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Abstract: Ultrasound imaging is a widely adopted modality for kidney stone detection owing to its non-invasive nature and cost-

effectiveness. However, challenges such as speckle noise and low contrast hinder the accuracy of diagnoses. This research addresses 

these challenges by focusing on enhancing ultrasound image quality, specifically targeting the precise localization and measurement of 

kidney stones. The proposed system employs Median filtering and contrast enhancement techniques to mitigate speckle noise and 

improve image quality, presenting a thorough comparative analysis with alternative filters. Additionally, the study explores the utilization 

of the Laplacian function for stone localization and size measurement. Moreover, this research introduces a Computer-Aided System for 

Kidney Stone Detection in Ultrasound Images, leveraging a Convolutional Neural Network (CNN). The balanced dataset, consisting of 

9416 images categorized as 'Normal' and 'Stone,' facilitates robust training and testing of the CNN. Trained with Stochastic Gradient 

Descent (SGD), the CNN exhibits excellent performance with a training accuracy of 99.10% and a test accuracy of 99.11%.  
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1. Introduction 

Globally, kidney stones, also referred to as renal calculi, 

present a significant health challenge. The prevalence of 

kidney stones has been steadily rising, underscoring the 

need for advanced diagnostic tools to facilitate early 

detection and appropriate intervention. This paper 

addresses the imperative for an automated system to 

improve the quality of ultrasound kidney images, aiming to 

detect and categorize kidney stone sizes through the 

utilization of ultrasound images. Ultrasound imaging 

stands out for being non-invasive, radiation-free, cost-

effective, and providing real-time insights into a person's 

internal structure, aiding doctors in identifying potential 

health risks or abnormalities. Despite its effectiveness in 

large medical applications due to absorption and speed, 

ultrasound imaging is often hindered by signal 

dependence, limiting the resolution of comparisons, and 

posing challenges in human interpretation and diagnosis. 

Consequently, speckle noise reduction becomes a crucial 

focus in medical ultrasound image processing. 

In [1], a research author explores a patch-based low-level 

technique to mitigate noise in ultrasound images. Various 

methods, including Median filters, Gaber filters, Weiner 

filters, and Gaussian filters [2] [3], are employed to 

eliminate speckle noise, emphasizing the necessity to 

despeckle ultrasound images for improved quality and 

better differentiation of adjacent tissue boundaries. The 

linear elastic theory, proposed in [4], calculates the depth 

of shock wave scattering by determining fluid pressure, 

providing a treatment approach for various types of 

kidneys stones through external fluid immersion. Factors 

such as poor illumination, aperture size, shutter size, and 

others impact the range and grey level of each pixel, 

influencing image flaws. Contrast enhancement [5] [6] is 

proposed as a solution in such situations, aiming to 

improve contrast. 19 filters discussed to enhance the 

quality of kidney ultrasound images in a comprehensive 

study [14]. 

This concise overview explores recent developments in 

ultrasound imaging concerning the detection and sizing of 

kidney stones. The focus is on stone-specific algorithms 

(S-mode) and the evaluation of posterior acoustic shadow. 

Research by P.C May illustrates the effectiveness of S-

mode in enhancing stone contrast and resolution, leading to 

precise visualization and sizing of renal stones. The 

identification of a posterior acoustic shadow emerges as a 

crucial indicator, aiding in differentiating stones larger 

than 5 mm. Comparative analyses with CT scans 

consistently demonstrate high accuracy rates, with S-mode 

surpassing conventional clinical ultrasound systems in 

stone visualization. Potential clinical implications include 

predicting spontaneous passage for stones lacking a 

shadow and guiding treatment decisions based on 

improved accuracy in stone characterization. These 

advancements hold promise for influencing clinical 

practices in kidney stone management [10]. A one more 

study address kidney stone size overestimation in 

ultrasound imaging, utilizing various modalities. Findings 

reveal that measuring the width of the acoustic shadow 

offers a more accurate assessment of true stone size, with 
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harmonic imaging showing the highest precision. The 

incorporation of shadow measurements in ultrasound 

imaging holds the potential to enhance kidney stone sizing 

accuracy, as evidenced by 78% accuracy within 1 mm, 

comparable to clinical computerized tomography 

resolution [11]. 

The review notes ultrasound's cost-effectiveness and 

accessibility for nephrolithiasis but acknowledges 

limitations in sensitivity and accuracy, particularly in stone 

size measurement compared to computed tomography 

(CT). Despite advancements, CT is deemed superior. 

