

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 619

Software Defect Prediction Through Effective Weighted Optimization

Model for Assured Software Quality

Devi Priya Gottumukkala1, D. Ushasree2 and T. V. Suneetha3

Submitted: 04/11/2023 Revised: 28/01/2024 Accepted: 05/02/2024

Abstract: Software Defect Prediction is one of the active research areas in software engineering. Defect prediction approach identifies the

defect prone modules before the testing phase starts. Metrics based defect prone modules improve the software quality, reduce the cost and

leading to effective allocation of resources. This paper developed an effective software defect prediction model for the software quality

assurance. In the first module, the various classifier’s performance is analyzed using all the metrics of the KC1 dataset. In the second

module, Firefly optimization algorithm is used for selecting the minimal number of metrics and passing them as input to the SVM classifier.

In this paper, the fitness function of the Firefly algorithm is modified to maximize the accuracy and minimize the number of metrics. Based

on the fitness function, Firefly algorithm tries to find a better set of metrics which improve the accuracy of defect prediction. In the third

module, Hybrid FF or WFCMFF (Weighted FCM Firefly Search) approach is proposed to find a better set of metrics to further improve

the performance of defect prediction. This approach combines the Firefly Algorithm and the Stochastic Weighted FCM Search algorithm

to select the better set of metrics. The obtained results show that, the WFCMFF approach classifies the defect prone modules better when

compared to the FF based feature selection. The achieved accuracy is 93.26%. for the SVM classifier. The classification-based defect

prediction Model is evaluated in terms of its accuracy in classifying the module as defective or non-defective. Results proved that the

proposed defect prediction Model has improved the accuracy from 86.27 % to 93.26%. Thus, the proposed classification-based defect

prediction Model using FF and WFCMFF approaches, highly improves the defect prediction task.

Keywords: Software Defect, Firefly Optimization, Feature Selection, Weighted FCM, Classification

1. Introduction

Software programming is a discipline that is worried

about all parts of programming creation. Programmers

ought to take on an orderly and coordinated way to deal

with their work and utilize suitable instruments and

strategies relying upon the issue to be settled, the

improvement limitations and the assets accessible [1].

Computer programming is worried about all parts of

programming creation from the beginning phases of

framework particular till the upkeep of the framework

after it has been utilized to utilize [2]. Programming is the

use of a deliberate, trained, quantifiable way to deal with

the turn of events, activity, and support of programming;

that is, the utilization of designing to programming (IEEE

1990) [3]. The "efficient, trained, quantifiable

methodology" is many times named a product cycle

strategy (in the general sense) or a product improvement

process (in the particular sense). Explicit programming

improvement processes comprise of a specific

arrangement of programming improvement rehearses,

which are much of the time performed by the computer

programmers in a foreordained request [4]. In

Programming industry, there are a few extraordinary and

major problems during the product improvement process.

A portion of the issues are Manageable Medium, Evolving

Prerequisites, Timetable Hopefulness and Timetable

Strain [5].

Software Quality Assurance (SQA) is an arranged and

efficient example of activities important to give

satisfactory certainty that a product item adjusts to the

necessities during programming improvement [6]. SQA

comprises of strategies and procedures of evaluating the

product improvement cycles and techniques, apparatuses,

and advances used to guarantee the nature of the created

programming. SQA is ordinarily accomplished using

obvious standard works on, including instruments and

cycles for quality control to guarantee the respectability

and dependability of programming [7]. Programming

quality confirmation is perhaps of the main part in

programming project the board. Research on different

points of view of programming quality and related

exercises has been directed for a very long time, and

numerous ends and practices have been introduced to

further develop programming quality [8]. One part of the

exploration in this space is to lay out programming quality

assessment Models that could be utilized at the beginning

phases of a venture to gauge the quality level. The

1Assistant Professor, Department of Computer Science and Engineering,

Malla reddy university, Hyderabad. India. Email:

mantena2377@gmail.com
2Assistant Professor, Department of CSE, Gokaraju Rangaraju Institute of

Engineering and Technology, Hyderabad. India. Email:

dupakuntlausha@gmail.com
3Assistant professor, Department of CSE, Gokaraju Rangaraju Institute of

Engineering and Technology, Hyderabad. India. Email:

takkellapati9@gmail.com

mailto:mantena2377@gmail.com
mailto:dupakuntlausha@gmail.com
mailto:takkellapati9@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 620

assessment results can go about as a rule to upgrade the

quality confirmation execution [9].

SQA is much of the time saw as a region causing extra

expenses and postpones in programming creation [10].

Expanded mechanization support for SQA is promising

for cost decrease and effectiveness, yet additionally for

deliberately working on the item and cycle quality through

repeatability, discernibility, and consistency. Nonetheless,

computerization raises difficulties, particularly because of

the dynamicity and pre-adulthood of Programming

improvement as a discipline. Because of the huge effect

of SQA on project costs [11], the expense viability of

cement SQA measures (i.e., activities) is fundamental, and

ought to be founded on logically applicable Computer

programming climate information for practical

transformation to changing conditions and limitations.

