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Abstract: The propagation environment may be configured using a reconfigurable intelligent surface (RIS). The channel estimate is a 

critical problem in implementing the RIS-aided communication system. A cascaded channel with large dimensions and complex statistics 

is used in a RIS-aided multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) 

communication system. This research elucidates the application of deep learning (DL) for communication channel estimation. It employs 

a two-dimensional visualization to represent the time-frequency attributes of a rapidly fading communication channel. The objective is to 

decipher the undisclosed channel response by contrasting it with recognized values at designated "pilot points." We have introduced an 

extensive framework that integrates sophisticated image processing methods, including techniques like image super-resolution (SR) and 

image restoration (IR), to accomplish this goal. This method views the pilot data collectively as a low-quality image and calculates the 

channel using an SR system paired with a noise-reducing IR system.Moreover, a practical application of the proposed procedure is also 

detailed. According to the simulation results, the trained DL estimator outperforms the Least Square estimators in predicting the channel 

and identifying transmitted symbols, although the suggested SRIR estimator is more sophisticated. Furthermore, the DL estimator exhibits 

its efficacy with varying pilot densities and cycle prefix times. The findings show that this pipeline may be utilized effectively in channel 

estimation. 

Keywords: Channel estimation, Deep Learning, Image Super-resolution, Image restoration, MIMO-OFDM, RIS. 

1. Introduction 

The sixth-generation (6G) wireless networks would allow 

for high-speed data transfer rates, extremely low latency, 

many simultaneous connections, and fantastic mobility. 

Database applications in cellular networks have expanded 

greatly over the last five years [1]. These include 

multimedia, online entertainment, and HD video streaming. 

As a result, both the use of mobile devices and the speed 

with which information can be sent have exploded in recent 

years. Consequently, new research domains present an array 

of innovative solutions, including massive multiple input 

multiple outputs (mMIMO), reconfigurable intelligent 

surfaces (RIS), and millimetre Wave (mmWave) 

communications [2]. These advancements aim to address the 

anticipated surge in wireless data traffic and ensure 

enhanced reliability and security for the forthcoming 

generation. OFDM is a modulation technique widely 

adopted in communication systems to counteract frequency-

selective fading in wireless networks. Frequently, the signal 

received through a communication channel is distorted by 

the channel's inherent properties. The channeling effect must 

be evaluated and adjusted at the receiver to retrieve the 

broadcast symbols. Generally, the receiver estimates the 

channel using certain symbols known as pilots, whose 

locations and time-frequency values are known to both the 

transmitter and the receiver. Three distinct structures may be 

proposed based on these pilot arrangements: block-type, 

comb-type, and lattice-type [1]. Pilots are broadcast on all 

available subcarriers at the beginning of each OFDM block. 

In contrast, in a comb-type configuration, pilots occur on 

many subcarriers associated with individual OFDM signals. 

Lattice-type designs have pilots spaced in a diamond pattern 

across the time and frequency dimensions. Conventional 

methods that utilize pilots for estimation, such as Least 

Square (LS) and Minimum Mean Square Error (MMSE), 

leverage pilot values within time-frequency matrices to 

ascertain undetermined channel responses. These methods 

have been refined across multiple scenarios [2]. Unlike the 

LS estimation that operates without channel statistical data, 

MMSE enhances accuracy by utilizing channel statistics and 

noise variance. To implement MMSE in practice, we discuss 

concrete strategies for simplifying the system by making do 

with an approximation of the channel statistics rather than 

the real item. Approximate Linear MMSE (ALMMSE) is a 

simplified variant of the MMSE established in [3] for fast-

fading channels. Since the correlation and filtering matrices 

have been significantly reduced in size, the overall 
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complexity of this method is much lower than that of the 

standard MMSE. Lately, the field of communication 

systems has been more interested in deep learning (DL). 

