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Abstract: Software Defect Prediction is one of the active research areas in software engineering. Defect prediction approach identifies the 

defect prone modules before the testing phase starts. Metrics based defect prone modules improve the software quality, reduce the cost and 

leading to effective allocation of resources. This paper developed an effective software defect prediction model for the software quality 

assurance. In the first module, the various classifier’s performance is analyzed using all the metrics of the KC1 dataset. In the second 

module, Firefly optimization algorithm is used for selecting the minimal number of metrics and passing them as input to the SVM classifier. 

In this paper, the fitness function of the Firefly algorithm is modified to maximize the accuracy and minimize the number of metrics. Based 

on the fitness function, Firefly algorithm tries to find a better set of metrics which improve the accuracy of defect prediction. In the third 

module, Hybrid FF or WFCMFF (Weighted FCM Firefly Search) approach is proposed to find a better set of metrics to further improve 

the performance of defect prediction. This approach combines the Firefly Algorithm and the Stochastic Weighted FCM Search algorithm 

to select the better set of metrics. The obtained results show that, the WFCMFF approach classifies the defect prone modules better when 

compared to the FF based feature selection. The achieved accuracy is 93.26%. for the SVM classifier. The classification-based defect 

prediction Model is evaluated in terms of its accuracy in classifying the module as defective or non-defective. Results proved that the 

proposed defect prediction Model has improved the accuracy from 86.27 % to 93.26%. Thus, the proposed classification-based defect 

prediction Model using FF and WFCMFF approaches, highly improves the defect prediction task. 
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1. Introduction 

Software programming is a discipline that is worried 

about all parts of programming creation. Programmers 

ought to take on an orderly and coordinated way to deal 

with their work and utilize suitable instruments and 

strategies relying upon the issue to be settled, the 

improvement limitations and the assets accessible [1]. 

Computer programming is worried about all parts of 

programming creation from the beginning phases of 

framework particular till the upkeep of the framework 

after it has been utilized to utilize [2]. Programming is the 

use of a deliberate, trained, quantifiable way to deal with 

the turn of events, activity, and support of programming; 

that is, the utilization of designing to programming (IEEE 

1990) [3]. The "efficient, trained, quantifiable 

methodology" is many times named a product cycle 

strategy (in the general sense) or a product improvement 

process (in the particular sense). Explicit programming 

improvement processes comprise of a specific 

arrangement of programming improvement rehearses, 

which are much of the time performed by the computer 

programmers in a foreordained request [4]. In 

Programming industry, there are a few extraordinary and 

major problems during the product improvement process. 

A portion of the issues are Manageable Medium, Evolving 

Prerequisites, Timetable Hopefulness and Timetable 

Strain [5]. 

Software Quality Assurance (SQA) is an arranged and 

efficient example of activities important to give 

satisfactory certainty that a product item adjusts to the 

necessities during programming improvement [6]. SQA 

comprises of strategies and procedures of evaluating the 

product improvement cycles and techniques, apparatuses, 

and advances used to guarantee the nature of the created 

programming. SQA is ordinarily accomplished using 

obvious standard works on, including instruments and 

cycles for quality control to guarantee the respectability 

and dependability of programming [7]. Programming 

quality confirmation is perhaps of the main part in 

programming project the board. Research on different 

points of view of programming quality and related 

exercises has been directed for a very long time, and 

numerous ends and practices have been introduced to 

further develop programming quality [8]. One part of the 

exploration in this space is to lay out programming quality 

assessment Models that could be utilized at the beginning 

phases of a venture to gauge the quality level. The 
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assessment results can go about as a rule to upgrade the 

quality confirmation execution [9]. 

SQA is much of the time saw as a region causing extra 

expenses and postpones in programming creation [10]. 

Expanded mechanization support for SQA is promising 

for cost decrease and effectiveness, yet additionally for 

deliberately working on the item and cycle quality through 

repeatability, discernibility, and consistency. Nonetheless, 

computerization raises difficulties, particularly because of 

the dynamicity and pre-adulthood of Programming 

improvement as a discipline. Because of the huge effect 

of SQA on project costs [11], the expense viability of 

cement SQA measures (i.e., activities) is fundamental, and 

ought to be founded on logically applicable Computer 

programming climate information for practical 

transformation to changing conditions and limitations. 

The convenient task of SQA measures requires their tight 

coordination in Programming advancement processes, 

explicitly substantial work processes that must essentially 

be adjusted since the specific measures are not foreknown 

however are logically reliant. SQA is corresponding 

comparative with generally project size [12], while how 

much exertion distributed to SQA ought to be front-

stacked (up to 25% of advancement exertion) and be 

decreased later [13]. 