The convenient task of SQA measures requires their tight

coordination in Programming advancement processes,

explicitly substantial work processes that must essentially

be adjusted since the specific measures are not foreknown

however are logically reliant. SQA is corresponding

comparative with generally project size [12], while how

much exertion distributed to SQA ought to be front-

stacked (up to 25% of advancement exertion) and be

decreased later [13].

The Nature of the advancement interaction

straightforwardly influences the nature of the conveyed

items. The quality arrangement is the arrangement of

value related exercises that an undertaking intends to do

to accomplish the quality objective. Quality objectives are

determined concerning acknowledgment rules. The

conveyed programming ought to work in every one of the

circumstances and experiments in the acknowledgment

models. The Quality Confirmation (QA) process includes

choosing norms that can be applied to the product cycle

and item [14]. The QA cycle begins with arranging and

leading examination and audits. It is a continuous

interaction inside the Product Improvement Life Cycle

(SDLC) that regularly takes a look at the created

programming to guarantee that it meets the ideal quality

measures. SQA processes test for quality in each period of

improvement until the product is finished. With SQA, the

product improvement process moves into the following

stage solely after the current/past stage consents to the

expected quality principles. SQA by and large deals with

at least one industry principles that assistance in building

programming quality rules and execution methodologies

[15].

1.1 Contribution of the Paper

In this paper aimed to develop an effective model for the

software defect detection or prediction to achieve desire

software quality assurance. The specific contribution of

the paper are presented as follows:

1. Initially, the firefly optimization model is utilized for

the estimation of the metrics for the software

classification.

2. Based on the estimation model FireFly model is

implemented with the weighetd FCM model for the

selecting the minimal number of metrics and passing

them as input to the classifier.

3. With the WFCMFF (Weighted FCM Firefly Search)

approach is proposed to find a better set of metrics to

further improve the performance of defect prediction.

This approach combines the Firefly Algorithm and the

Stochastic Weighted FCM Search algorithm to select

the better set of metrics.

4. The obtained results show that, the WFCMFF

approach classifies the defect prone modules better

when compared to the FF based feature selection. The

achieved accuracy is 93.26%. for the SVM classifier.

The classification-based defect prediction Model is

evaluated in terms of its accuracy in classifying the

module as defective or non-defective. Results proved

that the proposed defect prediction Model has

improved the accuracy from 86.27 % to 93.26%. Thus,

the proposed classification-based defect prediction

Model using FF and WFCMFF approaches, highly

improves the defect prediction task.

This paper is organized as follows: Section 2 provides the

related works for software defect prediction. The

methodology for the software defect prediction is

presented in section 3 and results are presented in Section

4. Finally, the overall conclusion model is presented in

Section 5.

2. Related Works

In [16] utilizes the Rao optimization method and the

multi-criteria decision-making (MCDM) method in a

hybrid feature selection (filter–wrapper) strategy to select

the most informative features in order to raise the software

defect prediction rate. The proposed work estimates the

wellness of the competitor arrangement by utilizing the

deformity expectation rate and the component choice

proportion. Three well-known NASA benchmark

datasets—PC5, JM1, and KC1—are used to compare the

proposed method's performance to that of current

methods. On the benchmark datasets, The proposed

feature subset selection scheme selects the most essential

feature subset for defect prediction with an average

accuracy of 95%. In terms of defect prediction rate, the

experimental results demonstrate that the proposed hybrid

strategy performs better than the standard strategy.

[17] examined the effect of hyperparameter optimization

on defect count prediction. We discovered that

hyperparameter optimization of learning methods: From

15 software defect datasets: 1) boosts MLPR, Lasso, DTR,

Hubber, and SVR's prediction performance by 16.96%,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 621

8.31%, 8.16%, 6.01%, and 5.22 percent, respectively; (2)

Optimization is not taken into account by a linear

regression; 3) Random search optimization outperformed

grid search optimization overall in terms of prediction

performance by 3.36 percent; 4) The non-significant

classifier's ranking has also changed a lot, and 5) logistic

regression received the highest ranking for

hyperparameter optimization. Despite the fact that both

methods performed well, the grid search consistently

outperformed the random search when it came to the

default parameter. However, with a random search, it

might not be. When using parameter-sensitive regression

methods, this emphasizes the significance of exploring the

parameter space.

Domain adaptation (DA) is carried out with the help of

kernel twin support vector machines (KTSVMs) in [18],

which evaluated the distributions of the training data for

various projects. Moreover, this paper uses DA-KTSVMs,

or KTSVMs with DA capacities, as the CPDP model. An

improved quantum particle swarm optimization algorithm

(IQPSO) is used to optimize the parameters of the DA-

KTSVM, which has an effect on the predictive

performance of the model. The improved DA-KTSVM is

referred to as DA-KTSVMO. Experiments on 17 open

source software projects are carried out in order to verify

the efficacy of DA-KTSVMO. DA-KTSVMO is capable

of not only achieving an expectation execution that is

superior to that of the other CPDP models that were

examined, but it is also capable of achieving an

expectation execution that is virtually identical to or

superior to that of WPDP models, as demonstrated by the

findings of the investigation as well as the findings of the

exploratory tests. In a similar vein, DA-KTSVMO's

expectation execution can be improved by utilizing the

data that is currently in place and reusing incorrect data.