While the European Association of Urology recommends 

ultrasound as the initial investigation, the review concludes 

it may be suitable in specific situations but does not qualify 

as the ideal imaging technique for comprehensive 

nephrolithiasis assessment [12]. A retrospective study 

evaluates the sensitivity and specificity of ultrasonography 

(US) in detecting renal calculi and assesses its accuracy in 

determining stone size, examining the implications for 

counseling decisions. Findings reveal that US has 

limitations, with a sensitivity of 54% and a tendency to 

overestimate stone sizes in the 0–10 mm range. The study 

suggests that when using US alone, one in five patients 

may be inappropriately counseled. Combining plain 

abdominal film and US improves sensitivity to 78%, but 

some patients (37%) may still receive inappropriate 

counseling for observation. The conclusion underscores the 

need for caution in relying solely on US for clinical 

decision-making, emphasizing the potential necessity for 

additional imaging modalities to ensure accurate 

assessments and appropriate counseling [13]. Furthermore, 

very limited research work has been found on the 

measurement of kidney stone size, albeit with a limited 

sample size [6-9].  

In a comparative study, author [15] assessed three neural 

network algorithms—Radial Basis Function, Learning 

Vector Quantization, and Multilayer Perception with Back 

Propagation—for recognizing kidney stone disease. Their 

experiment, conducted on a dataset of 1000 instances, 

revealed that the Multilayer Perception with Back 

Propagation algorithm outperformed others, achieving an 

accuracy of 92%. Additionally, a study [16] introduced a 

three-dimensional ultrasound system for automated kidney 

detection and segmentation, achieving a detection rate of 

92.86% with a probabilistic kidney shape model. [17] 

proposed a method for kidney stone segmentation in 

ultrasound images, attaining 95% accuracy for non-stone 

images and 90% for stone images. Soumya and Narayanan 

[18] presented a computer-aided system for kidney disease 

detection with a manual region-of-interest selection, 

achieving a classification accuracy of 92%. Ranjitha [19] 

developed a system for kidney stone detection based on 

feature extraction and Principal Component Analysis, 

achieving 87.5% accuracy and 100% precision on a dataset 

of 26 ultrasound images. Additionally, Vaish and Bharath 

[20] designed an Android application for abnormality 

detection in B-mode ultrasound images, utilizing the Viola 

Jones algorithm and SVM classifier to achieve a detection 

accuracy of 90.91%. 

A comprehensive review of existing literature outlines 

current methodologies in kidney stone detection, 

emphasizing the limitations and challenges faced by 

conventional approaches. The integration of advanced 

image processing techniques and machine learning 

algorithms is explored as a promising avenue for 

improving accuracy and efficiency.  

The paper is organized into five sections: Noise Reduction 

and Image Quality Enhancement (Section II), Detection of 

Kidney Stone Size (Section III), Proposed Model (Section 

IV) and the conclusion of the research paper (Section V). 

follow. 

2. Noise Reduction and Image Enhancement 

Low contrast and speckle noise pose challenges in 

ultrasound images. To address these issues in kidney 

ultrasound images, including speckle noise, acoustic noise, 

Gaussian noise, and other irregularities, preprocessing 

becomes imperative. This phase encompasses noise 

suppression, image restoration, contrast enhancement, 

smoothing, and sharpening, aiming to enhance the overall 

quality of ultrasound images. The methods employed 

include noise suppression, preservation of vital 

information, clarification of item boundaries, improvement 

of the region of interest's contrast, and reduction of 

background speckle. In the proposed model, various filters 

such as Bilateral, Gaussian, Median, and Blur filters are 

considered for speckle noise removal and image quality 

enhancement. The effectiveness of these filters is evaluated 

using metrics such as SSIM (Structural Similarity Index), 

PSNR (Peak Signal-to-Noise Ratio), and MSE (Mean 

Squared Error). The results of this evaluation, presented in 

Table-1, aid in selecting the optimal filter for noise 

suppression and overall image quality improvement. 

