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Abstract: The demand for precise and efficient forecasting of High-Speed Diesel (HSD)pump performance is critical for optimizing 

fuel distribution, operational planning, and resource allocation in the petroleum industry. This paper presents a comprehensive comparison 

analysis of implementing two widely used time series forecasting algorithms, Auto regressive Integrated Moving Average (ARIMA) and 

Vector Auto Regression (VAR), for predicting vibration in electrical systems. The study spans a year-long dataset collected at various 

intervals, including seconds, minutes, hours, days, weeks, months, and yearly intervals, leveraging data from voltage, current, and 

temperature sensors. The research analyzes "Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error 

(RMSE)" as three critical indicators for evaluating how well ARIMA and VAR perform. The analysis reveals that ARIMA consistently 

outperforms VAR across all intervals, demonstrating superior accuracy in predicting vibration levels. The data The dataset collected from 

a range of sensors provides a diverse and rich source of information, effectively capturing the electrical system's dynamic behavior. The 

results highlight the significance of selecting an appropriate forecasting model for time series data, especially system reliability and 

maintenance applications. This research contributes to the ongoing discourse on algorithm selection in time series forecasting for electrical 

systems and provides valuable insights for practitioners and researchers alike.  The findings underscore the importance of considering the 

dataset's specific characteristics and the nature of the target variable when choosing between ARIMA and VAR algorithms for predictive 

modeling. 
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1. Introduction 

High-Speed Diesel (HSD) pumps play a pivotal role 

in various industrial and operational domains, where 

their optimal performance is critical for ensuring the 

efficiency and reliability of machinery. In 

contemporary industrial setups, the ability to predict 

and manage the performance of these pumps has 

become increasingly vital, as unexpected failures can 

lead to costly downtime and disruptions. This paper 

presents an in-depth investigation into the predictive 

modeling of HSD pump performance, utilizing a 

comparative analysis between Vector Auto 

regression (VAR) modeling and traditional statistical 

methods. The study references a real dataset gathered 

over a year. It contains essential operating data, such 

as temperature readings, vibration measurements of 

the HSD pump, and three-phase voltage and current. 

The amalgamation of this data from these diverse 

sensors provides a rich source of information crucial 

for understanding the intricate dynamics influencing 

the performance of the HSD pump. Through rigorous 

analysis and modeling, this paper endeavors to 

forecast the behaviour of the pump, aiming to 

proactively detect pat- terns, anomalies, and potential 

performance deviations. Furthermore, utilising two 

distinct methodologies—VAR modeling and 

conventional statistical approaches—enables a 

comparative assessment of their efficacy in predicting 

the HSD pump performance. The VAR model, known 

for its ability to handle multivariate time series data, 

will be juxtaposed against traditional statistical 

methods to assess their respective strengths and 

weaknesses in this predictive context. 

The multidimensional nature of the dataset, 

encompassing electrical parameters (3-phase voltage 

and current), thermal information (temperature 

readings), and mechanical insights (vibration data), 

offers a unique opportunity to employ a holistic 

approach to pump performance prediction. This 

comprehensive analysis seeks to forecast potential 

issues or deviations in the pump’s behaviour and 

establish a comparative understanding of the predictive 

accuracy and efficiency between the VAR model and 

conventional statistical ARIMA model. The 

implications of this research are far- reaching, with the 

potential to significantly enhance predictive 

maintenance strategies and operational efficiencies in 

1,2Artificial Intelligence and Machine Learning Department, Symbiosis 

Institute of Technology, (Pune campus), Lavale, Pune, 412115, 

Maharashtra, India. 

3,4JSPM’S Rajarshi Shahu College of Engineering, Pune-411033, 

Maharashtra, India 

rajansmita@gmail.com 

kulkarnishivali@yahoo.co.in 

nihar.pune@gmail.com 

santoshborde@yahoo.com 

*Corresponding author: rajansmita@gmail.com 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 01–13 |  2 

industrial settings reliant on HSD pump 

functionality. This comparative analysis contributes 

valuable insights into predictive modeling for HSD 

pumps, providing a framework for optimized 

performance forecasting and proactive maintenance. 