The newly developed High dimension software defects

prediction model (HD-SDP) based on SVM is proposed in

[19] as a synchronous solution to the issue of dataset class

imbalance in software defects prediction and support

vector machine (SVM) parameter selection. incorporating

the F-metric, the rate of false positive defects, the balance

value, and the detection probability as four objectives. A

unified integration of many-objective optimization

algorithm based on temporary offspring (UIMaOTO) is

utilized in addition to the synchronous selection of the

parameters for the SVM and non-defective module in this

model. In order to produce formal offspring, UIMaOTO

employs a temporary offspring strategy and then proposes

a unified integration strategy to raise the selection

pressure on the algorithm. The analysis' results are

contrasted with those of other state of the art calculations

utilizing UIMaOTO on the notable DTLZ test suite. In

many-objective optimization problems, the findings

demonstrate that the proposed algorithm outperforms the

competition overall. When dealing with the HD-SDP

model simultaneously, the UIMaOTO algorithm performs

better than the other algorithms by 14.27 percent.

WSHCKE, a unified defect prediction predictor, was

constructed using a hybrid deep neural network consisting

of a kernel extreme learning machine (KELM) and a

convolutional neural network (CNN) [20]. This

WSHCKE can further integrate the selected features into

the abstract deep semantic features generated by the CNN

and improve prediction performance by fully utilizing the

strong classification capacity of KELM. On twenty all-

around focused on programming projects, we complete

broad analyses for include choice or extraction as well as

imperfection expectation on four assessment points. The

consequences of the analyses show that WSHCKE and

EMWS are better.

In [21], the software defect prediction model based on

transfer learning was utilized. The dataset from the initial

production site was used to train multitask artificial neural

networks (ANNs) for defect prediction and surface gloss.

After that, the previously trained mold and ANN model

were moved to a different manufacturing facility. With R2

= 0.94, the new machine had the option to anticipate

surface shine for the pre-prepared model precisely;

However, due to various machine characteristics, the

surface defect prediction was not as accurate as it could

have been. On the single teachable result layer, the

forecast exhibition of the exchange learning was high and

stable. In addition to producing a surface defect prediction

with an accuracy of 0.90 that was superior to that of

surface gloss (R2 > 0.95) and comparable to that of

surface gloss, the use of transfer learning significantly

reduced the size of the dataset that was required. Physical

molding experiments showed that the transferred model

allowed for model-based, multi-objective process

parameter optimization, which made it possible to

produce injection-molded parts with high surface quality

that are both durable and effective.

A robust information-driven HDP model known as

IVKMP was proposed in [22] for this review. InfoGAN

(Information maximizing GANs), a cutting-edge deep

generation network that simultaneously achieves class

balance and generates sufficient instances of defects for

data augmentation, serves as our foundation. Also, the

multi-objective VaEA (Vector point based Formative

Estimation) progression is utilized to choose the metric

subsets with the least number of representative focuses

while finishing the base mistake. Last but not least, a deep

defect predictor for HDP based on the light but powerful

deep network PCANet (Principal Component Analysis

Network) is built using a block-wise histogram and binary

hashing to basically capture robust representations that are

more semantically related. The IVKMP model is

contrasted with various state of the art standard models

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 622

more than 542 heterogeneous undertaking matches

including 26 programming projects. The outcomes of the

trials demonstrate the prevalence and power of our

IVKMP model.

[23] provides a suggestion for the framework for dual-

scale ensemble learning. The use of sample entropy (SE)

and complete ensemble empirical mode decomposition

adaptive noise (CEEMDAN) to decompose and

reconstruct AQI series makes direct modeling simpler.

Low-frequency components are predicted by the

regularized extreme learning machine (RELM), while

high-frequency components are predicted by the long

short term memory neural network (LSTM). The hyper-

parameters of the RELM and LSTM models are also

optimized with the help of the improved whale

optimization algorithm (WOA). Finally, the half breed

expectation model presented in this paper can be used to

predict the AQI of four Chinese urban communities. The

accuracy of AQI predictions, which is crucial to the

sustainable growth of cities, is effectively enhanced by

this work.

3. Weighted FCM Firefly Optimization for

Feature Extraction

This research focused on the extraction of features in the

software defect prediction (SDP). The proposed

(Weighetd FCM Firefly Feature Optimization

Classification) WFCMFF model for the software defect

identification. The WFCMFF model aimed to design the

fitness function evaluation through multi-objective

feature selection model to increase the classifier accuracy

to increase the performance of classification. Through the

integration of Firefly optimization model features are

optimized for the prediction of defects. The overall

process in the proposed WFCMFF model architecture is

presented in figure 1.