Structural Similarity Index (SSIM):   - The Structural 

Similarity Index (SSIM) serves as a metric for evaluating 

the similarity between two images. It considers luminance, 

contrast, and structure, proving particularly valuable in 

evaluating image quality degradation resulting from 

processes like compression, filtering, or transmission 

errors. SSIM values span from -1 to 1, with 1 denoting 

perfect similarity. Higher SSIM values are indicative of 

superior image quality. Peak Signal-to-Noise Ratio 

(PSNR):  PSNR stands as a widely-used metric for 

quantifying the quality of a compressed or reconstructed 

image. It achieves this by measuring the ratio of the 

maximum possible power of a signal to the power of 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 670–677 |  672 

corrupting noise that impacts the fidelity of its 

representation. A higher PSNR corresponds to enhanced 

image quality, and it is often expressed in decibels (dB). 

Mean Squared Error (MSE): MSE serves as a measure 

of the average squared differences between corresponding 

pixels in the original and processed images. In the realm of 

image processing, MSE is employed to evaluate the quality 

of an image by calculating the average of squared errors 

between the original and compressed or reconstructed 

images. A lower MSE signifies superior image quality. 

Following the analysis, the outcome suggests the 

application of a Median filter to improve image quality and 

reduce speckle noise. The Median filter, being a non-linear 

digital filtering method, plays a role in noise reduction, 

particularly speckle noise. In this process, each pixel's 

value is substituted with the median value of its 

neighbouring pixels. Utilizing a Median filter contributes 

to refining image quality by smoothing noise and 

maintaining edge details. 

Contrast Enhancement: Contrast enhancement involves a 

method to improve the clarity of ultrasound images, 

facilitating superior object edge detection as shown in 

figure: -1. The utilization of encv2.convertScaleAbs plays 

a pivotal role in this process, allowing the adjustment of 

the image's value range to heighten contrast and attain 

uniform intensity. This function achieves its goal by 

scaling and shifting pixel values based on specified alpha 

and beta parameters. The underlying objective is to 

augment the contrast of an input image, with the 

enhancement formula being expressed as new_pixel = 

alpha * original_pixel + beta. The alpha parameter serves 

as a contrast control, determining the extent of pixel value 

scaling, where a higher alpha corresponds to increased 

contrast (default set at 2.5). Meanwhile, the beta parameter 

functions as a brightness control, being added to each pixel 

value post-scaling with alpha (default set at 0).  

  
Grayscale image Contrast enhanced image 

 
 

Fig 1 Enhanced Image 
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Blur  Filter 

 

SSIM: 0.943623654 

 

PSNR: 38.94561944 

 

MSE: 240.62825311 

 

 

Fig 2: Enhanced Image Results 

3. Detection of Kidney Stone Size 

Detecting stone size from kidney ultrasound images 

involves utilizing image processing and computer vision 

techniques. Here is a general outline of the steps of 

proposed model to locate stone and calculate stone size as 

shown in Figure 3.                                                                                                                            

1.Image Acquisition: A dataset of kidney ultrasound 

images collected from various scan centres and hospitals. 

Each set of images includes two samples from the same 

patient: one with the detection of a kidney stone by a 

doctor or sonographer, and the other without the detection 

of a kidney stone problem. In dataset of kidney ultrasound 

images where, for each patient, two ultrasound images 

have been collected: Image without Measurement of 

Kidney Stone: This image serves as a reference or 

baseline, where the sonographer did not measure or detect 

any kidney stone. It represents the patient's kidney status 

when no stone is observed or measured during the 

ultrasound examination. Image with Measurement by 
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Sonographer: This image includes the measurement of a 

kidney stone by the sonographer. It indicates the presence 

of a kidney stone as identified and measured during the 

ultrasound examination. This dataset is valuable for tasks 

related to medical image analysis, particularly for 

developing and evaluating algorithms for kidney stone 

detection and comparing the proposed system result with 

actual result calculated by doctors.  

2.Preprocessing: Remove noise and artifacts from the 

images and enhance contrast to make the stone boundaries 

more distinguishable. A median filter is applied to enhance 

image quality and reduce speckle noise. The selection of 

this filter is made after a comprehensive comparison using 

metrics such as PSNR, SSIM, and MIS. Additionally, the 

process involves grayscale conversion, contrast 

enhancement, and resizing the image to dimensions of 

512x512. Collectively, these steps contribute to creating an 

optimized and refined input for subsequent analyses. 

3.Image Segmentation: Segment the kidney region from 

the ultrasound image is done manually.  

4.Feature Extraction: Extract relevant features from the 

segmented regions, such as area, perimeter, shape, and 

intensity characteristics. 

