4] R. N. Kulkarni , Mr. P. Pani Rama Prasad, “Novel

Approach to Abstract the Data Flow Diagram from

Java Application Program”, International Journal of

Intelligent systems and applications in Engineering,

IJISAE, 2023.

[5] Dr. R. N. Kulkarni and C. K. Srinivasa, "Novel

approach to transform UML Sequence diagram to

Activity diagram", Journal of University of Shanghai

for Science and Technology, Volume 23, Issue 7,

July2021.

[6] Dr. R. N Kulkarni and P. Pani Rama Prasad,

"Abstraction of UML Class Diagram from the Input

Java Program, International Journal of Advanced

Networking and Applications Volume 12 , ISSN:

0975-0290.

[7] RashaGh Alsarraj1, Atica M. Altaie2, Anfal A. Fadhil

3, “Designing and implementing a tool to transform

source code to UM L diagrams”, Periodicals of

Engineering and Natural Sciences ISSN 2303-4521

Vol, March 2021.

[8] Ali Hameed Mohsin , Mustafa Hammad “A Code

Summarization Approach for Object Oriented

Programs” , International Conference on Innovation

and Intelligence for Informatics, Computing, and

Technologies (3ICT),2019.

[9] Code Christos Psarras, Themistoklis Diamantopoulos,

Andreas Symeonidis “A Mechanism for

Automatically Summarizing Software Functionality

from Source”. IEEE 19th International Conference on

Software Quality, Reliability and Security (QRS)

[10] Rafael R. Prado, Paulo S. L. Souza, George G. M.

Dourado, Simone R. S. Souza, “Extracting Static and

Dynamic Structural Information from Java Concurrent

Programs for Coverage Testing”, 2015 XLI Latin

American Computing Conference.

[11] Oscar Rodriguez-prieto1, Alan Mycroft, Francisco

ortin, “An Efficient and Scalable Platform for Java

Source Code Analysis Using Overlaid Graph

Representations”, Received March 10, 2020.

[12] Umair Sabir, Farooqui Azam, Samiullah, Muhammad

Waseem Anwar, Wasi Haider butt, and Anam Amjad,

“A Model Driven Reverse Engineering Framework for

Generating High Level UML Models From Java

Source Code” , Published in IEEE access dated

November 13, 2019.

[13] Shafiullah Soomro, Zainab Alansri, Mohammad Riyaz

Belgaum, “Path Executions of Java Bytecode

Programs” Advances in Intelligent Systems and

computing, Springer, 2017.

[14] Gang Shu, Boya Sun, Tim A.D. Henderson, Andy

Podgurski, “Java PDG: A New Platform for Program

Dependence Analysis”, Sixth International

Conference on Software testing, Verification and

Validation. IEEE, 2013.

[15] Dusanka Dakin, Srđan Spasojevic, Sonja Ristic Danilo

Nikolic, Darko Stefanovic, “Analysis of the tools for

https://ieeexplore.ieee.org/xpl/conhome/8848569/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8848569/proceeding

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 201–208 | 208

static code analysis”, 20th International Symposium

March 2021.

[16] Eda Ozcan , Damla Topalli , Gul Tok Demir and

Nergiz Ercil Cagily, “A user task design notation for

improved software design”, London, UK, PeerJ

computer science, 2021

[17] Diomidis Spinelli’s, Panos Louridas and Maria

Kechagia, “Software evolution: the lifetime of fine-

grained, elements”, London, UK, PeerJ computer

science, 2021

[18] Shafiullah Soomro, Zainab Alansri, Mohammad Riyaz

Belgaum, “Control and Data flow execution of Java

program”, Asian Journal of Scientific Research DOI:

10.393/ajsr , 2017.

[19] Abdul vahab karuthedath Thrissur ,Sreekutty Vijayan,

Vipin Kumar K.S. “System ependence Graph based

test case generation for Object Oriented Programs”,

International Conference on Power, Instrumentation,

Control and Computing (PICC), 2020.

[20] Jeong Yang ,Young Lee, Deep Gandhi, Sruthi

Ganesan Valli, “Synchronized UML Diagrams for

Object-Oriented Program Comprehension”, The 12th

International Conference on Computer Science &

Education (ICCSE 2017) August 22-25, 2017.

University of Houston, USA.

[21] Elliot Varey, John Burrows, Jing Sun† and

Sathiamoorthy Manoharan “From Code to Design: A

Reverse Engineering Approach”, IEEE sponsored

International Conference on Engineering of Complex

Computer Systems 2016 IEEE DOI

10.1109/ICECCS.2016.1.

[22] Michael John Decker1 , Kyle Swartz , Michael L.

Collard , and Jonathan I. Maletic, “A Tool for

Efficiently Reverse Engineering Accurate UML Class

Diagrams”, International Conference on Software

Maintenance and Evolution, 2016 IEEE.

[23] A.B Amoore, M.A. Amodu Longe, “Functional

Dependency: Design and Implementation of a

Minimal Cover Algorithm” , IOSR Journal of

Computer Engineering (IOSR-JCE) e-ISSN: 2278-

0661,p-ISSN: 2278-8727, Volume 19, Issue 5, Ver. I

(Sep.- Oct. 2017).

[24] Dr. Shivanand M. Handigund “ An Ameliorated

Methodology for the Abstraction and Minimization of

Functional Dependencies of legacy ‘C’ Program

Elements “, International Journal of Computer

Applications (0975 – 8887) Volume 16– No.3,

February 2011.