2. Literature survey 

Various machine learning models have been applied to 

analyze and predict energy consumption patterns of 

hourly and daily energy consumption data from 

Kaggle. These models include Gaussian Processes, 

Support Vector Regression, K-Nearest Neighbor 

Regression, Multi-Layer Perceptron, and Linear 

Regression. Additionally, time series forecasting 

models, specifically ARIMA and VAR, were employed 

using Python. Using scenarios with and without 

meteorological data, these models were used to 

predict the energy usage of South Korean households. 

The results obtained from this research highlight the 

effectiveness of different methods for energy 

consumption prediction. Among the techniques 

investigated, Support Vector Regression emerged as 

the most accurate method for energy consumption 

prediction, demonstrating its robustness in capturing 

consumption trends. Following closely in performance 

are Multilayer Perceptron and Gaussian Process 

Regression. These models displayed notable 

forecasting capabilities and are essential tools for 

enhancing our understanding of household energy 

consumption dynamics, particularly in the context of 

South Korean households [1]. 

The complexities surrounding the severity of road 

traffic accidents in the UK. Our approach is a powerful 

blend of various analytical tools, including machine 

learning algorithms, econometric methods, and 

traditional statistical techniques, all applied to examine 

longitudinal historical data. Our comprehensive 

analytical framework encompasses descriptive, 

inferential, bivariate, and multivariate approaches, 

incorporating correlation analysis through Pearson’s 

and Spearman’s Rank Correlation Coefficients, 

multiple and logistic regression models, Multi-

collinearity Assessment, and Model Validation. To 

mitigate heteroscedasticity and autocorrelation in error 

terms, we have enhanced the precision and reliability of 

our regression analyses by leveraging the Generalized 

Method of Moments (GMM). Furthermore, we have 

harnessed the potential of the Vector Autoregressive 

(VAR) model and the Autoregressive Integrated 

Moving Average (ARIMA) models to enable precise 

time-series forecasting [2]. 

The multi-objective optimization method using a 

SVM-Support  Vector  Machine and Genetic In light-

duty diesel engines operating at high altitudes, the 

algorithm efficiently lowers NOx emissions and fuel 

consumption while preserving power output and a 

minimum smoke limit[3]. As per [4], Support vector 

regression is an efficient technique for predicting diesel 

engine performance, providing high accuracy and 

reducing testing time and cost. According to [5], 

NPN models using expanded training data are the best 

for predicting hydrocarbon emissions from diesel 

engines operating at constant speeds and loads, with 

ISO 8178-4 emission tests providing suitable data for 

predictions. According to [6], the Convo-LSTM model 

outperforms other deep learning algorithms [29] [30] in 

wireless mesh networks for traffic prediction and 

performance prediction of High-Speed Diesel pumps. 

Using a genetic algorithm, the adaptive Support Vector 

Regression model accurately predicts diesel engine 

system reliability, even with a small dataset and varying 

system lifetimes as per [7]. Artificial neural networks 

can effectively predict and describe diesel engine sound 

quality, reflecting the nonlinear relationship between 

objective parameters and subjective satisfaction as 

experimented by [8]. Artificial neural network models 

provide more accurate predictions of engine 

performance, torque, and emissions in diesel engines 

fueled with bio diesel-alcohol mixtures compared to 

linear regression models [9]. Using support vector 

regression, the proposed multi- condition performance 

prediction method by [10]for centrifugal pumps 

effectively predicts performance under multiple 

operating conditions, improving pump design. As per 

[11], Machine learning algorithms [28] accurately 

predict emission and performance responses in CI 

engines fuelled with metal-oxide-based nanoparticles, 

reducing CO and NOx emissions and improving 

engine performance. 

The neural approximation of nonlinear model 

predictive control (NMPC) improves stability and 

performance in diesel engine air path control, achieving 

high-speed computation and satisfying constraints 

like compressor surge and choke [12]. Younis et al. 

[13] have stated that Artificial neural networks (ANN) 

have a greater prediction accuracy than multiple linear 

regression models in predicting the gross heat value of 

diesel fuel combustion, with the best models being 

back-propagation networks (8-8-1) and (8-5-1). 