5.Stone Size Estimation: Utilize the extracted features to 

estimate the size of the stones. Depending on the specific 

characteristics of the stones in ultrasound images, 

automatically detect stone perimeter in pixels and fix a 

specific value to calculate the result in form of 

centimetre(cm) and millimetre(mm).  

6.Validation and Optimization: Comparing the outcome 

of proposed technique with the results obtained by 

sonographers or doctors is a crucial step in validating and 

optimizing any medical image processing or analysis 

method. Validation: Establish a ground truth by using the 

results provided by sonographers or doctors as the 

reference standard. This means that the measurements or 

findings by the healthcare professionals are considered the 

gold standard for validation. Optimization: By 

understanding features or aspects of the images contribute 

most to the differences between proposed method results 

and those of sonographers. This analysis can guide further 

optimization efforts. 

Stone localization and size measurement Algorithm: 

The stone detection process involves a comprehensive 

image processing pipeline aimed at identifying and 

analysing stones within images. Beginning with Laplacian 

sharpening in Step 1, the pipeline enhances image details 

and edges. Subsequently, the background is removed using 

the rembg library in Step 2, resulting in a refined image. 

Step 3 employs contour detection and drawing to locate 

and outline stone areas. The final step, Step 4, analyses 

contours, providing valuable information about the stones, 

including their number and size. The integrated approach 

yields a robust stone detection system, with each step 

contributing to the accurate identification and 

characterization of stones within the images. All the steps 

for stone localization and size measurement, are discussed 

following with kidney ultrasound image namely “input 

image”:  

                     

Input Image 
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Fig 3 Methodology 

 

Step1: Laplacian Operator: The cv2.Laplacian function is 

used to apply the Laplacian operator to the input image. 

The Laplacian operator is a second-order derivative filter 

that highlights regions of rapid intensity change in an 

image. It is commonly used for edge detection and image 

sharpening. The Laplacian-filtered image is then subtracted 

from the original image with a scaling factor (par) and get 

resultant image as image-1 as shown following. This 

process enhances the edges and details in the image.  

 

Image-1 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 670–677 |  675 

Step2: In this step, rembg library is used which is a Python 

library that provides a straightforward way to remove the 

background from images. The primary purpose of rembg is 

to perform accurate and efficient background removal, 

often used in applications where isolating the main subject 

from the background is essential. The remove function 

from the rembg library to remove the background is 

applied on image-1 and save the output image with the 

removed background as shown following (image-2). 

 

Image-2 

Step3: Contour Detection and Contour Drawing is applied 

on image-2 to locate and outline the stone area as shown in 

image-3. 

 
          Image-3 

Step-4: here analysing contours which are indicating to 

stones in an image, and provides information about the 

area, perimeter, and centroid of each contour. The result is 

then saved as an image with drawn contours and labelled 

with contour numbers as shown in “output image.”  

                  
                     Output image 

The outcome of our proposed method, measuring at 2.8 

cm, is strikingly close to the doctors' measurement of 2.10 

cm, as illustrated in Table-3. This alignment underscores 

the effectiveness and accuracy of method, showcasing its 

reliability in producing results that closely mirror those 

obtained through professional medical measurements. 

The outcome of our proposed method, measuring at 2.8 

cm, is strikingly close to the doctors' measurement of 2.10 

cm, as illustrated in Figure 4. This alignment underscores 

the effectiveness and accuracy of method, showcasing its 

reliability in producing results that closely mirror those 

obtained through professional medical measurements. 

 

Proposed method 

 

 

Fig 4 Accuracy 

In Figure-5, the results of an additional experiment are 

depicted, featuring a normal image with no stones. The 

image elegantly demonstrates the robustness of method, 

revealing no detected objects and, consequently, no labels 

applied. This underscores the specificity of approach, 

affirming its ability to accurately discern and abstain from 

false positives in the absence of stones, thus enhancing its 

reliability in varied imaging scenarios. 

 

 

Fig 5 Results 

4. Proposed Method 

This section outlines the comprehensive methodology 

employed in developing the proposed Computer-Aided 

System for Kidney Stone Detection. The research 

introduces an innovative image classification model built 

on a Convolutional Neural Network (CNN) architecture, 

emphasizing key contributions that enhance its 

effectiveness in spatial relationship tasks, particularly in 

image-centric applications. A crucial innovation lies in the 

optimization of parallel processing through the Data 

Parallel module, enhancing the model's scalability for large 

datasets and computationally demanding tasks. The 

model's adaptability, dynamically assessing GPU 

availability for seamless transitions across diverse 

computing environments, further underscores its 
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practicality. The incorporation of the Cross-Entropy Loss 

function and Stochastic Gradient Descent (SGD) optimizer 

contributes to the model's stability and convergence, 

aligning with established practices in image classification. 

