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Abstract: The significance of interpretability in artificial intelligence (AI) models is growing within the healthcare sector, driven by 

advancements in medical imaging technology. These developments enhance our ability to recognize and understand intricate biomedical 

occurrences. As medical imaging technology progresses, the need for interpretable AI models becomes more critical in ensuring trust, 

accountability, and acceptance among healthcare professionals. In this context, the Multi-Modal Specific Feature Importance (MSFI) 

metric emerges as a crucial tool for evaluating the effectiveness of eXplainable Artificial Intelligence (XAI) models, specifically Grad-

CAM, in multi-modal medical imaging tasks. The MSFI metric addresses the intricacies of interpreting decisions made by AI models 

when presented with multi-modal medical images. Clear and detailed explanations are essential for ensuring a thorough comprehension 

and fostering trust in the decision-making process. This is particularly crucial as these visuals communicate diverse clinical information 

pertaining to the same underlying biomedical reality. The metric aims to assess how well heat-maps or feature attribution maps elucidate 

these decisions. The evaluation process using the MSFI metric is a comprehensive approach that combines computational methods with 

clinician user studies. For assessing the challenging brain tumor segmentation task clinically, the MSFI metric serves as a valuable tool. 

This metric gauges the correlation between the model prediction and the plausibility measure from various explainable artificial 

intelligence (XAI) approaches. In the selection and development of XAI algorithms tailored to meet clinical requirements for multi-

modal explanation, the MSFI metric proves to be a valuable resource. By focusing on addressing the interpretability of modality-specific 

features, this metric provides a framework for refining and advancing XAI models in the realm of medical imaging. The MSFI measure 

offers a robust evaluation framework that aids in comprehending the performance of AI models in the intricate realm of multi-modal 

medical imaging, particularly in the context of brain tumor segmentation diagnosis. 
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1. Introduction 

Numerous critical decisions in healthcare, finance, and 

situations involving life-or-death consequences depend on 

AI systems. Consequently, the need for explainable AI 

(XAI) is imperative to establish public trust and confidence 

in these systems [1]. Explainable AI (XAI) involves 

elucidating the rationale behind the decisions, 

recommendations, or predictions made by an AI system. 

This capability empowers human users to comprehend and 

trust the results and outcomes generated by machine 

learning algorithms [2]. The primary value of Explainable 

AI (XAI) lies in its ability to minimize the chances of 

ethical violations, biases, and legal complications. This is 

achieved through ensuring compliance, transparency, and 

accountability in AI decision-making [3]. XAI also helps 

promote end-user trust, model auditability, and productive 

use of AI, while mitigating compliance, legal, security, and 

reputational risks of production AI [4]. Researchers can 

adopt a more conscientious approach to AI development 

with the assistance of XAI, which elucidates AI decisions 

and behaviors in a manner comprehensible to humans. This 

leads to the creation of AI systems that are more 

trustworthy and responsible [5]. 

Evaluating the quality and effectiveness of Explainable 

Artificial Intelligence (XAI) is essential for various 

reasons, including trust, accountability, and ethics, 

especially in domains such as healthcare, finance, 

education, and security. There are several dimensions to 

evaluate XAI, including user, task, model, and data [6]. 

Some key reasons for evaluating XAI models are: 

Usability: Assessing the ease of use and understanding of 

the XAI model for human users, considering their 

background, goals, preferences, and level of expertise. 

Accuracy: Ensuring that the XAI model provides accurate 

and reliable explanations of the decision-making process, 

helping users understand the reasoning behind the model's 

output [7]. Fairness and Transparency: Evaluating the 

fairness and transparency of the XAI model, which can 

help identify potential biases and ensure that the model is 

not discriminatory. Model Performance: Investigating the 

impact of the XAI model on the performance of the 

underlying machine learning algorithm, and identifying 

areas for improvement. Compliance and Legal: Ensuring 

that the XAI model adheres to regulatory standards and 
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legal requirements, and can be used as evidence in case of 

disputes or challenges. Trust and Accountability: Building 

trust and confidence in the AI system by providing clear 

and understandable explanations of its actions and 

decisions.  Encourage AI explainability and assess the 

business implications of implementing such algorithms 

through consistent monitoring and management of models. 