There have been introductions of DL-based methodologies 

to enhance the efficiency of various standard algorithms, 

such as modulation identification [4, 5], signal pinpointing 

[6, 7], channel equalization [8, 9], and channel assessment 

[8]. The communication system is perceived as an opaque 

entity [8], with a comprehensive DL framework being 

employed for both signal sending and receiving. This DL 

section intrinsically integrates encoding, decoding, channel 

evaluation, and other fundamental communication link 

processes. Moreover, applications that need the whole 

channel response will not benefit from this technique 

because of its capacity to directly assess the channel's time-

frequency response. The approach outlined in [9] utilizes an 

image-based depiction of the channel matrix within a 

denoising network for approximating the channel. This 

study predominantly concentrates on the channel matrix in 

the transmitter/receiver antenna domains, avoiding an in-

depth analysis of the time-frequency response for individual 

Tx/Rx links, particularly in multi-antenna configurations. 

The Reconfigurable Intelligent Surface (RIS) emerges as a 

promising tool for advancing intelligent radio landscapes in 

next-generation systems [24], owing to its capability to 

shape wireless signal propagation via its extensive array of 

passive elements. Leveraging this, RIS can amplify key 

performance indicators such as throughput, coverage, 

energy efficiency (EE), and spectral efficiency (SE) within 

wireless communication systems [23]. To leverage the 

potential improvements in Reconfigurable Intelligent 

Surface (RIS)-supported wireless communication systems, 

having precise Channel State Information (CSI) is crucial, 

especially for implementing precoding. However, unlike 

traditional systems, RIS introduces a composite BS-RIS-

user channel that doesn't follow the standard Gaussian 

distribution. In such cases, determining the optimal Minimal 

Mean Square Error (MMSE) estimator becomes infeasible. 

Additionally, while the Least Square (LS) and Linear 

MMSE (LMMSE) estimators are employed, a performance 

gap remains compared to the ideal MMSE estimator. The 

accuracy of their estimates falls short of meeting the 

requirements for establishing an effective RIS-aided 

communication system. Moreover, due to the large number 

of reflecting elements in an RIS and the multi-dimensional 

nature of the cascaded channel, CSI estimation using LS and 

LMMSE estimators demands substantial computational 

resources. Given the previously mentioned challenges, there 

has been a focused shift towards adopting deep learning 

(DL)-based methods for channel estimation in 

communication systems integrated with Reconfigurable 

Intelligent Surfaces (RIS), as detailed in references [25-27]. 

Amidst a multi-user environment enhanced by RIS, the 

contributions by Liu et al. stand out. Specifically, [25] used 

a deep convolutional residual neural network to improve the 

channel matrix derived via the LS technique. Kundu and 

colleagues [26] introduced two distinct convolutional neural 

Network (CNN) methods to enhance channel fidelity in a 

RIS-supported single-user MISO setup: namely, the 

denoising CNN (DnCNN) and the agile denoising network 

(FFDNet). Furthermore, Liu and team [27] put forth a 

complex-valued denoising convolutional neural Network to 

bolster the effectiveness of compressive sensing-driven 

channel estimation in a RIS-integrated mmWave extensive 

MIMO environment. In these research efforts, the channels 

enhanced by RIS estimation form essential input for the 

neural network processes. Estimating RIS-enhanced 

channels poses computational challenges, chiefly due to the 

dimensionally expansive nature of the cascaded channel. 

 

Fig. 1. RIS-aided downlink wireless communication. 

The key contributions of this article can be outlined as: 

• Represent the channel's time-frequency response in a 

two-dimensional image utilizing the TDL-A_45ns 

model. We employed the Vienna 5G Link Level 

simulator for channel modeling and pilot transmission, 

which the University of Vienna developed and operated 

on MATLAB 2022a. For the instantiation and 

elaboration of our proposed framework, we utilized both 

Keras and TensorFlow, leveraging a GPU backend for 

computational efficiency. 

• In contrast to existing research, we recast the channel 

estimation challenge in a RIS-supported multi-user 

MIMO-OFDM communication framework as an image 

super-resolution (SR) issue. Stemming from this 

perspective, we introduce a deep CNN-driven 

methodology, SRIR-ChNet, designed to reconstruct the 

channel matrix by drawing estimations from channels at 

designated pilot positions. Owing to the advanced 

interpolation and noise reduction capabilities inherent in 

the refined SRCNN and DnCNN, the SRIR-ChNet is 

poised to enhance the precision of channel estimation 

significantly. 