3. Methodologies 

3.1 Data acquisition and Processing 

The process for gathering and preparing the data is 

described as follows before going into detail about the 

methods used to model the data. Several sensors were 

used to gather the data over the span of a year. Eight 

sensors in all were positioned to gather information. 

One output variable and seven input variables make 
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up the gathered data. Table 1 describes each of these 

parameters. This mostly consists of vibration, voltage, 

current, and temperature sensors.

 

Table 1 Data description 

 

Collection of Data for Parameter An explanation 

 

Date                                                     The specific data that specifies the interval of time during which the               

data were gathered 

Three-phase currents IR, IY, and IB 

Three-Phase Voltage: VR, VY, and VB 

Temperature Output of the Temperature sensor 

Vibration The output parameter to be observed 

 

Eight thousand nine hundred and sixty (8960) of these 

tuples comprise the whole data. Each one contains a 

single time stamp identifier (Date / Time), seven input 

variables (three-phase voltage, current, and 

temperature sensor readings), and one output variable 

(the reading from the vibration sensor). 

Algorithms used for Network Performance 

Prediction 

Resource planning, network optimization, and 

management all depend on the ability to predict 

network traffic. To anticipate network traffic, a variety 

of statistical and non- statistical algorithms can be used. 

For output prediction, the current study employs both 

methods. 

3.2 Vector Auto Regression 

A time series is made up of observations made at 

predetermined intervals of time. The frequency of 

observations determines whether a time series is 

hourly, daily, weekly, monthly, quarterly, or annual, 

ending a variety of variables related to the series’ 

essential characteristics [14]. When two or more-time 

series affect one another, a forecasting technique called 

Vector Auto Regression (VAR) can be applied. Put 

alternatively, there exists a bidirectional relationship 

between the time series when multiple time series 

affect one another[15]. 

A statistical model called VAR is employed to capture 

the linear inter dependencies between several time 

series data [16]. Multivariate time series data are 

incorporated into univariate autoregressive models 

(AR models). Every variable in the system is 

represented in a VAR model as a linear combination of 

its historical values and the historical values of every 

other variable. VAR models are widely used in 

economics, finance, and other fields to model the joint 

behaviour of multiple variables over time [17]. They 

provide a flexible framework for capturing inter 

dependencies and dynamic relationships among time 

series data [18]. 

• Multivariate Time Series: VAR models are 

employed when several time series variables 

interact. All of the system’s variables are 

modeled as functions of their historical values as 

well as the historical values of each other. 

• Order pp: pp is the model order, in the VAR 

model pp indicates the number of lag 

observations [19]. For instance, a VAR(2) model 

has the two most recent time points. 

• Stationarity: Prior to developing a VAR model, 

it is typically essential to ensure 

that the time series  variables  exhibit  stationarity,  a  

prerequisite  similar  to  that of univariate autoregressive 

models [20]. Various tests, including the “Augmented 

Dickey-Fuller (ADF)” test, can be employed to assess 

and confirm the stationarity of the time series 

variables. 

• Estimation: Estimating the coefficients in a 

VAR model is typically done using 

techniques like least squares [21]. 

• Impulse Response Function (IRF): VAR 

models frequently analyses the variables’ dynamic 

reactions to inputs [22]. Each variable’s response to 

a single input in any 
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of the variables can be seen by the Impulse Response 

Function. 

AR is known as an auto-regressive part of model 

because each variable (Time Series) is viewed as a 

function based on prior values. The predictors of the 

series are their lags or time-delayed values. This 

forecasting model differs from others primarily in that 

both are unidirectional, meaning that predictors 

affect Y but not the latter. 

However, vector auto regression, or VAR, is bi-

directional. Stated differently, the variables influence 

each other. In auto-regression models, the time series 

is represented as a linear mixture of its lags. Put another 

way, the values of the series in the past predict their 

future values. 

A typical AR(p) model equation is as shown in 

equation 1 

Yt = α + βYt1 + βYt2 + ... + βYp + ϵt

 

(1) 

Where the intercept, α, is a constant, and the 

coefficients of the lags of Y up to order p are β1, β2, 

and βp. 