Additionally, the inclusion of a ResNet-based architecture 

enhances the model's performance, leveraging residual 

connections for improved training and convergence. The 

well-structured training loop, covering both training and 

evaluation phases with a focus on critical metrics like 

accuracy and loss, ensures a comprehensive approach to 

model assessment. The dataset description highlights the 

foundation of the model, comprising 9416 images 

categorized into 'Normal' and 'Stone,' with a balanced 

distribution for training (7533 images) and testing (1883 

images). The preprocessing stage employs a median filter, 

grayscale conversion, contrast enhancement, and image 

resizing to optimize input quality for subsequent analyses. 

The CNN architecture, configured for kidney stone image 

classification, consists of three convolutional layers with 

max-pooling layers, culminating in two fully connected 

layers. Exceptionally high accuracies of 99.10% in training 

and 99.11% in testing validate the model's robustness 

through rigorous evaluation on 7533 training images and 

1883 testing images as shown in Figure 6. Overall, this 

methodology lays a solid foundation for the proposed 

Computer-Aided System's efficacy in kidney stone 

detection, combining innovative design choices with 

thorough evaluation processes. In Evaluation Matrices, a 

total of 600 images featuring stones and 400 normal 

images were meticulously chosen from the dataset for 

detailed analysis. The resulting confusion matrix, derived 

from the model evaluation, is presented below: 

 

ACTUAL\PREDICTED STONE NORMAL 

STONE 595 5 

NORMAL 4 396 

Confusion matrix 

The model's effectiveness was assessed using this metrics 

to offer a comprehensive evaluation: Accuracy: 99.1% 

Precision: 99.17%, and F1 Score: 99.25%. Collectively, 

these metrics affirm the model's proficiency in accurately 

distinguishing between stone and normal images, 

showcasing high precision and overall accuracy. 

 

 

Fig 6 Train vs Test Loss 

5. Conclusion 

AThis research paper presents a novel approach for 

enhancing kidney ultrasound image quality and automating 

the detection and classification of kidney stone sizes. By 

effectively addressing speckle noise through median 

filtering and contrast enhancement, the study significantly 

improves image clarity. Additionally, the study explores 

the utilization of the Laplacian function for stone 

localization and size measurement. The developed 

Computer-Aided System, based on a Convolutional Neural 

Network, demonstrates exceptional accuracy in stone 

detection, with training and test accuracies surpassing 

99%. The proposed methodology, incorporating advanced 

image processing techniques, holds promise for enhancing 

healthcare outcomes in kidney stone management, 

presenting a valuable contribution to the field. 

References  

[1] X. G. Lv, F. Li, J. Liu, and S. T. Lu, "A Patch-Based 

Low-Rank Minimization Approach for Speckle Noise 

Reduction in Ultrasound Images," Advances in 

Applied Mathematics and Mechanics, vol. 14, no. 1, 

pp. 155-180, 2022. 

[2] T. Rahman and M. S. Uddin, "Speckle noise 

reduction and segmentation of kidney regions from 

ultrasound image," in Proc. 2nd International 

Conference on Informatics, Electronics and Vision 

(ICIEV '13), IEEE, Dhaka, Bangladesh, pp. 1–5, May 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(15s), 670–677 |  677 

2013. 

[3] P. S. Hiremath, Prema Akkasaligar, and Sharan 

Badiger, "Visual enhancement of digital ultrasound 

images using wavelet domain," International Journal 

of Pattern Recognition and Image Analysis, vol. 20, 

no. 3, pp. 303-315, July 2010. 

[4] N. R. Owen, O. A. Sapozhnikov, M. R. Bailey, L. 

Trusov, and L. A. Crum, "Use of acoustic scattering 

to monitor kidney stone fragmentation during shock 

wave lithotripsy," in Proc. of the IEEE Ultrasonics 

Symposium, Vancouver, Canada, October 2006, pp. 

736–739. 

[5] B. Chnada and D. Dutta Majumder, "Digital image 

processing and analysis." Prentice Hall of India, 

2003, pp. 90-99. 