• We put forth two algorithms by interpreting the channel 

response at pilot points as a Low-Resolution (LR) image 

and considering the anticipated channel response as the 

proposed High-Resolution (HR) image. Utilizing deep 

learning, the SRCNN and DnCNN are designed to 
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enhance the resolution of the Time/frequency response 

channel matrix image and mitigate its noise. The 

proposed algorithm can achieve high accuracy in terms 

of channel estimation compared with conventional 

methods by minimizing mean square error and bit error 

rate. 

• Furthermore, the impact of the quantity of pilots on the 

performance of SRIR-ChNet in the context of a MIMO-

OFDM network is shown. 

The subsequent sections of the paper are structured in the 

following manner: Channel estimation using traditional 

techniques is briefly covered in Section II. The suggested DL-

based channel estimator and its motivations and design are 

presented in Section III. Our proposed scheme's network 

architecture V, simulation results, and analysis are described 

in part V, and the article concludes to a conclusion in section 

VI. 

2. Background  

A. CHANNEL ESTIMATION 

Channel estimation (CE) is one of the primary methods used 

in Orthogonal Frequency Division Multiplexing Modulation 

in cellular wireless communication systems (OFDM). The 

most often used approaches are decision-directed channel 

estimation (DCE), pilot-assisted channel estimation (PACE), 

and blind channel estimation. PACE is the most frequently 

utilized and has a more consistent performance. Deep learning 

(DL) approaches have piqued the attention of scholars during 

the last three years. In an OFDM system, the input-output 

connection for the kth time slot and ith subcarrier is expressed 

as [17]: 

Yi,k = Hi,k Xi,k +Zi,k.                             (1)                                                                  

Consider an OFDM subframe sized NS × ND. The time slot 

index, denoted by k, ranges from [0, ND − 1], and the 

subcarrier index, represented by i, stretches from [0, NS − 1]. 

As per equation (1), Yi,k, Xi,k, and Zi,k represent the signal 

received, the transmitted OFDM symbol, and the white 

Gaussian noise, respectively. The element Hi,k is a specific 

(i, k) entry of matrix H, which belongs to the set C NS×ND. 

H captures the channel's time-frequency response for every 

subcarrier and time slot. In the realm of channel estimation, 

particularly in channels subject to fading, the representation 

in the time domain is specified as H = {h[1], h[2], ..., h[ND]}. 

In this representation, each h[k] denotes the channel's 

frequency response during the kth time slot. The LS method 

is employed to determine the channel at the pilot points. 

When we view the LS-estimated channel as a diagonal 

matrix, denoted 𝑯𝑃
𝐿𝑆∈ CNP×NP, it's inferred from [17] that the 

form of  𝑯𝑃
𝐿𝑆is: 

�̂�𝑃
𝐿𝑆=𝑎𝑟𝑔𝑯𝑃

min||𝑦𝑃 −𝑯𝑃𝑥𝑃||2
2,                 (2) 

where ||.||2 is the ℒ2 distance and �̂�𝑃
𝐿𝑆  ∈ CNP×NP is the 

estimated diagonal matrix. xp contains the known pilot 

values, and yp is the corresponding observations. Solving 

optimization (2) yields in �̂�𝑃
𝐿𝑆  = diag( �̂�𝑃

𝐿𝑆   ) = yp/xp. We 

need to use a bidimensional interpolation technique to 

identify the channel value at locations other than pilot points. 