This methodology in AI development is commonly 

referred to as responsible AI development. To evaluate 

XAI models, it is crucial to use a combination of 

qualitative and quantitative methods, such as application-

grounded metrics, user studies, and comparative analysis 

with baseline models [8]. By doing so, organizations can 

ensure the quality and effectiveness of their XAI models, 

leading to more trustworthy and responsible AI systems. 

In this study, it is recommended to conduct a systematic 

evaluation grounded in clinical requirements using 

computational tools and clinician user studies to analyze 

the MSFI metric. The objective of this evaluation is to 

assess the effectiveness of heatmaps and feature attribution 

maps in providing decision-supportive context for multi-

modal medical images. This is particularly relevant in 

cases where different imaging modalities present diverse 

clinical data associated with the same biological event. The 

MSFI metric measures both the model prediction for brain 

tumor segmentation and the plausibility measure of all 

XAI approaches. To calculate it, a modality-specific 

feature importance (MI) is adjusted to a weighted sum of 

all heatmap values within the feature localization mask for 

each modality [9]. The evaluation results, along with the 

MSFI metric, can guide the development and selection of 

XAI algorithms to meet clinicians' needs for a multi-modal 

explanation. Ultimately, obtaining input from 

neurosurgeons is crucial to determining the overall 

understandability. 

2. Related Work 

2.1 How XAI works in Medical Imaging: 

XAI techniques for image-based deep learning models can 

be integrated to make the model's decisions interpretable. 

Some of the popular techniques include: i)Saliency Maps: 

These visualizations indicate the most relevant parts of the 

input images for making predictions. They contribute to 

understanding how the model focuses on specific regions 

within the image [10]. ii) Grad-CAM (Gradient-weighted 

Class Activation Mapping): Grad-CAM generates a class-

discriminative localization map by analyzing the gradient 

information related to the target class in the input image. 

This map serves as a visual representation of the model's 

prediction, highlighting areas of significance. iii) Local 

Interpretable Model-agnostic Explanations (LIME): LIME 

provides explanations for specific predictions at a local 

level, offering insights into how the model arrives at its 

decisions [11]. iv) SHAP (SHapley Additive exPlanations): 

SHAP assigns feature importance to pixels in an image, 

helping in understanding the impact of individual features 

on the model's prediction[12]. These XAI techniques can 

be applied to image-based deep learning models to provide 

interpretability and explainability, enabling clinicians and 

other end-users to trust the model's recommendations and 

understand its decision-making process. Figure 1 shows 

that the Steps of XAI based model Evaluation. 

 

Fig 1: Steps of XAI based model Evaluation 

Multi Model Images: 

Multi-modal 3D MRI refers to the use of multiple imaging 

modalities, such as T1-weighted, T2-weighted, and 

FLAIR, in three-dimensional magnetic resonance imaging 

for the comprehensive assessment of brain structures and 

pathologies. This approach allows for the acquisition of 

complementary information from different imaging 

sequences, which can improve the accuracy of diagnosis 

and treatment planning for various neurological conditions, 

including brain tumors, Alzheimer's disease, and 

stroke[13]. The assessment of brain tumor segmentation in 

3D multi-modal MRI data is commonly conducted using 

the BRATS (Multimodal Brain Tumor Segmentation) 

challenge, serving as a pivotal platform. This dataset 

comprises three-dimensional magnetic resonance imaging 

(MRI) images acquired through four distinct modalities: 

first-pass (T1), post-contrast T1-weighted (T1ce), second-

pass (T2), and third-pass (T2-FLAIR) fluid-attenuated 

inversion recovery. The images are carefully aligned and 

resampled to achieve an isotropic resolution of 1x1x1 mm. 

The outcomes of these assessments showcase promising 

advancements in the segmentation of brain tumors within 

multi-modal MRI images. The BRATS challenge 

consistently proves to be an invaluable resource, 

facilitating the refinement and evaluation of cutting-edge 

segmentation methodologies tailored for the 

comprehensive analysis of brain tumors.Figure2 shows 

Sample Multi Model MRI images with different modalities 

like T1, T2, T1ce, T2-Flair and Mask. 
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Fig 2: Sample Multi Model MRI images with different modalities like T1, T2, T1ce, T2-Flair and Mask 

Modality Importance (MI)  

The concept of Modality Importance, as determined by 

Shapley values, draws inspiration from cooperative game 

theory, providing an equitable method for distributing the 

cumulative contributions of each modality within a set. 