The Nature of the advancement interaction 

straightforwardly influences the nature of the conveyed 

items. The quality arrangement is the arrangement of 

value related exercises that an undertaking intends to do 

to accomplish the quality objective. Quality objectives are 

determined concerning acknowledgment rules. The 

conveyed programming ought to work in every one of the 

circumstances and experiments in the acknowledgment 

models. The Quality Confirmation (QA) process includes 

choosing norms that can be applied to the product cycle 

and item [14]. The QA cycle begins with arranging and 

leading examination and audits. It is a continuous 

interaction inside the Product Improvement Life Cycle 

(SDLC) that regularly takes a look at the created 

programming to guarantee that it meets the ideal quality 

measures. SQA processes test for quality in each period of 

improvement until the product is finished. With SQA, the 

product improvement process moves into the following 

stage solely after the current/past stage consents to the 

expected quality principles. SQA by and large deals with 

at least one industry principles that assistance in building 

programming quality rules and execution methodologies 

[15]. 

1.1 Contribution of the Paper 

In this paper aimed to develop an effective model for the 

software defect detection or prediction to achieve desire 

software quality assurance. The specific contribution of 

the paper are presented as follows: 

1. Initially, the firefly optimization model is utilized for 

the estimation of the metrics for the software 

classification. 

2. Based on the estimation model FireFly model is 

implemented with the weighetd FCM model for the 

selecting the minimal number of metrics and passing 

them as input to the classifier.  

3. With the  WFCMFF (Weighted FCM Firefly Search) 

approach is proposed to find a better set of metrics to 

further improve the performance of defect prediction. 

This approach combines the Firefly Algorithm and the 

Stochastic Weighted FCM Search algorithm to select 

the better set of metrics.  

4. The obtained results show that, the WFCMFF 

approach classifies the defect prone modules better 

when compared to the FF based feature selection. The 

achieved accuracy is 93.26%. for the SVM classifier. 

The classification-based defect prediction Model is 

evaluated in terms of its accuracy in classifying the 

module as defective or non-defective. Results proved 

that the proposed defect prediction Model has 

improved the accuracy from 86.27 % to 93.26%. Thus, 

the proposed classification-based defect prediction 

Model using FF and WFCMFF approaches, highly 

improves the defect prediction task. 

This paper is organized as follows: Section 2 provides the 

related works for software defect prediction. The 

methodology for the software defect prediction is 

presented in section 3 and results are presented in Section 

4. Finally, the overall conclusion model is presented in 

Section 5. 

2. Related Works 

In [16] utilizes the Rao optimization method and the 

multi-criteria decision-making (MCDM) method in a 

hybrid feature selection (filter–wrapper) strategy to select 

the most informative features in order to raise the software 

defect prediction rate. The proposed work estimates the 

wellness of the competitor arrangement by utilizing the 

deformity expectation rate and the component choice 

proportion. Three well-known NASA benchmark 

datasets—PC5, JM1, and KC1—are used to compare the 

proposed method's performance to that of current 

methods. On the benchmark datasets, The proposed 

feature subset selection scheme selects the most essential 

feature subset for defect prediction with an average 

accuracy of 95%. In terms of defect prediction rate, the 

experimental results demonstrate that the proposed hybrid 

strategy performs better than the standard strategy. 

[17] examined the effect of hyperparameter optimization 

on defect count prediction. We discovered that 

hyperparameter optimization of learning methods: From 

15 software defect datasets: 1) boosts MLPR, Lasso, DTR, 

Hubber, and SVR's prediction performance by 16.96%, 
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8.31%, 8.16%, 6.01%, and 5.22 percent, respectively; ( 2) 

Optimization is not taken into account by a linear 

regression; 3) Random search optimization outperformed 

grid search optimization overall in terms of prediction 

performance by 3.36 percent; 4) The non-significant 

classifier's ranking has also changed a lot, and 5) logistic 

regression received the highest ranking for 

hyperparameter optimization. Despite the fact that both 

methods performed well, the grid search consistently 

outperformed the random search when it came to the 

default parameter. However, with a random search, it 

might not be. When using parameter-sensitive regression 

methods, this emphasizes the significance of exploring the 

parameter space. 