Fig 1: WFCMFF Model for Software Defect Prediction

Firefly Algorithm (FA) belongs to the class of inspired

algorithm with the fireflies past and flashing of the

fireflies behaviour. The fireflies flashing behavior attract

towards the mating groups. The firefly those are less

bright are attracted by the brighter one. The estimation is

based of consideration of fireflies as unisexual those are

attracted each other. The WFCMFF model comprises of

the estimation of objective function with the swarm-based

intelligence optimization model to resolve optimization

problem those are proportional to the firefly for the quality

through the problem setting. Subsequently, the brighter

firefly are attracted with the partner those are in search

space effectively. The FFOA model comprises of the

fireflies 𝑥𝑖, 𝑖 1,2, … . , 𝑛 those are positioned initially and

evaluated in the search space intensity for the every firefly

I related to the objective function 𝑓(𝑥) = 𝑙 = 𝛼𝑓(𝑥). The

each firefly subjected to higher intensity with each other

denoted as i.e 𝑙𝑖 > 𝑙𝑗, 𝑗 = 1,2, … . , 𝑛, 𝑗 ≠ 𝑖. The

brightness level of each fireflies varies from firefly to

firefly based on the distance denoted as 𝑗; 𝑟𝑖𝑗 = 𝑑(𝑥𝑖 , 𝑥𝑗).

Additionally, the intensity of light of fireflies decreases in

distance based on the source obtained through air. Thus,

fireflies are limited for the specific distance. The FFOA

model comprises of the real number deployed in random

manner through global communication based on particles.

The resulted FFOA model is effective with the multi-

objective optimization model with the signal function

attraction between mate to attract the prey value. Based on

the square-law the light intensity is evaluated based on the

distance those are inverse. The light intensity distance are

minimizes effective in the formulated manner associated

with the optima objective function. The proposed FFOA

model flow chart is presented in figure 2 as follows:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 623

Fig 2: Flow of WFCMFF

Algorithm 1: Pseudo Code of Firefly algorithm

Generate initial population of feature set 𝑥𝑖 (𝑖 = 1,2, … . , 𝑛)

Fitness function f at xi is determined

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 (
𝑇𝑡𝑜𝑡 − 𝑇𝑖𝑜

𝑇𝑡𝑜𝑡

) +
𝛽

𝐹

While (t <MaxGeneration)

for i = 1 : n all n featureset

 for j = 1 : i all n featureset

if (𝑓(𝑥𝑖) > 𝑓(𝑥𝑗))

𝑥𝑗 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟0
2
(𝑥𝑗 − 𝑥𝑖) + 𝛼 ∈𝑖

end for j

end for i

Rank the feature sets and find the current best

end while

The feature set for the weighted FCM model based on the fireflies are estimated in feature set is presented in figure 3.

Fig 3: Sample Population of Feature Set

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 624

3.1 Fitness Function

Fitness function estimates the desire solution for the

evaluation of suitability for the extraction of features.

With WFCMFF model evaluates the fitness function

assigned based on the computed assigned score solution.

The score are computed based on the numerical

representation of value to achieve the specific solution to

resolve the problem. Inbiologyal point of view, fitness is

implemented to derive the individual score value based on

the conditions. The individual environment is represented

based on the search space. The WFCMFF model compute

the minimal fitness value to derive the possible solution

value in the set. In general, fitness function F(x) is

computed based on the firefly based objective function for

the multiple solution to achieve near or optimal values.

The optimal solution is evaluated based on the multiple

population to achieve the optimal solution. The multiple

objective function with WFCMFF model is stated as in

equation (1)

𝐹(𝑥) = 𝑘1𝑓1(𝑥) + 𝑘2𝑓2(𝑥) + ⋯ … . . +𝑘𝑛𝑓𝑛(𝑥)

(1)

In above equation (1) weights are stated as 𝑘1, 𝑘2 and 𝑘𝑛.

3.2 Fitness function for metric selection

With WFCMFF model the fitness function is computed

based on the estimation of the optimal solution values.

Through consideration of particular ranking solution

feature metrices are evaluated based on the fitness

function estimation with firefly algorithm integrated with

multiple functions. The feature metrices are evaluated

based on the fitness function integrated with the

consideration of multiple objective functions. The

multiple-objective function are combined with the single

objective function as stated in equation (2)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 (
𝑇𝑡𝑜𝑡− 𝑇𝑖𝑜

𝑇𝑡𝑜𝑡
) +

𝛽

𝐹
 (2)

where 𝛼 and 𝛽 stated as the constant lies between 0 & 1,

either + =1

The firefly attraction is considered based on the light

intensity associated with the encoded objective function.

To overcome the optimization brightness of the firelfies

are computed based on I with position x stated as I(x) ~

f(x). However, the relative factors are estimated for the

attractiveness for the varying distance rij based on the i and

j. The intensity of lights are evaluated based on the source

with the varying degree of the absorption. The light

intensity of fireflies with the varying distance 𝐼(𝑟) with

the distance r those are computed with the exponential

variation measured as in equation (3)

𝐼 = 𝐼0𝑒−𝛾𝑟 (3)

In the above equation (3) the intensity of light is

represented as 𝐼0 with the absorption coefficient of light

as 𝛾. As the attractiveness of the fireflies are directly

proportional to the adjacent fireflies with the

attractiveness level 𝛽 stated in the equation (4)

𝛽 = 𝛽0𝑒−𝛾𝑟 (4)

The attractiveness variation based on the distance of the

communicated fireflies are stated as 𝛾 denoted as 𝛾 ∈

[0,10]. The movement of fireflies are computed for the

movement i for the firefly i attractiveness as stated in

equation (5)