Shapley values are particularly advantageous due to their 

commendable properties, which include efficiency, 

symmetry, linearity, and marginalism. Within cooperative 

game theory, Shapley values offer a fair mechanism to 

allocate a payoff among a group of players, considering 

their individual marginal contributions to various 

coalitions. In the realm of Modality Importance for model 

predictions, each modality is analogous to a player, and the 

Shapley value serves as a metric for its equitable 

contribution to the overall model performance. The 

Modality Shapley value, denoted as φm. The symbol "m" 

represents the authentic Modality Importance score. Its 

calculation involves the use of the Shapley value formula: 

𝜑𝑚(𝑣) = ∑
𝑐⊆ℳ∖{𝑚}

|𝑐|!(𝑀−|𝑐|−1)!

𝑀!
(𝑣(𝑐 ∪ {𝑚}) − 𝑣(𝑐))      (1) 

In this context, "v" denotes the performance metric specific 

to a modality, and M{m} encompasses all subsets of 

modalities that do not include modality "m." In our 

evaluation, "v" is defined as the test set accuracy of the 

prediction model. To assess the performance of the 

attributed modalities, we assign a value of zero to all 

characteristics in a modality that is not part of the subset. 

The resulting modality Shapley value is denoted as φmod. 

We also explored an alternative approach where we 

sampled from areas outside of lesions and used those 

results to replace zeros with non-zero values for an ablated 

modality. However, as the rank and magnitude of the 

Shapley values derived using this method were similar 

across modalities, we chose the simpler zero replacement 

setting. 

Following the generation and post-processing of saliency 

maps for each method, a comparison is made between their 

modality importance values and the previously defined 

ground truth. Subsequently, the estimated modality 

importance is calculated by summing up all positive values 

in the saliency map associated with that modality. To 

assess the consistency in rating the relevance of modalities 

between the ground truth and the estimated values, the MI 

Correlation is measured. In this evaluation, the test set and 

Kendall's Tau-b correlation are utilized.Figure 3 

showsTechniques for Computational Evaluation. 

 

 

Fig 3: Techniques for Computational Evaluation 
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The Modality-Specific Feature Importance (MSFI) 

This metric offers a framework to evaluate the 

comprehensibility of AI models in the context of medical 

imaging tasks that encompass multiple modalities. The 

MSFI metric evaluates how well the model's prediction 

aligns with the plausibility measure of various XAI 

approaches in the brain tumor segmentation task. It is 

calculated by summing the share of heatmap values inside 

the feature localization mask for each modality. Each 

modality's share is weighted by the normalized value of the 

modality-specific feature importance (MI). 

A comprehensive assessment, grounded in clinical 

requirements and utilizing computational methodologies 

alongside clinician user studies, is employed in evaluating 

the MSFI metric. The results of this evaluation can guide 

the development and selection of XAI algorithms to meet 

the clinical needs for multi-modal explanation. The MSFI 

metric provides a framework for evaluating the 

explainability of the Grad-CAM XAI model in the context 

of multi-modal medical imaging tasks, with a focus on 

addressing clinical requirements and the interpretation of 

modality-specific features. The MSFI metric is a valuable 

tool for assessing the reliability, generalizability, and 

interpretability of XAI algorithms in the context of multi-

modal medical imaging tasks. To meet clinicians' 

requirements for a multi-modal explanation, the results of 

the evaluation and the MSFI metric can guide the 

development and selection of XAI algorithms. 

𝑀𝑆𝐹𝐼
^

= ∑
𝑚
𝜑𝑚

∑
𝑖
𝟙(𝐿𝑚

𝑖 >0)⊙𝑆𝑚
𝑖

∑ 𝑆𝑚
𝑖

𝑖

                                             (2) 

𝑀𝑆𝐹𝐼 =
𝑀𝑆
^
𝐹𝐼

∑ 𝜑𝑚𝑚
                                                                 (3) 

In the assessment of Modality-Specific Feature Importance 

(MSFI), data from feature localization masks or bounding 

boxes is integrated with Modality Importance (MI). For 

each modality, MSFI represents the proportion of saliency 

map values located within the corresponding legitimate 

feature localization mask. The normalized Modality 

Importance value, denoted as φm, is then applied as an 

additional weighting factor. 