Domain adaptation (DA) is carried out with the help of 

kernel twin support vector machines (KTSVMs) in [18], 

which evaluated the distributions of the training data for 

various projects. Moreover, this paper uses DA-KTSVMs, 

or KTSVMs with DA capacities, as the CPDP model. An 

improved quantum particle swarm optimization algorithm 

(IQPSO) is used to optimize the parameters of the DA-

KTSVM, which has an effect on the predictive 

performance of the model. The improved DA-KTSVM is 

referred to as DA-KTSVMO. Experiments on 17 open 

source software projects are carried out in order to verify 

the efficacy of DA-KTSVMO. DA-KTSVMO is capable 

of not only achieving an expectation execution that is 

superior to that of the other CPDP models that were 

examined, but it is also capable of achieving an 

expectation execution that is virtually identical to or 

superior to that of WPDP models, as demonstrated by the 

findings of the investigation as well as the findings of the 

exploratory tests. In a similar vein, DA-KTSVMO's 

expectation execution can be improved by utilizing the 

data that is currently in place and reusing incorrect data. 

The newly developed High dimension software defects 

prediction model (HD-SDP) based on SVM is proposed in 

[19] as a synchronous solution to the issue of dataset class 

imbalance in software defects prediction and support 

vector machine (SVM) parameter selection. incorporating 

the F-metric, the rate of false positive defects, the balance 

value, and the detection probability as four objectives. A 

unified integration of many-objective optimization 

algorithm based on temporary offspring (UIMaOTO) is 

utilized in addition to the synchronous selection of the 

parameters for the SVM and non-defective module in this 

model. In order to produce formal offspring, UIMaOTO 

employs a temporary offspring strategy and then proposes 

a unified integration strategy to raise the selection 

pressure on the algorithm. The analysis' results are 

contrasted with those of other state of the art calculations 

utilizing UIMaOTO on the notable DTLZ test suite. In 

many-objective optimization problems, the findings 

demonstrate that the proposed algorithm outperforms the 

competition overall. When dealing with the HD-SDP 

model simultaneously, the UIMaOTO algorithm performs 

better than the other algorithms by 14.27 percent. 

WSHCKE, a unified defect prediction predictor, was 

constructed using a hybrid deep neural network consisting 

of a kernel extreme learning machine (KELM) and a 

convolutional neural network (CNN) [20]. This 

WSHCKE can further integrate the selected features into 

the abstract deep semantic features generated by the CNN 

and improve prediction performance by fully utilizing the 

strong classification capacity of KELM. On twenty all-

around focused on programming projects, we complete 

broad analyses for include choice or extraction as well as 

imperfection expectation on four assessment points. The 

consequences of the analyses show that WSHCKE and 

EMWS are better. 

In [21], the software defect prediction model based on 

transfer learning was utilized. The dataset from the initial 

production site was used to train multitask artificial neural 

networks (ANNs) for defect prediction and surface gloss. 

After that, the previously trained mold and ANN model 

were moved to a different manufacturing facility. With R2 

= 0.94, the new machine had the option to anticipate 

surface shine for the pre-prepared model precisely; 

However, due to various machine characteristics, the 

surface defect prediction was not as accurate as it could 

have been. On the single teachable result layer, the 

forecast exhibition of the exchange learning was high and 

stable. In addition to producing a surface defect prediction 

with an accuracy of 0.90 that was superior to that of 

surface gloss (R2 > 0.95) and comparable to that of 

surface gloss, the use of transfer learning significantly 

reduced the size of the dataset that was required. Physical 

molding experiments showed that the transferred model 

allowed for model-based, multi-objective process 

parameter optimization, which made it possible to 

produce injection-molded parts with high surface quality 

that are both durable and effective. 

A robust information-driven HDP model known as 

IVKMP was proposed in [22] for this review. InfoGAN 

(Information maximizing GANs), a cutting-edge deep 

generation network that simultaneously achieves class 

balance and generates sufficient instances of defects for 

data augmentation, serves as our foundation. Also, the 

multi-objective VaEA (Vector point based Formative 

Estimation) progression is utilized to choose the metric 

subsets with the least number of representative focuses 

while finishing the base mistake. Last but not least, a deep 

defect predictor for HDP based on the light but powerful 

deep network PCANet (Principal Component Analysis 

Network) is built using a block-wise histogram and binary 

hashing to basically capture robust representations that are 

more semantically related. The IVKMP model is 

contrasted with various state of the art standard models 
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more than 542 heterogeneous undertaking matches 

including 26 programming projects. The outcomes of the 

trials demonstrate the prevalence and power of our 

IVKMP model. 

[23] provides a suggestion for the framework for dual-

scale ensemble learning. The use of sample entropy (SE) 

and complete ensemble empirical mode decomposition 

adaptive noise (CEEMDAN) to decompose and 

reconstruct AQI series makes direct modeling simpler. 

Low-frequency components are predicted by the 

regularized extreme learning machine (RELM), while 

high-frequency components are predicted by the long 

short term memory neural network (LSTM). The hyper-

parameters of the RELM and LSTM models are also 

optimized with the help of the improved whale 

optimization algorithm (WOA). Finally, the half breed 

expectation model presented in this paper can be used to 

predict the AQI of four Chinese urban communities. The 

accuracy of AQI predictions, which is crucial to the 

sustainable growth of cities, is effectively enhanced by 

this work. 