When compared to LS, the MMSE estimator is the superior 

choice. Multiplying the LS estimates at the pilot-symbol 

positions by a filtering matrix yields this AMMSE ∈ CNL×NP 

as mentioned in [14]: 

�̂�𝑑
𝑀𝑀𝑆𝐸= AMMSE�̂�𝑃

𝐿𝑆,                                  (3) 

Where  �̂�𝑑
𝑀𝑀𝑆𝐸= ∈ C NL×1 (NL = NS ×ND) is the linearized 

MMSE approximation of the channel response H for 

subframe d. To determine the filtering matrix, one considers 

the mean square error (MSE), 

€=E{‖𝐡d - AMMSE�̂�𝑃
𝐿𝑆||2

2},                          (4) 

has to be minimized. Minimizing (4) leads to 

AMMSE=R𝑅ℎ𝑑ℎ𝑝
 ( 𝑹ℎ𝑃ℎ𝑃

  + σ𝑛
2 (𝑋𝑋𝐻)-1)-1,              (5)                                                

 In this context, the matrix 𝑹ℎ𝑃ℎ𝑃
= E{hdℎ𝑝

𝐻  } denotes the 

channel correlation matrix correlating the desired subframe 

with pilot symbols. Similarly, the matrix 𝑹ℎ𝑃ℎ𝑃
= E{hdℎ𝑝

𝐻  } 

describes the channel correlation matrix exclusive to the 

pilot symbols. For MMSE to function optimally, it's 

imperative that the complete correlation matrix of the 

channel symbolized as R, is comprehensively known. 

B. SUPER-RESOLUTION AND IMAGE RESTORATION  

Various methods have been devised to enhance pixelated, 

low-resolution images into sharper, high-resolution 

counterparts. The umbrella term for these methods is "image 

super-resolution" (SR), designed specifically for image 

enhancement. Deep learning algorithms, particularly those 

utilizing intricate and layered convolutional networks, 

demonstrate proficiency in converting low-resolution 

images into high-definition versions. One notable example 

is the Super-resolution Convolutional Neural Network 

(SRCNN) [10]. Recently introduced, it serves as evidence of 

this advancement. Alongside super-resolution (SR) 

techniques, strategies for Image Restoration (IR) have been 

formulated to reduce or eliminate image noise. Numerous IR 

models have been extensively documented in academic 

literature. For example, the study in [11] unveils a 

methodology based on a feed-forward denoising 

convolutional neural Network (DnCNN). This approach 

incorporates residual learning with batch normalization to 

expedite the training process. 

3. Srir-Chnet  

C. RELATED WORKS AND MOTIVATION 

A prominent research focus in image processing has been 

transforming low-resolution and noisy images into more 

precise, high-resolution versions. Image Super-Resolution 

(SR) encompasses a collection of methods dedicated to 
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refining the resolution of digital images. Deep CNNs have 

proven effective in extracting HR images from LR photos 

[14, 17]. Recently, it has been proposed that a super-

resolution convolutional neural network (SRCNN) be used 

to map LR pictures completely [18, 19]. In addition to super-

resolution techniques, various image restoration (IR) 

models, such as [20], [21], and [22], have been documented 

in the literature, aimed at mitigating the impact of noise on 

images. References [16, 23] have further proposed methods 

to accelerate the training of feed-forward denoising 

convolutional neural networks (DnCNNs) using batch 

normalization and residual learning. 

 

Fig. 2. An illustration of a normalized two-dimensional 

image showcasing real and imaginary components for a 

representative channel time-frequency grid.  

This research envisions the channel response's time-

frequency grid as a two-dimensional image and employs a 

sequential combination of the SR and IR networks for 

channel estimation. Figure 2 provides a normalized 

depiction of the time-frequency grid for a multipath 

Rayleigh fading channel, showcasing its real and imaginary 

components. The objective involves using broadcast pilots 

to infer the channel's complete time-frequency spectrum. 

The pattern chosen for pilot transmission echoes the 

configuration prevalent in the LTE standard. 