For a given modality "m," let "S" denote its saliency map, 

with "i" representing the spatial position. The ground truth 

localization masks or bounding boxes for modality "m" are 

represented as "Lm" when describing the spatial region of 

the feature  where𝐿𝑚
𝑖 > 0. The indicator function, denoted 

as 𝟙, utilizes the feature mask to selectively extract the 

saliency map values. φm is a normalized Modality 

Importance value ranging from 0 to 1 for modality "m." 

The normalized form of MSFI, represented by a metric 

𝑀𝑆𝐹𝐼
^

 that can assume values between 0 and 1, is derived 

from an unnormalized metric. 

In our evaluation, we adopt 𝑆𝑚
𝑖 = 𝟙(𝑆𝑚

𝑖 > 0)⊙ 𝑆
^

𝑚
𝑖 , where 

𝑆𝑚
𝑖  is the saliency map containing only positive values. A 

higher MSFI score, as depicted in Fig. 1, signifies a 

saliency map that effectively captures crucial modalities 

and their localized features. Notably, MSFI differs from 

conventional metrics like Intersection over Union (IoU) in 

its reduced reliance on either saliency map signal intensity 

or the area of the ground truth localization mask, rendering 

it a robust metric. In the subsequent sections, we detail our 

evaluation experiments applying MSFI to a real dataset 

(BraTS) 

During our review, we employed the saliency map 

containing exclusively positive values. we adopt 𝑆𝑚
𝑖 =

𝟙(𝑆𝑚
𝑖 > 0) ⊙ 𝑆

^

𝑚
𝑖 , where 𝑆𝑚

𝑖  illustrates that a saliency map 

successfully capturing crucial modalities and their 

localized features results in a higher MSFI score. In 

contrast to more conventional metrics like Intersection 

over Union (IoU), MSFI stands out as a robust metric as it 

is less reliant on the signal intensity of the saliency map or 

the area of the ground truth localization mask. The results 

of our evaluation studies using MSFI on a real-world 

dataset (BraTS) are detailed in the following sections. 

3. Results and Discussion 

In the BraTS Segmentation challenge, where XAI 

approaches were evaluated for their fidelity to the model 

decision process at both modality and feature levels, most 

MSFI scores fell within the lower range. Notably, no XAI 

approach achieved an average MSFI score higher than 0.5. 

Among the tested XAI methods, only Guided GradCAM 

exhibited statistically significant outperformance (p < 

0.01). This conclusion was reached through a post-hoc 

Nemenyi test following a significant Friedman test (χ2(15) 

= 1540.6, p < 0.001). In summary, the synthetic data 

experiment indicated that Guided GradCAM was the most 

effective XAI method for the glioma challenge. 

Furthermore, there was no statistically significant 

relationship between the rankings of synthetic data MSFI 

and the correlation between MI. 

Table 1: XAI algorithm 

XAI 

Model 

MI 

Correlati

on[0-1] 

MSFI 

Coorelati

on[0-1] 

MI 

Correlati

on[0-1] 

MSFI 

Coorelati

on[0-1] 

 
VGG16 based Brain 

Tumor Segmentation 

3D Unet based Brain 

Tumor Segmentation 

Using BraTs2021 
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Using BraTs2021 

Dataset 

Dataset 

MACE 
0.16 ± 

0.11 

0.04 ± 

0.02 
NaN NaN 

Gradient 

Shap 

0.18 ± 

0.12 

0.22 ± 

0.19 

0.46 ± 

0.31 

0.22 ± 

0.23 

Lime 
0.51 ± 

0.08 

0.15 ± 

0.07 

0.34 ± 

0.42 

0.08 ± 

0.08 

GradCA

M 

*0.54 ± 

0.12 

*0.43 ± 

0.24 

0.53 ± 

0.27 

0.22 ± 

0.25 

Guided 

GradCA

M 

*0.53 ± 

0.09 

*0.42 ± 

0.29 

*0.63 ± 

0.31 

*0.49 ± 

0.23 

Smooth 

Grad 

0.31 ± 

0.10 

0.02 ± 

0.13 

0.49 ± 

0.23 

0.10 ± 

0.10 

GradCA

M++ 

0.36 ± 

0.11 

0.08 ± 

0.02 

0.35 ± 

0.19 

0.03 ± 

0.02 

 

Table 1: Table given for each XAI algorithm, the mean   ±

standard deviation is displayed in the table for 

two evaluation metrics:  MI correlation, and MSFI for 

BraTs2021 Dataset. The range of each metric is stated. A 

higher number is preferable for all metrics. The top three 

scores on a given metric are bolded, and a ∗ indicates that 

the XAI algorithm outperformed the others by a significant 

margin. NaN means the results were not a number. 