3. Weighted FCM Firefly Optimization for 

Feature Extraction 

This research focused on the extraction of features in the 

software defect prediction (SDP). The proposed 

(Weighetd FCM Firefly Feature Optimization 

Classification) WFCMFF model for the software defect 

identification. The WFCMFF model aimed to design the 

fitness function evaluation through multi-objective 

feature selection model to increase the classifier accuracy 

to increase the performance of classification. Through the 

integration of Firefly optimization model features are 

optimized for the prediction of defects. The overall 

process in the proposed WFCMFF model architecture is 

presented in figure 1.  

 

Fig 1: WFCMFF Model for Software Defect Prediction 

Firefly Algorithm (FA) belongs to the class of inspired 

algorithm with the fireflies past and flashing of the 

fireflies behaviour. The fireflies flashing behavior attract 

towards the mating groups. The firefly those are less 

bright are attracted by the brighter one. The estimation is 

based of consideration of fireflies as unisexual those are 

attracted each other. The WFCMFF model comprises of 

the estimation of objective function with the swarm-based 

intelligence optimization model to resolve optimization 

problem those are proportional to the firefly for the quality 

through the problem setting. Subsequently, the brighter 

firefly are attracted with the partner those are in search 

space effectively. The FFOA model comprises of the 

fireflies 𝑥𝑖, 𝑖 1,2, … . , 𝑛 those are positioned initially and 

evaluated in the search space intensity for the every firefly 

I related to the objective function 𝑓(𝑥) = 𝑙 = 𝛼𝑓(𝑥). The 

each firefly subjected to higher intensity with each other 

denoted as i.e 𝑙𝑖 > 𝑙𝑗, 𝑗 = 1,2, … . , 𝑛, 𝑗 ≠ 𝑖.  The 

brightness level of each fireflies varies from firefly to 

firefly based on the distance denoted as 𝑗; 𝑟𝑖𝑗 = 𝑑(𝑥𝑖 , 𝑥𝑗).  

Additionally, the intensity of light of fireflies decreases in 

distance based on the source obtained through air. Thus, 

fireflies are limited for the specific distance. The FFOA 

model comprises of the real number deployed in random 

manner through global communication based on particles. 

The resulted FFOA model is effective with the multi-

objective optimization model with the signal function 

attraction between mate to attract the prey value. Based on 

the square-law the light intensity is evaluated based on the 

distance those are inverse. The light intensity distance are 

minimizes effective in the formulated manner associated 

with the optima objective function. The proposed FFOA 

model flow chart is presented in figure 2 as follows:  
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Fig 2: Flow of WFCMFF 

Algorithm 1: Pseudo Code of Firefly algorithm  

Generate initial population of feature set 𝑥𝑖  (𝑖 = 1,2, … . , 𝑛) 

Fitness function f at xi is determined 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼 (
𝑇𝑡𝑜𝑡 −  𝑇𝑖𝑜

𝑇𝑡𝑜𝑡

) +
𝛽

𝐹
 

While (t <MaxGeneration) 

for i = 1 : n all n featureset 

                   for j = 1 : i all n featureset 

if (𝑓(𝑥𝑖) > 𝑓(𝑥𝑗)) 

𝑥𝑗 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟0
2
(𝑥𝑗 − 𝑥𝑖) + 𝛼 ∈𝑖 

end for j 

end for i 

Rank the feature sets and find the current best 

end while 

The feature set for the weighted FCM model based on the fireflies are estimated in feature set is presented in figure 3. 

 

Fig 3: Sample Population of Feature Set 
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3.1 Fitness Function 

Fitness function estimates the desire solution for the 

evaluation of suitability for the extraction of features. 

With WFCMFF model evaluates the fitness function 

assigned based on the computed assigned score solution. 

The score are computed based on the numerical 

representation of value to achieve the specific solution to 

resolve the problem. Inbiologyal point of view, fitness is 

implemented to derive the individual score value based on 

the conditions. The individual environment is represented 

based on the search space. The WFCMFF model compute 

the minimal fitness value to derive the possible solution 

value in the set. In general, fitness function F(x) is 

computed based on the firefly based objective function for 

the multiple solution to achieve near or optimal values. 