Order ’p’ denotes using the predictors in the equation 

up to p-lags of Y. 

The error, or ϵt, is known as white noise. Each 

variable’s historical values and the other variables’ 

historical values in the system are combined linearly to 

represent each variable in the VAR model. 

One set of equations, one for each variable (time series), 

is used to represent a time series composed of several 

time series that influence each other. The number of 

equations is equal to the number of time series 

interacting. 

3.3 “Auto Regressive Integration 

and Moving Average” 

“ARIMA - Auto Regressive Integrated Moving 

Average uses a moving average and auto-regression 

algorithm combination to estimate future outcomes 

based on historical time series data” [23]. 

Mathematically, it is represented as follows: 

ht = α + β1Yt−1 + β2Yt−2 + ... + βpYt−pϵt

 

(2) 

yt = ht + ϕ1ϵt−1 + ϕ2ϵt−2 + ... + ϕqϵt−q

 

(3) 

Specific terms are derived via auto-regression, while 

others are derived from moving averages. When there is 

an excess difference in the time series, add more MA 

terms; when there is an under-differentiated term, add 

more AR terms. 

In the presence of non-stationarity within the dataset, 

the ARIMA (p, d,  q) approach incorporates lags at 

either the first or second differencing levels. 

Conversely, for stationary data without lag, an 

alternative technique involves using ARMA (p, q). 

Here, ’p’ signifies the “Moving Average (MA)” order, 

and ’q’ denotes the Autoregressive (AR) order, 

representing the number of lagged errors considered in 

forecasting within the ARIMA model. 

The widely employed method for achieving 

stationarity in a time series involves subtracting the 

initial value from the current value. The necessity for 

one or more lags depends on the nature of the time 

series—whether it is univariate or multivariate. 

Accordingly, when the data series remains stationary 

without differentiation, d = 0 signifies the minimal 

differentiation required to maintain stationarity. In the 

identification process, the correlogram is plotted as the 

initial step to assess the presence of autocorrelation 

(ACF) and partial autocorrelation (PACF) [24]. 

Subsequently, analyze the auto-regressive and moving 

averages to identify suitable models by examining the 

autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of the time series. 

The determination of the model order parameters (p, 

q) is guided by the observation of patterns in the 

ACF and PACF graphs, and the most optimal model 

is then selected. Once the best-fitting model is 

identified, forecasting leverages its parameters (p, d, 

and q). To assess the efficacy of the chosen model, 

diagnostic forecasting involves evaluating it using 

statistically significant metrics such as mean square 

error, Bayesian criteria (BIC), and Akaike 

information criterion (AIC) [24]. 

ARIMA stands as a widely acknowledged and 

utilized model for time series fore- casting, 

amalgamating three crucial components. Moving 

Average (MA), Integrated (I), and Auto Regressive 

(AR) as its three main components. 

• Auto Regressive (AR): The AR facet 

embodies the autoregressive aspect of the model, 

signifying that the value of the time series variable at 

a specific time is directly tied to its prior values. The 

parameter “p” denotes the order of the autoregressive 

component, representing the number of lagged 

observations incorporated into the model [25]. 

• Integrated (I): Represented by the “d” 

parameter, the integrated component corresponds to 

differencing. “Differencing involves subtracting the 
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previous observation from the current one, a process 

employed to induce stationarity in the time series. 

Stationarity streamlines the modeling process” [26]. 

• Moving Average (MA): The MA component 

characterizes the moving average element of the 

model, indicating that the current value of the time 

series variable is influenced by past white noise 

(random) errors. The “q” parameter signifies the order 

of the moving average component [27]. 

Steps for fitting an ARIMA model: 

1. Stationarity: Check and ensure that the time 

series is stationary. If not, apply differencing 

until stationarity is achieved. 

2. Identify Parameters: Based on the plots of the 

partial autocorrelation function (PACF) and 

autocorrelation function (ACF), ascertain the 

values of pp, dd, and qq. 

3. Fit the Model: Using of the established parameters 

to fit the ARIMA model to the data. 

4. Evaluate Model: Evaluate the model’s performance 

using various metrics and diagnostic checks. 

ARIMA models are famously used in many different 

fields for predicting the time series and have been 

successful in doing so. 