B.  ARCHITECTURE AND TRAINING 

The presented pilot value of the channel, denoted as h, 

functions as a low-resolution and noise-affected channel 

depiction. This image is fed into the SR network, which 

interprets this noisy, low-resolution representation and 

vectorizes the channel estimate. Given that a picture's vector 

representation might encompass real and imaginary 

components, the SR network operates in two distinct phases: 

initially focusing on the natural aspect, followed by 

addressing the imaginary portion. The principal aim of the 

SR network is to ascertain the channel response, represented 

as h ~ n. This SR network is subsequently paired with an IR 

network to mitigate the influence of noise. In this context, 

the channel matrix is visualized as an image, and channel 

estimation is achieved through a sequenced SR and IR 

network approach, viewing the channel response's time-

frequency grid as a two-dimensional image. A normalized 

2D representation of a multipath Rayleigh fading channel's 

time-frequency grid is showcased in Figure 2. The goal is to 

calculate an approximation of the channel's 24/7 frequency 

from the sent pilots. An arrangement that was identical to the 

LTE standard was adopted for the pilot broadcast. 

 

Fig. 3. A general pipeline of our Network 

In the SRIR_ChNet framework, the SR network starts by 

using an approximation method to identify near-accurate 

values of an image, eventually generating a low-resolution 

depiction that aligns closely with the high-resolution 

original. The central objective is to create a mapping, 

denoted as F, incorporating a feature extractor, nonlinear 

mapping, and reconstruction, as detailed in [14]. In the 

initial phase, patches extracted from a low-resolution image 

are transformed into high-dimensional vectors. The length 

of which corresponds to the number of feature mappings 

used. This is followed by a nonlinear transition that maps 

one high-dimensional vector onto another, creating a new 

set of feature maps. The final step consolidates all these 

high-resolution patch representations to produce an image 

that is perceived to resemble the original closely. Figure 3 

illustrates the integrated workflow of the SRIR network, 

harmonizing the stages above within a Convolutional Neural 

Network (CNN) structure.  

1) Image network 

In this work, attention is directed towards four 

communication links bridging Tx and Rx antennas, 

signifying the presence of multiple-input, multiple-output 

(MIMO) communication pathways. For such connections, 

the complex-valued channel time-frequency response 

matrix, H (of dimensions NS × ND), between a transmitting 

and receiving entity can be delineated as a pair of two-

dimensional images, encapsulating the fundamental values 

and the imaginary components. An exemplar of a 

normalized two-dimensional image, encompassing both real 

and fictional elements for a prototypical channel time-

frequency grid with ND equating to 14-time slots and NS 

amounting to 72 subcarriers (based on 5G standards), is 

illustrated in Fig.2. 
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Fig. 4. Show 2x2 MIMO communication system. 

OFDM-MIMO frame will be divided into four subframes (4 

images), ℎ11, ℎ12, ℎ21, 𝑎𝑛𝑑 ℎ22, and each subframe consists 

of 14-time slots with 72 subcarriers (1 photo). 

                        𝑥1  =72 x 14, 𝑥2  =72 x 14 

                𝑦1= 𝑥1  x  ℎ11  +  𝑥2  x  ℎ12   

𝑦2= 𝑥1  x  ℎ21 +  𝑥2  x  ℎ22 

      H=[
𝑦1    
𝑦2    

] =[
ℎ11    ℎ12

ℎ21    ℎ22
] [

𝑥1    
𝑥2    

]+[
𝑛1    
𝑛2   

] 

Fig. 5.  One frame at SNR 10 has four 2D images due to 2 x 

2 MIMO. 

2)  Network Structure 

Figure 3 provides a schematic representation of the 

suggested DL-based channel estimation approach, SRIR-

ChNet. The objective is to fully capture the channel's time-

frequency spectrum through the broadcasted pilots. A 

Lattice-patterned framework, reminiscent of the LTE 

standard, was employed for the pilot transmissions. The 

representation of the channel, noted for its low fidelity and 

potential interference, is equivalent to the anticipated 

channel values at the pilot points, denoted as ̂ HPLC. To 

achieve a comprehensive channel image, a two-phase 

training approach is introduced: 

• In the initial phase, an SR network is formulated. This 

Network leverages  ℎ̂𝑝
𝐿𝑆  as the vectorized low-resolution 

input—processing the actual component first, followed by 

the imaginary segment—to deduce the unidentified channel 

response H values. 

• In the subsequent phase, a noise-reducing IR network is 

combined with the SR network to mitigate noise 

interferences. 