The optimal solution is evaluated based on the multiple 

population to achieve the optimal solution. The multiple 

objective function with WFCMFF model is stated as in 

equation (1) 

𝐹(𝑥) =  𝑘1𝑓1(𝑥) + 𝑘2𝑓2(𝑥) + ⋯ … . . +𝑘𝑛𝑓𝑛(𝑥)                    

(1) 

In above equation (1) weights are stated as 𝑘1, 𝑘2 and 𝑘𝑛. 

3.2 Fitness function for metric selection 

With WFCMFF model the fitness function is computed 

based on the estimation of the optimal solution values. 

Through consideration of particular ranking solution 

feature metrices are evaluated based on the fitness 

function estimation with firefly algorithm integrated with 

multiple functions. The feature metrices are evaluated 

based on the fitness function integrated with the 

consideration of multiple objective functions. The 

multiple-objective function are combined with the single 

objective function as stated in equation (2) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼 (
𝑇𝑡𝑜𝑡− 𝑇𝑖𝑜

𝑇𝑡𝑜𝑡
) +

𝛽

𝐹
                                         (2) 

where 𝛼 and 𝛽 stated as the constant lies between 0 & 1, 

either + =1 

The firefly attraction is considered based on the light 

intensity associated with the encoded objective function. 

To overcome the optimization brightness of the firelfies 

are computed based on I with position x stated as I(x) ~ 

f(x). However, the relative factors are estimated for the 

attractiveness for the varying distance rij based on the i and 

j. The intensity of lights are evaluated based on the source 

with the varying degree of the absorption. The light 

intensity of fireflies with the varying distance 𝐼(𝑟) with 

the distance r those are computed with the exponential 

variation measured as in equation (3) 

𝐼 =  𝐼0𝑒−𝛾𝑟                                                                       (3) 

In the above equation (3) the intensity of light is 

represented as 𝐼0 with the absorption coefficient of light 

as 𝛾. As the attractiveness of the fireflies are directly 

proportional to the adjacent fireflies with the 

attractiveness level 𝛽 stated in the equation (4) 

𝛽 =  𝛽0𝑒−𝛾𝑟                                                             (4) 

The attractiveness variation based on the distance of the 

communicated fireflies are stated as 𝛾 denoted as 𝛾 ∈ 

[0,10]. The movement of fireflies are computed for the 

movement i for the firefly i attractiveness as stated in 

equation (5) 

𝑥𝑗 =  𝑥𝑖 + 𝛽0𝑒−𝛾𝑟(𝑥𝑗 − 𝑥𝑖) + 𝛼𝜀1                                        (5) 

The first term is associated with the attraction and third 

term is defined as the randomization with the random 

variable vector 𝜀1 with the Gaussian distribution of 𝛼 ⫅

[0,1]. The fireflies distance are computed based on the 

cartesian distance value as stated in the equation (6) 

𝑟𝑖𝑗 =  ‖𝑥𝑖 − 𝑥𝑗‖ =  √∑ (𝑥𝑖,𝑘 −  𝑥𝑗,𝑘)
2𝑑

𝑘=1                                       

(6) 

In above equation (6) the ith Firefly spatial co-ordinates of 

the kth element denoted as 𝑥𝑗,𝑘. The firefly algorithm 

fitness function is maximized through the validation set 

for the training set as presented in equation (7) for the 

selected feature number  

𝑓𝜃 =  𝜔 ∗ 𝐸 + (1 − 𝜔)
∑ 𝜃𝑖𝑖

𝑁
                                                   (7) 

In above equation (7) the fitness function is represented as 

𝑓𝜃 with the vector size of N with 0/1 elements for the 

selected features. The dataset feature set total count is 

denoted as N and classification error is presented as E with 

the classification of feature values. The individual fitness 

is evaluated based on the threshold based extracted feature 

as in equation (8) 

𝑓𝑖𝑗 = {
1 𝑖𝑓 𝑥𝑖𝑗 > 0.5

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                  (8) 

In the above equation (8) the search agent dimension are 

stated as 𝑥𝑖𝑗  with dimensions i and j. The firefly solution 

are updated based on the dimensional value with the 

limited constraints value of [0, 1], with the rule for 

truncation to ensure the limited variables. The factor those 

are decremented exhibits the constant rate with the end 

optimization of the minimal value as presented in equation 

(9) with the maximal exploration of optimization in the 

end scenario 

𝛼𝑡+1 =  𝛼𝑡 ∗ 𝛿                                 (9) 

In the above equation (9) the randomization factor 𝛼 and 

𝛼𝑡 provides the rate of change as stated in 𝛿  for the 

iteration count of t. 