4. Results 

There are 8960 data points in the time series data 

shown in Table 1. This data is split 4:1 across the 

training and test sets, resulting in an observed 80% -20 

% split. So, before the data is changed into a more 

algorithm-friendly format, it is pre-processed. 

3.4 Preprocessing of Data 

As part of the preparation, the data underwent the 

following evaluates: 

Verify the stationarity of the time series to determine 

if it is stationary. 

1. Verify the coherence of the mean and 

standard deviation within the dataset by plotting their 

values across the entire data range using a rolling 

window. This method provides a robust approach to 

confirming the stability and consistency of these 

statistical measures throughout the dataset. 

2. “The ADFuller test for stationarity 

assessment: The ADFuller test is used to find out how 

well a trend keeps up over time. This is possible by 

keeping a null hypothesis and an alternate hypothesis”. 

Table 2 displays the test results. 

The time series is considered nonstationary, adhering 

to the null hypothesis suggesting a common root. 

However, an alternative hypothesis proposes 

stationarity. The assessment involves determining the 

p-value associated with the null hypothesis, with a 

predetermined threshold set at 0.05. If the calculated p-

value falls below this threshold, one may infer that the 

“null hypothesis holds true, indicating the series is 

stationary.” 

3. Employment of seasonal decomposition 

involves establishing a stationary time series for 

forecasting. The triad values required for this process 

are derived through the application of the seasonal 

decomposition approach. The outcomes of this method 

encompass three components: residuals, seasonality, 

and trends, as illustrated in Fig 1. 

3.5 “Augmented Dickey-Fuller test” 

The ADF test plays a crucial role in evaluating the 

stationarity of time series data and finds widespread 

application in time series analysis, econometrics, and 

financial modeling. Its primary purpose is to ascertain 

the presence of a unit root in a given time series 

dataset. A unit root is a characteristic of a time series 

that reflects a random walk behavior—characterized by 

a consistent mean and variance, with inherently 

unpredictable values[27]. In econometrics and finance, 

the ADF test serves as a valuable tool for assessing the 

stationarity of a time series. By determining the 

existence of a unit root, the ADF test provides insights 

into whether the data exhibits a stationary or non-

stationary behavior, crucial for making informed 

decisions in various analytical and modeling contexts 

[15]. 

Stationarity plays a crucial role in the field of time 

series analysis [16]. A time series is considered 

stationary when its statistical characteristics, such as 

mean and variance, remain consistent over time. In 

contrast, non-stationary time series exhibit patterns like 

trends or seasonality, introducing complexities in the 

analysis and modeling process. 

The ADF test involves estimating the presence of a unit 

root in a time series and determining whether it can be 

removed through differencing (making the series 

stationary). The test provides a p-value, and based on 

this p-value, one can decide whether to reject the null 

hypothesis that a unit root is present. The ADF test 

helps you assess whether a time series is stationary. A 

low p-value (typically less than 0.05) leads to rejecting 

the null hypothesis and suggests that the time series is 

likely stationary. Conversely, a high p-value implies 

that the null hypothesis cannot be rejected, and the time 

series may be non-stationary [20]. The Augmented 

Dickey-Fuller (ADF) test interpretation involves 

assessing the p-value obtained from the test statistic. 

The ADF test is commonly used to determine whether 
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a time series is stationary. Here’s a step-by-step guide 

on how to interpret the ADF test results: 

• Null Hypothesis (H0): “The null hypothesis of the 

ADF test is that the time series has a unit root, 

which implies that it is non-stationary”. 

• Alternative Hypothesis (H1): “The  alternative  

hypothesis  is  that  the  time  series does not have 

a unit root, indicating stationarity”. 

• Test Statistic and Critical Values: “The ADF test 

produces a test statistic and critical values. The 

test statistic is compared with critical values to 

make a decision. 

If the test statistic is less than the critical value, the 

null hypothesis is rejected”. 

• P-value: “The primary measure for decision-

making is the p-value. If the p-value is less than a 

chosen significance level (commonly 0.05), the null 

hypothesis is rejected. 