 

Fig. 6. SRIR-ChNet network structure. 

We utilized SRCNN [10] for the SR and DnCNN [11] for 

the IR functions. Due to space limitations, we can't provide 

their graphical representations. Nonetheless, SRCNN uses a 

tri-layer convolutional network for enhancement after 

applying an interpolation method to roughly gauge high-

resolution image (or channel) values. Post ReLu activation, 

the inaugural convolutional layer uses 64 filters, each 

measuring 9 x 9, while the subsequent layer employs 32 

filters of 1 x 1 dimensions. The terminal layer reassembles 

the image through a singular 5 x 5 filter. As for DnCNN, it's 

a network based on residual learning and comprises 20 

convolutional layers (further details can be found in [11]). 

The premier layer employs 64 filters, each with dimensions 

of 3 × 3 × 1, and is followed by a ReLU. The subsequent 18 

convolutional layers utilize 64 filters of 3 x 3 x 64 

dimensions, succeeded by batch-normalization and ReLU 

activations. The concluding layer uses a singular 3 x 3 x 64 

filter to reconstruct the end output. 

TABLE I.   SETTINGS OF SRIR-CHNET 

Input SRCNN IRCNN Output 

 Layers         

Filter Size 

Layers           

Filter Size 

 

Estimated 

channels 

at pilot 

positions. 

1      64 × (9 

× 9 × 2) 

  2      32 × (1 

× 1 × 64) 

3      2 × (5 × 

5 × 32) 

1        64 × (3 × 

3 × 2) 

2∼19    64 × (3 

× 3 × 64) 

20       2 × (3 × 

3 × 64) 

Estimated 

whole 

channel. 

 

4. SRIR-Chnet for MIMO-OFDM Network 

As illustrated in Fig. 1, we analyze a downlink MIMO-

OFDM system with a re-configurable intelligent surface 

(RIS) and multiple antennas (M) at the base station (BS) 

broadcasting to a large number of multiple-antenna users. In 

a scenario where the Reconfigurable Intelligent Surface 

(RIS) serves two Base Stations (BS) and K users, the BS is 

equipped with an NBS-antenna array, and the RIS has NM 

reflecting elements catering to both the BS and K multiple-

antenna users. The BS antenna arrays and RIS reflecting 

components are arranged in a Homogeneous Linear Array 

(ULA). The BS controls a controller responsible for 

reconfiguring the propagation environment as illustrated in 

Fig. 4, h1, h2,k, and dk, where k ∈ {1, 2, . . . , K}, represent 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 659–669  |  664 

the channels of RIS-BS, Uk-RIS, and Uk-BS, respectively. 

Due to numerous scatters in the channel between the BS and 

users, the Line of Sight (LoS) path may not be present [37]. 

Therefore, a Rayleigh fading channel model is adopted to 

represent dk ∈ C NM×1. The channels h1, h2, and k are 

modelled as Rician fading channels. Additionally, the 

system employs a Frequency-Division Duplex (FDD) mode 

to utilize channel reciprocity (CR). The Base Station (BS) 

can predict downlink channels through FDD based on the 

Channel Reciprocity (CR) principle. This involves setting 

channels to receive downlink pilots. Leveraging the channel 

estimation results, the BS can then implement Zero-Forcing 

(ZF) Beamforming (BF). This study focuses explicitly on 

Zero-Forcing (ZF)-BF, aiming to mitigate intra-cluster and 

inter-cluster interference [33]. BF is a favoured technique in 

MIMO networks, especially when the BS is equipped with 

multiple antennas. 