[6] Prema T. Akkasaligar and Sunanda Biradar, 

"Diagnosis of renal calculus disease in medical 

ultrasound images," in 2016 IEEE International 

Conference on Computational Intelligence and 

Computing Research (ICCIC), IEEE, 2016. 

[7] S. P. Manjunath, S. Pande, and Raveesh, "Computer-

aided system for diagnosis of kidney stones using 

neural networks," International Journal of Current 

Engineering and Scientific Research (IJCESR), vol. 

4, pp. 22–27, 2017. 

[8] B. Dunmire, F. C. Lee, R. S. Hsi, B. W. Cunitz, M. 

Paun, M. R. Bailey, M. D. Sorensen, and J. D. 

Harper, "Tools to improve the accuracy of kidney 

stone sizing with ultrasound," Journal of 

Endourology, vol. 29, no. 2, pp. 147-152, 2015. 

[9] R. A. Raja and J. J. Ranjani, "Segment-based 

detection and quantification of kidney stones and its 

symmetric analysis using texture properties based on 

logical operators with ultrasound scanning," 

International Journal of Computer Applications, vol. 

997, pp. 8–15, 2013. 

[10] P. C. May, Y. Haider, B. Dunmire, B. W. Cunitz, J. 

Thiel, Z. Liu, M. Bruce, M. R. Bailey, M. D. 

Sorensen, and J. D. Harper, "Stone-mode ultrasound 

for determining renal stone size," Journal of 

Endourology, vol. 30, no. 9, pp. 958-962, 2016. 

[11] B. Dunmire, J. D. Harper, B. W. Cunitz, F. C. Lee, R. 

Hsi, Z. Liu, M. R. Bailey, and M. D. Sorensen, "Use 

of the acoustic shadow width to determine kidney 

stone size with ultrasound," The Journal of Urology, 

vol. 195, no. 1, pp. 171-177, 2016. 

[12] M. Vijayakumar, A. Ganpule, A. Singh, R. Sabnis, 

and M. Desai, "Review of techniques for ultrasonic 

determination of kidney stone size," Research and 

Reports in Urology, vol. 10, pp. 57–61, 2018. 

[13] V. Ganesan, S. De, D. Greene, F. Cesar, M. 

Torricelli, and M. Monga, "Accuracy of 

ultrasonography for renal stone detection and size 

determination: Is it good enough for management 

decisions?," BJU International, vol. 119, no. 3, pp. 

464–469, 2017. 

[14] G. Kaur and S. Singh, "Image Quality Enhancement 

and Noise Reduction in Kidney Ultrasound Images," 

International Journal for Research in Applied 

Science & Engineering Technology (IJRASET), vol. 

10, issue VII, 2022. 

[15] K. Kumar and B. Abhishek, "Artificial neural 

networks for diagnosis of kidney stones disease," I.J. 

Information Technology and Computer Science, no. 

July, pp. 20–25, 2012. 

[16] M. Marsousi, K. N. Plataniotis, and S. Stergiopoulos, 

"Shape based kidney detection and segmentation in 

three-dimensional abdominal ultrasound images," in 

2014 36th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, 

pp. 2890–2894, IEEE, 2014. 

[17] P. T. Akkasalgar and S. S. Karakalmani, 

"Abnormality detection in kidney ultrasound 

imaging," International Journal of Engineering and 

Computer Science, vol. 4, no. 7, pp. 13151–13155, 

2015. 

[18] Soumya and Narayanan, "Classification Of Kidney 

Disorders From Ultrasound Images Using Adaptive 

Neuro-Fuzzy Inference System," International 

Journal of Scientific Engineering and Applied 

Science (IJSEAS), Volume-1, no. 3, pp. 298–305, 

2015. 

[19] Ranjitha, "Extraction and Dimensionality reduction of 

features for renal calculi detection and artifact 

differentiation from segmented ultrasound kidney 

images," in 3rd International Conference on 

Computing for Sustainable Global Development 

(INDIACom), pp. 5–10, IEEE, 2016. 

[20] P. Vaish, R. Bharath, P. Rajalakshmi, and U. B. 

Desai, "Smartphone based automatic abnormality 

detection of kidney in ultrasound images," in 2016 

IEEE 18th International Conference on e-Health 

Networking, Applications and Services (Healthcom), 

pp. 1-6, IEEE, 2016. 