𝑥𝑗 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟(𝑥𝑗 − 𝑥𝑖) + 𝛼𝜀1 (5)

The first term is associated with the attraction and third

term is defined as the randomization with the random

variable vector 𝜀1 with the Gaussian distribution of 𝛼 ⫅

[0,1]. The fireflies distance are computed based on the

cartesian distance value as stated in the equation (6)

𝑟𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖ = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑑

𝑘=1

(6)

In above equation (6) the ith Firefly spatial co-ordinates of

the kth element denoted as 𝑥𝑗,𝑘. The firefly algorithm

fitness function is maximized through the validation set

for the training set as presented in equation (7) for the

selected feature number

𝑓𝜃 = 𝜔 ∗ 𝐸 + (1 − 𝜔)
∑ 𝜃𝑖𝑖

𝑁
 (7)

In above equation (7) the fitness function is represented as

𝑓𝜃 with the vector size of N with 0/1 elements for the

selected features. The dataset feature set total count is

denoted as N and classification error is presented as E with

the classification of feature values. The individual fitness

is evaluated based on the threshold based extracted feature

as in equation (8)

𝑓𝑖𝑗 = {
1 𝑖𝑓 𝑥𝑖𝑗 > 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8)

In the above equation (8) the search agent dimension are

stated as 𝑥𝑖𝑗 with dimensions i and j. The firefly solution

are updated based on the dimensional value with the

limited constraints value of [0, 1], with the rule for

truncation to ensure the limited variables. The factor those

are decremented exhibits the constant rate with the end

optimization of the minimal value as presented in equation

(9) with the maximal exploration of optimization in the

end scenario

𝛼𝑡+1 = 𝛼𝑡 ∗ 𝛿 (9)

In the above equation (9) the randomization factor 𝛼 and

𝛼𝑡 provides the rate of change as stated in 𝛿 for the

iteration count of t.

3.3 Weighted FCM Search Algorithm Defect

Prediction

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 625

The WFCMFF model comprises of the optimization with

the multi-agent global search with the single agent

interaction with tandem calling mechanism. The model

comprises of the sequence of steps with foraging model to

identify the position of food and single ant position is

computed with SDS based description model with the

social metaphor value demonstrated procedure of SDS

model. The WFCMFF model with SDS perform the

initialization of population to evalute the standard solution

as explained below:

Initialising agents ()

While (stopping condition is not met)

Testing hypotheses()

Weighted FCM hypotheses()

End While

In the testing phase, the evaluation is computed based on

every agent through the randomly selected region for the

s process. The agent based mechanism perform the

inactive and Weighted FCM phase for the random agent

estimation for the selection of agent those are inactive and

active those are generated random manner. The figure 4

provides the graphical illustration of the proposed

WFCMFF model flow chart.

Fig 4: Overall Process of WFCMFF

Algorithm 2: Pseudo Code of WFCMFF Approach

Step 1: Initialize the population with feature sets randomly. Feature set consists of 0’ s(Feature not selected)

and 1’s (feature selected)

Step 2 : Calculate the fitness function for the feature set.

Step 3 : Split the featureset and initiate the SDS and Firefly Algorithm and start the iteration.

Step 4 : Update best solution at each iteration of SDS and FF

Step 5 : After n*25th iterations, greedy search is initiated by grouping all the feature sets from SDS and Firefly.

Step 6 : Repeat the step from 2 until the maximum iteration is reached

Greedy (Feature Set, Size, fitness function)

Fitness Function f (xi) (i=1..N)

Step 1 : For each feature set Xi (i=1..N)

Step 2 : For each feature set Xj (j=i+1..N)

Step 3 : If (f (xi))≤ f (xj))

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 626

Step 4 : Replace the fitness value of f (Xi) with fitness value of f(Xj)

Step 5 : Update the corresponding feature set.

Step 6: End if

Step 7: End For

Step 9: End For

Return feature set.

3.4 KC1 Dataset

The dataset for the WFCMFF model with consideration

for repository model comprises of the explicit dataset

deployed to increases the software prediction method for

defect estimation with consideration of different metrices.

The dataset is evaluated based on the consideration of

NASA software detection based subsystem. The dataset

comprises of the static code for the fault data and

estimation of corresponding modules. The modules are

estimated based on the defined function, procedure or

method of projects. Through the effective data mining

model the accurate value is assessed for the computation

with classification process. The software metrices

examined for the dataset is similar to that of Line of Code

(LOC) with consideration of operators and operand,

length of program, complexity, estimated time, effort and

other metrices for the measurement of software defect.

The variation in the defects are computed based on the

non-normal characteristic such as excessive value,

variances, collinearity and skewness. The characteristics

of the dataset in analysis of the software are presented as

follows:

Number of cases – a) Small (n <= 500), b) Medium (500

< n < 10000), c) Large (n >= 10000).

Number of features – a) Small (p <= 6), b) Medium (6

< p < 20), c) Large (p >= 20);

Distribution of values – a) Skewed, b) Outliers;

Independence of features – a) Independent, b) Multi-

collinear;

Feature type – a) Discrete, b) Continuous.