3.3 Weighted FCM Search Algorithm Defect 

Prediction 
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The WFCMFF model comprises of the optimization with 

the multi-agent global search with the single agent 

interaction with tandem calling mechanism. The model 

comprises of the sequence of steps with foraging model to 

identify the position of food and single ant position is 

computed with SDS based description model with the 

social metaphor value demonstrated procedure of SDS 

model. The WFCMFF model with SDS perform the 

initialization of population to evalute the standard solution 

as explained below:  

Initialising agents () 

While (stopping condition is not met) 

Testing hypotheses() 

Weighted FCM hypotheses() 

End While 

In the testing phase, the evaluation is computed based on 

every agent through the randomly selected region for the 

s process. The agent based mechanism perform the 

inactive and Weighted FCM phase for the random agent 

estimation for the selection of agent those are inactive and 

active those are generated random manner. The figure 4 

provides the graphical illustration of the proposed 

WFCMFF model flow chart. 

 

Fig 4: Overall Process of WFCMFF  

Algorithm 2: Pseudo Code of WFCMFF Approach  

Step 1: Initialize the population with feature sets randomly. Feature set consists of 0’ s(Feature not selected ) 

and 1’s (feature selected) 

Step 2 : Calculate the fitness function for the feature set. 

Step 3 : Split the featureset and initiate the SDS and Firefly Algorithm and start the iteration. 

Step 4 : Update best solution at each iteration of SDS and FF 

Step 5 : After n*25th iterations, greedy search is initiated by grouping all the feature sets from SDS and Firefly. 

Step 6 : Repeat the step from 2 until the maximum iteration is reached 

Greedy (Feature Set, Size, fitness function) 

Fitness Function f (xi) (i=1..N) 

Step 1 : For each feature set Xi (i=1..N)  

Step 2 : For each feature set Xj (j=i+1..N) 

Step 3 : If (f (xi))≤ f (xj)) 
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Step 4 : Replace the fitness value of f (Xi) with fitness value of f(Xj ) 

Step 5 : Update the corresponding feature set. 

Step 6: End if 

Step 7: End For 

Step 9: End For 

Return feature set. 

3.4 KC1 Dataset 

The dataset for the WFCMFF model with consideration 

for repository model comprises of the explicit dataset 

deployed to increases the software prediction method for 

defect estimation with consideration of different metrices. 

The dataset is evaluated based on the consideration of 

NASA software detection based subsystem. The dataset 

comprises of the static code for the fault data and 

estimation of corresponding modules. The modules are 

estimated based on the defined function, procedure or 

method of projects. Through the effective data mining 

model the accurate value is assessed for the computation 

with classification process. The software metrices 

examined for the dataset is similar to that of Line of Code 

(LOC) with consideration of operators and operand, 

length of program, complexity, estimated time, effort and 

other metrices for the measurement of software defect. 

The variation in the defects are computed based on the 

non-normal characteristic such as excessive value, 

variances, collinearity and skewness. The characteristics 

of the dataset in analysis of the software are presented as 

follows: 

Number of cases – a) Small (n <= 500), b) Medium (500 

< n < 10000), c) Large (n >= 10000). 

Number of features – a) Small (p <= 6), b) Medium (6 

< p < 20), c) Large (p >= 20); 

Distribution of values – a) Skewed, b) Outliers; 

Independence of features – a) Independent, b) Multi-

collinear; 

Feature type – a) Discrete, b) Continuous. 

 The KCI dataset is evaluated based on the 

consideration of project data processing with the 2109 

modules with C++. The Metric Data Program (MDP) 

comprises of the data repository with the logical group of 

data through Computer Software Components (CSCs) for 

the larger system. In those modules, the dataset comprises 

of 328 fault data and 1.781 non fault data. With WFCMFF 

prediction is evaluated based on the product metrices with 

the consideration of dependent and independent variables. 

The dataset comprises of the dependent class label those 

are independent to each other. The KCI model comprises 

of C++ system implemented for the management of 

storage and ground receipt for the processing to extract the 

feature code base don measured modules. The dataset 

comprises of the 22 various attributes with 4 LOC, 4 

McCabe , 1 goal field,12 Halstead metrices as presented 

in table 1. 

Table 1: List of Software metrics in KC1 dataset 

Metric Type Notation Description 

 

 

 

LOC 

LOComment Total number of comment lines 

LOCode Total no of executable codes 

LOBlank Total number of blank lines 

LOCode and Comment Total number of Lines of code and 

comment 

 

McCabe 

Loc Line of code 

v(g) cyclomatic complexity 

ev(g) essential complexity 

iv(g) design complexity 
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Metric Type Notation Description 

 

 

 

Halstead 

N Total no of operators + operands 

V Halstead volume 

L Halstead Program level 

D Halstead difficulty 

I Halstead intelligence 

E Halstead effort 

B Halstead error estimate 

T Halstead’s time estimator 

uniq_Op unique operators 

Uniq_Opnd unique operands 

total_Op total operators 

total_Opnd total operands 

Miscellaneous BranchCount branch count 

Class label Defective {True or False} 

i.e module has defect/no defect 

 

4. Results and Discussion 

The performance of the proposed WFCMFF model is 

evaluated based on the consideration of different metrices 

to achieve the defect prediction. The performance 

metrices utilized are accuracy, precision, recall and F-

measure. Through the analysis the confusion matrix is 

formulated for the performance evaluation with the 

classification algorithm. In table 2 the confusion matrix 

estimated in presented. 