 

 

Fig 4: Chart representation of MI correlation and MSFI correlation 

 

The evaluation results for explainable Artificial 

Intelligence algorithms utilizing VGG16 and Unet models 

show the mean and standard deviation for MI correlation 

and MSFI evaluation metrics on the BraTs2021 1250 cases 

training 3D Dataset and 220 cases test 3D dataset shown in 

Figure 4, which contain 4 different modalities for every 

cases. The use of VGG16 and Unet models for these XAI 

algorithms allows for a comprehensive evaluation of their 

effectiveness in interpreting the underlying decision-

making processes of the neural networks. Incorporating 

these models in the evaluation allows for a thorough 

analysis of the explainability and interpretability of the 

neural network's predictions. 

The current trend in artificial intelligence research aims to 

attain high performance and gain insights into the decision-

making processes of machine learning models. This 

comprehensive review aligns with this direction. In 

domains such as healthcare, where interpretability of AI 

algorithms raises significant ethical and legal concerns, it 

is crucial to understand how machine learning models 

make decisions. 

User Case Study: 

Neurosurgeons play a crucial role in the medical field, 

where AI-based clinical decisions have a significant impact 

on patient treatment options and outcomes. To understand 

the concepts of Explainable Artificial Intelligence, 

neurosurgeons need to be familiar with the integration of 

AI in surgery and its potential implications for patient care. 

This understanding helps neurosurgeons in optimizing 

surgical paths for preoperative patient images, diagnosing 

diseases, improving diagnostic efficiency, developing 

treatment algorithms, making accurate clinical decisions 

during surgical interventions, and handling repetitive work 

processes without the risk of burnout. 

In the field of medical imaging, the development of 

methods for dissecting the internal workings of machine 

learning models is crucial. Post hoc XAI methods, such as 

heatmap explanations, can provide valuable insights by 

highlighting important regions in the input image that 

influence the model's decision [14,15]. These heatmap 

explanations can help clinicians understand which areas of 
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the brain MRI are more relevant for classification, aiding 

in the diagnosis and treatment of diseases. XAI heatmaps 

can enhance the interpretability and transparency of deep 

learning models in medical imaging. Received feedback  

from the neurosurgeon. Feedback from domain experts 

shown in a stacked bar chart Figure 5. In that chart clearly 

shows that Guided GradCam got better result of 

understanding.[16-18] 

4. Conclusion 

In the exploration of explainability in Brain Tumor 

Segmentation through multi-modal analysis, the 

assessment involved three key metrics: MSFI (Modality-

Specific Feature Importance), MI (Mutual Information), 

and Understandability. The study aimed to shed light on 

the interpretability and effectiveness of explainable 

Artificial Intelligence (XAI) models in the complex task of 

brain tumor segmentation. The MSFI metric played a 

crucial role in evaluating the relevance of each modality in 

contributing to the segmentation outcomes. By quantifying 

modality-specific feature importance, the study provided 

insights into which imaging modalities had a more 

significant impact on the segmentation results. This not 

only enhances our understanding of the underlying 

mechanisms but also guides the refinement of future 

segmentation models. Mutual Information (MI) emerged as 

another pivotal metric, measuring the interdependence 

between the predicted segmentation and ground truth 

across multiple modalities. 

 

 

 

 

Fig 5: Stacked Bar chart about the feedback given by domain expertise 

This metric aimed to quantify the consistency and 

alignment of model predictions with the actual anatomical 

structures, providing a comprehensive evaluation of the 

segmentation accuracy. The evaluation also considered the 

Understandability metric, recognizing the importance of 

human interpretability in medical imaging applications. 

The study assessed how well the XAI models conveyed the 

segmentation results to human experts, acknowledging the 

critical role of intuitive and transparent explanations in 

fostering trust and adoption within the medical community. 

In conclusion, the multi-modal explainability evaluation 

utilizing MSFI, MI, and Understandability metrics offers a 

holistic perspective on the performance and interpretability 

of XAI models in the challenging domain of brain tumor 

segmentation. By comprehensively assessing modality-

specific contributions, alignment with ground truth, and 

human interpretability, the study contributes valuable 

insights for the advancement of explainable AI in medical 

image analysis, fostering trust and understanding among 

healthcare practitioners. 
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