 The KCI dataset is evaluated based on the

consideration of project data processing with the 2109

modules with C++. The Metric Data Program (MDP)

comprises of the data repository with the logical group of

data through Computer Software Components (CSCs) for

the larger system. In those modules, the dataset comprises

of 328 fault data and 1.781 non fault data. With WFCMFF

prediction is evaluated based on the product metrices with

the consideration of dependent and independent variables.

The dataset comprises of the dependent class label those

are independent to each other. The KCI model comprises

of C++ system implemented for the management of

storage and ground receipt for the processing to extract the

feature code base don measured modules. The dataset

comprises of the 22 various attributes with 4 LOC, 4

McCabe , 1 goal field,12 Halstead metrices as presented

in table 1.

Table 1: List of Software metrics in KC1 dataset

Metric Type Notation Description

LOC

LOComment Total number of comment lines

LOCode Total no of executable codes

LOBlank Total number of blank lines

LOCode and Comment Total number of Lines of code and

comment

McCabe

Loc Line of code

v(g) cyclomatic complexity

ev(g) essential complexity

iv(g) design complexity

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 627

Metric Type Notation Description

Halstead

N Total no of operators + operands

V Halstead volume

L Halstead Program level

D Halstead difficulty

I Halstead intelligence

E Halstead effort

B Halstead error estimate

T Halstead’s time estimator

uniq_Op unique operators

Uniq_Opnd unique operands

total_Op total operators

total_Opnd total operands

Miscellaneous BranchCount branch count

Class label Defective {True or False}

i.e module has defect/no defect

4. Results and Discussion

The performance of the proposed WFCMFF model is

evaluated based on the consideration of different metrices

to achieve the defect prediction. The performance

metrices utilized are accuracy, precision, recall and F-

measure. Through the analysis the confusion matrix is

formulated for the performance evaluation with the

classification algorithm. In table 2 the confusion matrix

estimated in presented.

Table 2: Confusion Matrix of Defect Classification

 Defect (Predicted) No Defect (Predicted)

Defect (Actual) Tp Fn

No defect (Actual) Fp Tn

Tp = A Defective module is correctly classified as a

defective module

Fp = A Non defective module is wrongly classified as a

defective module

Fn = A Defective module is wrongly classified as a non

defective module.

Tn= A Non defective module is correctly classified

as a non defective module.

The performance of proposed WFCMFF model is

evaluated for the consideration of different classifiers such

as SVM, KNN, NB, DTNB, NB simple, PART and

Bayesnet to achieve the feature selection. The

comparative analysis of propsoed WFCMFF with the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 628

conventional technique are presented as follows the

selected features are presented in table 3

Table 3: List of Features Selected and parameter setting in WFCMFF

 Features

Weighted FCM FireFly

(WFCMFF)

LOCode, cyclomatic complexity, design complexity, Halstead Program level, Halstead effort,

Halstead error estimate, unique operators, unique operands & branch count

No of features Selected 9

Parameter setting for FF

in WFCMFF

N=15 fireflies , 𝛼=0.5,𝛽 =0.5,𝛿 =0.3,y =0.5

SVM kernel Linear

In table 4 provides the comparative analysis of selected

features for the proposed WFCMFF with consideration of

9 features for the input classifiers. The WFCMFF model

comprises of the different classifiers such as NBSimple,

SVM, PART, DTNB, NBUpdatable, NNgeCompliment

and bayesNet. It is observed that proposed WFCMFF

model exhibita the improved performance compared with

other classifiers. The developed WFCMFF model exhibits

the improved global optimization solution for the cluster

to achieves the effective performance characteristics.

Table 4: Comparison of Results for KC1 dataset without FS and with FF FS

Classifiers Classification Accuracy Precision Recall F -Measure

SVM

Without WFCMFF 90.27 0.8048 0.9098 0.8541

With WFCMFF 93.26 0.8822 0.8507 0.8654

KNN

Without WFCMFF 87.76 0.7728 0.8912 0.8278

With WFCMFF 92.31 0.8668 0.825 0.8439

NB

Without WFCMFF 86.38 0.7581 0.8843 0.8164

With WFCMFF 91.5 0.8418 0.8253 0.8332

PART Without WFCMFF 87.8 0.7656 0.8047 0.7827

With WFCMFF 91.27 0.8358 0.8239 0.8297

DTNB Without WFCMFF 88.75 0.7813 0.8354 0.8039

With WFCMFF 90.32 0.819 0.7994 0.8087

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 629

NBSimple Without WFCMFF 84.01 0.7197 0.8074 0.7474

With WFCMFF 89.75 0.8053 0.796 0.8005

BayesNet Without WFCMFF 71.19 0.6468 0.7693 0.6392

With WFCMFF 85 0.7218 0.7679 0.7405

The table 5 provides the comparative examination of feature selection process with the Firefly and the WFCMFF model for

the software defect prediction mode.