Table 2: Confusion Matrix of Defect Classification 

 Defect (Predicted) No Defect (Predicted) 

Defect (Actual) Tp Fn 

No defect (Actual) Fp Tn 

 

Tp = A Defective module is correctly classified as a 

defective module 

Fp = A Non defective module is wrongly classified as a 

defective module 

Fn = A Defective module is wrongly classified as a non 

defective module. 

Tn= A Non defective module is correctly classified 

as a non defective module. 

The performance of proposed WFCMFF model is 

evaluated for the consideration of different classifiers such 

as SVM, KNN, NB, DTNB, NB simple, PART and 

Bayesnet to achieve the feature selection. The 

comparative analysis of propsoed WFCMFF with the 
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conventional technique are presented as follows the 

selected features are presented in table 3 

Table 3: List of Features Selected and parameter setting in WFCMFF 

 Features 

Weighted FCM FireFly 

(WFCMFF) 

LOCode, cyclomatic complexity, design complexity, Halstead Program level, Halstead effort, 

Halstead error estimate, unique operators, unique operands & branch count 

No of features Selected 9 

Parameter setting for FF 

in WFCMFF 

N=15 fireflies , 𝛼=0.5,𝛽 =0.5,𝛿 =0.3,y =0.5 

SVM kernel Linear 

In table 4 provides the comparative analysis of selected 

features for the proposed WFCMFF with consideration of 

9 features for the input classifiers. The WFCMFF model 

comprises of the different classifiers such as NBSimple, 

SVM, PART, DTNB, NBUpdatable, NNgeCompliment 

and bayesNet. It is observed that proposed WFCMFF 

model exhibita the improved performance compared with 

other classifiers. The developed WFCMFF model exhibits 

the improved global optimization solution for the cluster 

to achieves the effective performance characteristics. 

Table 4: Comparison of Results for KC1 dataset without FS and with FF FS 

Classifiers  Classification Accuracy Precision Recall F -Measure 

 

 

SVM 

Without WFCMFF 90.27 0.8048 0.9098 0.8541 

With WFCMFF 93.26 0.8822 0.8507 0.8654 

 

 

KNN 

Without WFCMFF 87.76 0.7728 0.8912 0.8278 

With WFCMFF 92.31 0.8668 0.825 0.8439 

 

 

NB 

Without WFCMFF 86.38 0.7581 0.8843 0.8164 

With WFCMFF 91.5 0.8418 0.8253 0.8332 

PART Without WFCMFF 87.8 0.7656 0.8047 0.7827 

With WFCMFF 91.27 0.8358 0.8239 0.8297 

DTNB Without WFCMFF 88.75 0.7813 0.8354 0.8039 

With WFCMFF 90.32 0.819 0.7994 0.8087 
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NBSimple Without WFCMFF 84.01 0.7197 0.8074 0.7474 

With WFCMFF 89.75 0.8053 0.796 0.8005 

BayesNet Without WFCMFF 71.19 0.6468 0.7693 0.6392 

With WFCMFF 85 0.7218 0.7679 0.7405 

The table 5 provides the comparative examination of feature selection process with the Firefly and the WFCMFF model for 

the software defect prediction mode.  

Table 5: Comparison of Results for KC1 dataset with FF Feature Selection and WFCMFF Feature Selection 

Classifiers Feature Selection Classification Accuracy Precision Recall F -Measure 

 

 

SVM 

 FF (FireFly)  90.27 0.8048 0.9098 0.8541 

 WFCMFF  93.26 0.8822 0.8507 0.8654 

 

 

KNN 

 FF  87.76 0.7728 0.8912 0.8278 

 WFCMFF  92.31 0.8668 0.825 0.8439 

 

 

NB 

 FF  86.38 0.7581 0.8843 0.8164 

WFCMFF  91.5 0.8418 0.8253 0.8332 

PART  FF  87.8 0.7656 0.8047 0.7827 

WFCMFF  91.27 0.8358 0.8239 0.8297 

DTNB  FF  88.75 0.7813 0.8354 0.8039 

WFCMFF  90.32 0.819 0.7994 0.8087 

NBSimple  FF  84.01 0.7197 0.8074 0.7474 

WFCMFF  89.75 0.8053 0.796 0.8005 
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BayesNet  FF  71.19 0.6468 0.7693 0.6392 