5. Simulation Results and Analysis 

 In our research, we employ link-level simulation to evaluate 

the efficacy of the SRIR-ChNet network's channel 

estimation in a MIMO-OFDM environment. In the 5G 

framework, a single time slot within the time-frequency 

dimension consists of 14 OFDM symbols. On the frequency 

side, there's an aggregate of 72 subcarriers. These are 

divided into 6 Resource Blocks (RBs), with each RB 

containing 12 subcarriers. A channel simulator from the 

University of Vienna [21] produces the TDL-A 45ns 

channel model. This configuration is defined by parameters 

such as a frequency of 2.1 GHz, a bandwidth of 1.6 MHz, a 

delay spread of 1730 ns, and a 50 km/h velocity for the user 

equipment (UE). We test the effectiveness of our suggested 

method over a spectrum of signal-to-noise ratio (SNR) 

scenarios. Different noisy channel data sets, ranging 

between 0 and 30 dB, are generated using the TDL-A 45ns 

channel model to train and evaluate the SRIR-ChNet 

network. The training and testing datasets consist of 50,000 

and 10,000 channel realizations. This research adopts the 

mean square error (MSE) as its primary assessment metric 

to juxtapose the forecasted channel value with its 

counterpart. 

TABLE II.  THE PARAMETER SETUP FOR THE CONSIDERED 

MIMO-OFDM SYSTEM. 

Parameters Values 

MIMO, RIS, BS, 

UE 
2  x  2 , 1,2,2 

Distance of RIS-BS 100m 

Simulation Downlink 

The Nearest 

Distance between 

users and BS 

102m 

Width of Reflecting 

Elements 
0.012m 

Length of Reflecting 

Elements 
0.012m 

Type of modulation OFDM 64 QAM 

Maximum Doppler 

frequency 

36 Hz, 200 Hz 

 

Noise model Gaussian Noise 

Sample frequency 3.84 MHz 

No. of Sub-carriers 72 

Time Slot 14 

Fading  Rayleigh 

Frame Structure FDD 

Channel Power 

Delay Profile 
TDL-A_45ns 

Channel Estimation 

Method 

Approximate-

Perfect, PilotAided 

LS 

Pilot Pattern 

Downlink 
Diamond 

 

(a) 

 

(b) 

Fig. 7. MSE channel estimation for training and validation 

(a)SNR=10 & pilot=8(b) SNR=20 & pilot=8 
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(a) 

 

(b) 

Fig. 8. MSE channel estimation for training and validation 

(a)SNR=10 & pilot=16(b) SNR=20 & pilot=16 

 

(a) 

 

 

(b) 

Fig. 9. MSE channel estimation for training and validation 

(a)SNR=10 & pilot=24(b) SNR=20 & pilot=24 

 

(a) 

 

(b) 

Fig. 10. MSE channel estimation for training and validation 

(a)SNR=10 & pilot=36(b) SNR=20 & pilot=36 
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(a) 

 

(b) 

Fig. 11. MSE channel estimation for training and validation 

(a)SNR=10 & pilot=48(b) SNR=20 & pilot=48 

Simulation outcomes reveal that the SRIR-ChNet 

methodology exhibits superior estimation accuracy 

compared to the traditional technique using uniformly 

spaced pilots. As illustrated in Figure 12, the enhancement 

in channel estimation precision due to pilot optimization 

becomes more evident with fewer pilots. Beyond merely 

elevating channel estimation precision, pilot design plays a 

pivotal role in curtailing pilot overhead. In this analysis, we 

assessed channel estimation precision by altering the pilots' 

count while maintaining a consistent signal-to-noise ratio. 

The accuracy of each algorithm invariably advances as pilot 

numbers swell. Given that the optimal MMSE algorithm 

exclusively predicts channel data of the specific pilot 

locations it occupies, its estimation precision remains 

relatively stable, regardless of pilot count variations. With 

eight pilots in place, the SRIR-ChNet methodology 

advocated in this study surpasses the traditional LS 

algorithm regarding estimation accuracy. At a pilot count of 

forty-eight, the SRIR-ChNet approach necessitates fewer 

pilots compared to the MMSE method to achieve 

comparable estimation precision. As a result, the introduced 

SRIR-ChNet methodology possesses significant promise in 

diminishing pilot overhead during channel estimation. 

Beyond the influence of pilot positioning on accuracy 

(specifically, the decision to adopt an optimal pilot 

arrangement), the total count of unique pilots remains 

paramount. Figure 12 offers a comparative analysis of the 

accuracy achieved by SRIR-ChNet in channel estimation for 

pilot counts of 8, 16, 24, 36, and 48. There's a proportional 

rise in estimation accuracy with increased pilot numbers. 