Table 5: Comparison of Results for KC1 dataset with FF Feature Selection and WFCMFF Feature Selection

Classifiers Feature Selection Classification Accuracy Precision Recall F -Measure

SVM

 FF (FireFly) 90.27 0.8048 0.9098 0.8541

 WFCMFF 93.26 0.8822 0.8507 0.8654

KNN

 FF 87.76 0.7728 0.8912 0.8278

 WFCMFF 92.31 0.8668 0.825 0.8439

NB

 FF 86.38 0.7581 0.8843 0.8164

WFCMFF 91.5 0.8418 0.8253 0.8332

PART FF 87.8 0.7656 0.8047 0.7827

WFCMFF 91.27 0.8358 0.8239 0.8297

DTNB FF 88.75 0.7813 0.8354 0.8039

WFCMFF 90.32 0.819 0.7994 0.8087

NBSimple FF 84.01 0.7197 0.8074 0.7474

WFCMFF 89.75 0.8053 0.796 0.8005

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 630

BayesNet FF 71.19 0.6468 0.7693 0.6392

WFCMFF 85 0.7218 0.7679 0.7405

Fig 5: Comparison of different classifiers based on Accuracy for FF Feature Selection and WFCMFF Feature Selection

In the figure 5 it is observed that the proposed model

exhibist the improved classification accuracy value of

3.35% than the SVM with proposed WFCMFF. The

performance of WFCMFF model is 6.07% higher

performance than the KNN model. NB model achieve the

classification accuracy of 6.03% with PART model the

accuracy of WFCMFF is 4.95% higher. In case of DTNB

model the proposed WFCMFF classification achieves the

10.43% higher performance and with Bayesnet model the

accuracy is 26.84% higher than WFCMFF model. The

KNN achieves the minimal accuracy value of 1.9% less

than the proposed WFCMFF. The performance of

WFCMFF is 3.83% and 9.26% higher than the NBSimple

and BayesNet model.

Fig 6: Comparison of different classifiers based on Precision for FF Feature Selection and WFCMFF Feature Selection

According to Table 5 and Figure 6, SVM- with WFCMFF

FS has a higher precision of 9.18 percent, while KNN-

with FF FS has a higher precision of 13.22 percent, NB-

with FF FS has a higher precision of 15.13 percent, PART

with FF FS has a higher precision of 14.2 percent, DTNB-

with FF FS has a higher precision of 12.13 percent,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 631

NBSimple with FF FS has a higher by 1.76% for KNN-

with WFCMFF FS, by 4.69 percent for NB- with

WFCMFF FS, by 5.4% with WFCMFF FS, by 7.43

percent with DTNB- with WFCMFF FS, by 9.11 percent

with NBSimple- with WFCMFF FS, and by 20 percent

with Bayes Net- with WFCMFF FS.

Fig 7: Comparison of different classifiers based on Recall for FF Feature Selection and WFCMFF Feature Selection

According to Table 5 and Figure 7, the recall of SVM with WFCMFF FS is significantly higher by 6.7% for SVM with FF

FS, 4.65% for KNN with FF FS, 3.87 percent for NB with FF FS, 5.56 percent for PART with FF FS, 1.81 percent for DTNB

with FF FS, and 5.22 percent for FF FS for NBSimple-with FF FS, by 10.05% for Bayes Net-with FF FS, by 3.07% for KNN-

with WFCMFF FS, by 3.03% for NB-with WFCMFF FS, by 3.2% for PART-with WFCMFF FS, by 6.22% for DTNB-with

WFCMFF FS, by 6.64% for NBSimple-with WFCMFF FS and by 10.2% for Bayes Net-with WFCMFF FS.

Fig 8: Comparison of different classifiers based on F -Measure for FF Feature Selection and WFCMFF Feature Selection

According to Table 5 and Figure 8, the F-Measure of

SVM- with WFCMFF FS is higher by 1.3%, by 4.44

percent for KNN- with FF FS, by 5.83 percent for NB-

with FF FS, by 10.04% for PART-with FF FS, by 7.37

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 632

percent for DTNB- with FF FS, by 14.6 percent for

NBSimple- with FF FS, and by 30.7 percent for Bayes, by

2.52% for KNN- with WFCMFF FS, by 3.79 percent for

NB-, 4.22 percent for PART-, 6.77 percent for DTNB-,

7.79 percent for NBSimple-, and 15.56 percent for Bayes

Net- with WFCMFF FS.

5. Conclusion

This paper constructed WFCMFF model to select the

minimal subset of features, and classifiers like SVM, NB,

KNN, PART, DTNB, BayesNet and NBSimple were used

in experiments to observe the accuracy, precision, recall

and F-Measure. The following feature which can be

eliminated from the KC1 dataset. They are LOComment,

LOBlank, LOCode and Comment, essential complexity,

Total no of operators and operands, Halstead volume,

Halstead Difficulty, Halstead Intelligence, Halstead’s

time estimator, total operators and total operands. The

results have confirmed that the classification accuracy,

recall, precision and F-Measure values of SVM -with

WFCMFF were better when compared to other classifiers.

The improved accuracy in Hybrid Firefly algorithm is

from 90.27 to 93.26 %.It is being achieved because of the

feature set generated using FF and SDS. Thus the

performance of the defect prediction improved with the

effective software quality.