WFCMFF  85 0.7218 0.7679 0.7405 

 

 

Fig 5: Comparison of different classifiers based on Accuracy for FF Feature Selection and WFCMFF Feature Selection 

In the figure 5 it is observed that the proposed model 

exhibist the improved classification accuracy value of 

3.35% than the SVM with proposed WFCMFF. The 

performance of WFCMFF model is 6.07% higher 

performance than the KNN model. NB model achieve the 

classification accuracy of 6.03% with PART model the 

accuracy of WFCMFF is 4.95% higher. In case of DTNB 

model the proposed WFCMFF classification achieves the 

10.43% higher performance and with Bayesnet model the 

accuracy is 26.84% higher than WFCMFF model. The 

KNN achieves the minimal accuracy value of 1.9% less 

than the proposed WFCMFF. The performance of 

WFCMFF is 3.83% and 9.26% higher than the NBSimple 

and BayesNet model.  

 

Fig 6: Comparison of different classifiers based on Precision for FF Feature Selection and WFCMFF Feature Selection 

According to Table 5 and Figure 6, SVM- with WFCMFF 

FS has a higher precision of 9.18 percent, while KNN- 

with FF FS has a higher precision of 13.22 percent, NB- 

with FF FS has a higher precision of 15.13 percent, PART 

with FF FS has a higher precision of 14.2 percent, DTNB- 

with FF FS has a higher precision of 12.13 percent, 
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NBSimple with FF FS has a higher by 1.76% for KNN- 

with WFCMFF FS, by 4.69 percent for NB- with 

WFCMFF FS, by 5.4% with WFCMFF FS, by 7.43 

percent with DTNB- with WFCMFF FS, by 9.11 percent 

with NBSimple- with WFCMFF FS, and by 20 percent 

with Bayes Net- with WFCMFF FS. 

 

Fig 7: Comparison of different classifiers based on Recall for FF Feature Selection and WFCMFF Feature Selection 

According to Table 5 and Figure 7, the recall of SVM with WFCMFF FS is significantly higher by 6.7% for SVM with FF 

FS, 4.65% for KNN with FF FS, 3.87 percent for NB with FF FS, 5.56 percent for PART with FF FS, 1.81 percent for DTNB 

with FF FS, and 5.22 percent for FF FS for NBSimple-with FF FS, by 10.05% for Bayes Net-with FF FS, by 3.07% for KNN-

with WFCMFF FS, by 3.03% for NB-with WFCMFF FS, by 3.2% for PART-with WFCMFF FS, by 6.22% for DTNB-with 

WFCMFF FS, by 6.64% for NBSimple-with WFCMFF FS and by 10.2% for Bayes Net-with WFCMFF FS. 

 

Fig 8: Comparison of different classifiers based on F -Measure for FF Feature Selection and WFCMFF Feature Selection 

According to Table 5 and Figure 8, the F-Measure of 

SVM- with WFCMFF FS is higher by 1.3%, by 4.44 

percent for KNN- with FF FS, by 5.83 percent for NB- 

with FF FS, by 10.04% for PART-with FF FS, by 7.37 
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percent for DTNB- with FF FS, by 14.6 percent for 

NBSimple- with FF FS, and by 30.7 percent for Bayes, by 

2.52% for KNN- with WFCMFF FS, by 3.79 percent for 

NB-, 4.22 percent for PART-, 6.77 percent for DTNB-, 

7.79 percent for NBSimple-, and 15.56 percent for Bayes 

Net- with WFCMFF FS. 

5. Conclusion 

This paper constructed WFCMFF model to select the 

minimal subset of features, and classifiers like SVM, NB, 

KNN, PART, DTNB, BayesNet and NBSimple were used 

in experiments to observe the accuracy, precision, recall 

and F-Measure. The following feature which can be 

eliminated from the KC1 dataset. They are LOComment, 

LOBlank, LOCode and Comment, essential complexity, 

Total no of operators and operands, Halstead volume, 

Halstead Difficulty, Halstead Intelligence, Halstead’s 

time estimator, total operators and total operands. The 

results have confirmed that the classification accuracy, 

recall, precision and F-Measure values of SVM -with 

WFCMFF were better when compared to other classifiers. 

The improved accuracy in Hybrid Firefly algorithm is 

from 90.27 to 93.26 %.It is being achieved because of the 

feature set generated using FF and SDS. Thus the 

performance of the defect prediction improved with the 

effective software quality.  
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