For SNR values greater than 18 dB, the estimation precision 

for a time-frequency grid comprising 1008 Resource 

Elements (RE) remains consistent between 16 and 48 pilots, 

specifically at an SNR of 22. Remarkably, accuracy levels 

can converge between magnitudes of 10-3 and 10-4, even 

with just eight pilots. This underscores that, at heightened 

signal-to-noise ratios, the SRIR-ChNet approach exhibits 

robust adaptability to variations in pilot numbers. Moreover, 

it holds the potential to elevate the system's spectral 

efficiency while safeguarding the integrity of the channel 

estimation accuracy. 

 

(a) 

 

(b) 

Fig. 12. Mean square error for channel estimation in terms 

of pilot number(a) at SNR 12 (b) at SNR 22 
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Fig. 13. Performance comparison of different algorithms 

when the number of pilots is 8. 

In Figure 13, we evaluate the efficiency of various channel 

estimation methods. Our SRIR-ChNet is juxtaposed against 

four techniques mentioned in [22]: namely, least squares (LS), 

interpolated minimum mean square error (interpolated 

MMSE), conditional generative adversarial network 

(CAGAN), and ChannelNet. A consistent experimental 

framework is applied across all tests. As depicted in Figure 

13, the SRIR-ChNet introduced in this study outperforms the 

conventional LS and MMSE techniques, underscoring the 

advantages of employing deep learning approaches. When the 

SNR surpasses 15 dB, the estimation prowess of all methods 

stabilizes. However, with estimation precision for 

ChannelNet ranging from 10-1 to 10-2, it needs to catch up to 

the superior performance of SRIR-ChNet. When the number 

of pilots is increased to 8, under the same SNR condition, 

SRIR-ChNet outperforms the other four methods; estimate 

accuracy is improved to between 10-3 and 10-4, and SRIR-

ChNet and CAGAN are considerably closer under high 

signal-to-noise ratio. 

 

Fig. 14. The output of SRIR-ChNet 2D image time-

frequency response. 

6. Conclusion 

This study introduces a practical transmission protocol 

tailored for channel estimation and reflection optimization 

in RIS-augmented MIMO-OFDM systems. We showcase a 

deep learning model grounded in image representation for 

next-gen wireless communication channel estimation. This 

model employs a 2D visual depiction of a Rayleigh fading 

communication channel's time-frequency behaviour within 

a reconfigurable intelligent surface (RIS) integrated multi-

user MIMO-OFDM setup. Our approach aims to discern the 

undisclosed channel response values by utilizing a 

comprehensive framework encompassing advanced image 

processing modalities, notably image SR and noise-

reduction methodologies. This work advocates a deep 

learning-centric strategy to achieve precise channel 

predictions. We redefine channel estimation as an image 

super-resolution challenge and introduce the SRIR-ChNet, a 

novel image super-resolution network crafted to reconstruct 

the channel matrix from initial channel assessments. 

Leveraging the capabilities of the advanced super-resolution 

convolutional neural Network (SRCNN) and the denoising 

convolutional neural Network (DnCNN), the SRIR-ChNet 

enhances channel estimation capabilities regarding feature 

extraction and noise mitigation. We evaluated our proposed 

technique against various benchmarks, such as signal-to-

noise ratios (SNRs) and pilot count. Simulation results, 

gauged using normalized mean square error metrics, 

confirm that SRIR-ChNet outpaces traditional channel 

predictors and DL-infused methodologies by a margin of 

over 10 dB. Our findings reveal that for satisfactory channel 

prediction performance under an SNR of 5dB, a minimum 

of 8 pilots is requisite. Moreover, SRIR-ChNet promises 

reduced input data volume and computational overhead tied 

to channel prediction in intricate scenarios. Future 

exploration could pivot towards refining the performance of 

the mentioned mMIMO-RIS structure by adopting 

innovative pilot pattern designs. 
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