References

[1] Shu, R., Xia, T., Williams, L., & Menzies, T. (2022,

May). Dazzle: using optimized generative

adversarial networks to address security data class

imbalance issue. In Proceedings of the 19th

International Conference on Mining Software

Repositories (pp. 144-155).

[2] Lavanya, S., Prasanth, A., Jayachitra, S., &

Shenbagarajan, A. (2021). A Tuned classification

approach for efficient heterogeneous fault diagnosis

in IoT-enabled WSN

applications. Measurement, 183, 109771.

[3] Tabjula, J. L., Kanakambaran, S., Kalyani, S.,

Rajagopal, P., & Srinivasan, B. (2021). Outlier

analysis for defect detection using sparse sampling

in guided wave structural health

monitoring. Structural Control and Health

Monitoring, 28(3), e2690.

[4] Kumar, A., Zhou, Y., & Xiang, J. (2021).

Optimization of VMD using kernel-based mutual

information for the extraction of weak features to

detect bearing defects. Measurement, 168, 108402.

[5] Ghoneim, S. S., Mahmoud, K., Lehtonen, M., &

Darwish, M. M. (2021). Enhancing diagnostic

accuracy of transformer faults using teaching-

learning-based optimization. Ieee Access, 9, 30817-

30832.

[6] Abid, A., Khan, M. T., & Iqbal, J. (2021). A review

on fault detection and diagnosis techniques: basics

and beyond. Artificial Intelligence Review, 54,

3639-3664.

[7] Susan, S., & Kumar, A. (2021). The balancing trick:

Optimized sampling of imbalanced datasets—A

brief survey of the recent State of the

Art. Engineering Reports, 3(4), e12298.

[8] Xie, R., Qiu, H., Zhai, Q., & Peng, R. (2022). A

model of software fault detection and correction

processes considering heterogeneous faults. Quality

and Reliability Engineering International.

[9] Zhu, M., & Pham, H. (2022). A generalized multiple

environmental factors software reliability model

with stochastic fault detection process. Annals of

Operations Research, 1-22.

[10] Pritoni, M., Lin, G., Chen, Y., Vitti, R., Weyandt, C.,

& Granderson, J. (2022). From fault-detection to

automated fault correction: A field study. Building

and Environment, 214, 108900.

[11] Gupta, N., Sharma, A., & Pachariya, M. K. (2022).

Multi-objective test suite optimization for detection

and localization of software faults. Journal of King

Saud University-Computer and Information

Sciences, 34(6), 2897-2909.

[12] Gokilavani, N., & Bharathi, B. (2021). Test case

prioritization to examine software for fault detection

using PCA extraction and K-means clustering with

ranking. Soft Computing, 25(7), 5163-5172.

[13] Zhang, L., Leach, M., Bae, Y., Cui, B.,

Bhattacharya, S., Lee, S., ... & Kuruganti, T. (2021).

Sensor impact evaluation and verification for fault

detection and diagnostics in building energy

systems: A review. Advances in Applied Energy, 3,

100055.

[14] You, L. (2023). Multi-channel data flow software

fault detection for social internet of things with

system assurance concerns. International Journal of

System Assurance Engineering and Management, 1-

11.

[15] Granderson, J., Lin, G., Singla, R., Mayhorn, E.,

Ehrlich, P., Vrabie, D., & Frank, S. (2021).

Commercial fault detection and diagnostics tools:

what they offer, how they differ, and what’s still

needed.

[16] Thirumoorthy, K. (2022). A feature selection model

for software defect prediction using binary Rao

optimization algorithm. Applied Soft

Computing, 131, 109737.

[17] Nevendra, M., & Singh, P. (2022). Empirical

investigation of hyperparameter optimization for

software defect count prediction. Expert Systems

with Applications, 191, 116217.

[18] Jin, C. (2021). Cross-project software defect

prediction based on domain adaptation learning and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 619–633 | 633

optimization. Expert Systems with

Applications, 171, 114637.

[19] Cai, X., Geng, S., Wu, D., & Chen, J. (2021). Unified

integration of many-objective optimization

algorithm based on temporary offspring for software

defects prediction. Swarm and Evolutionary

Computation, 63, 100871.

[20] Zhu, K., Ying, S., Zhang, N., & Zhu, D. (2021).

Software defect prediction based on enhanced

metaheuristic feature selection optimization and a

hybrid deep neural network. Journal of Systems and

Software, 180, 111026.

[21] Gim, J., Yang, H., & Turng, L. S. (2023). Transfer

learning of machine learning models for multi-

objective process optimization of a transferred mold

to ensure efficient and robust injection molding of

high surface quality parts. Journal of Manufacturing

Processes, 87, 11-24.

[22] Zhu, K., Ying, S., Ding, W., Zhang, N., & Zhu, D.

(2022). IVKMP: A robust data-driven heterogeneous

defect model based on deep representation

optimization learning. Information Sciences, 583,

332-363.

[23] Ji, C., Zhang, C., Hua, L., Ma, H., Nazir, M. S., &

Peng, T. (2022). A multi-scale evolutionary deep

learning model based on CEEMDAN, improved

whale optimization algorithm, regularized extreme

learning machine and LSTM for AQI

prediction. Environmental Research, 215, 114228.