This suggests evidence against the presence of a unit 

root and in favour of stationarity”. If p-value < 0.05: 

Reject the null hypothesis. If p-value >= 0.05: Fail 

to reject the null hypothesis. 

Interpretation: 

• Rejecting the Null Hypothesis: If you reject the 

null hypothesis, it suggests that the time series is 

likely stationary. This is a positive outcome for 

many time series analyses, as stationarity 

simplifies modeling. 

• Failing to  Reject  the  Null  Hypothesis:  If  you  

fail  to  reject  the  null  hypothesis, 

it implies that there is not enough evidence to conclude 

that the time series is stationary. In this case, the 

data may exhibit a unit root, indicating non-

stationarity. 

• Consideration of Lag Order: In some cases, the 

ADF test involves choosing the lag 

order for the test. Different lag orders might produce 

different results. It’s important to consider the context 

of the data and potentially experiment with different lag 

orders to find the most appropriate one. 

The time series data is visualised as shown in Figure 

1. This exploration shows the relations, dependability 

and sheds light on what variables are changing with 

time and how they are changing (trends) with time. 

Histogram, Pair Plot. A Stationary series is one whose 

mean and variance do not change with time. The ADF 

generates a tuple consisting of 6 parameters; the ADF 

test statistic (TS), p-value, number of lags used, 

number of observations used, critical values (CV) at 

1%,5%, 10%levels and the maximized information 

criterion (icbest). 

3.6 Results of ADF 

ADF Test is executed to check for stationarity. Each 

input value is a time series data. So when all the series 

are checked for stationarity, the output achieved is 

shown in Table 2 and Table 3. 

3.7 Exploratory Data Analysis 

The Data used for this work is as shown in figure 2 

Before heading into the data pre- processing part, it is 

important to visualize what variables are changing 

with time and 
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Fig. 1 The seasonal de-compose of the observations. 

Table 2  Adifuller Test Statistics with lag leap 1 

 

Multivariate Input parameters                                                              Output 

Test Parameters IR IY IB VR VY VB Vibration 

TS -22.624 -22.608 -22.603 -17.441 -17.432 -17.44 -20.793 

p-value 0 0 0 4.71E-30 4.76E-30 4.71E-30 0 

no of Lags 33 33 33 37 37 37 37 

no of 

Observations 

8839 8839 8839 8834 8835 8835 8835 

CV (1%) -3.431 -3.431 -3.431 -3.431 -3.431 -3.431 -3.431 

CV (5%) -2.862 -2.862 -2.862 -2.862 -2.862 -2.862 -2.862 

CV (10%) -2.567 -2.567 -2.567 -2.567 -2.567 -2.567 -2.567 

 

how they are changing (trends) with time. The 

Histogram which shows the distribution is as shown in 

Figure 3 The relation between the data with the output 

variable and within the input features can be well 

visualised using the pair plot as shown in Figure 4. 

The Pierson’s correlation, which plays an important 

role in understanding the dependency and impact of one 

variable on another, can be seen with the help of Figure 

5. 

 

Fig. 2  Time series Data Collected over the year 
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Fig. 3 Data Distribution for data visualization 

Table 3   Adifuller Test Statistics with leap 2 

 

Multivariate Input parameters                                                           Output 

Test Parameters IR IY IB VR VY VB Vibration 

TS -34.9219 -34.741 -34.833 -27.94 -27.94 -27.944 -35.923 

p-value 0 0 0 0 0 0 0 

no of Lags 36 36 36 37 37 37 37 

no of 

Observations 

8835 8835 8835 8834 8834 8834 8834 

CV (1%) -3.431 -3.431 -3.431 -3.431 -3.431 -3.431 -3.431 

CV (5%) -2.862 -2.862 -2.862 -2.862 -2.862 -2.862 -2.862 

CV (10%) -2.567 -2.567 -2.567 -2.567 -2.567 -2.567 -2.567 
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Fig. 4 Pair Plot for data visualization 

3.8 Results of ARIMA 

The models undergo training by utilizing data 

derived from the preprocessed training set, with 

ARIMA and VAR being trained separately. The 

fully trained model undertakes the task of predicting 

outcomes based on the test set data. The model’s pre- 

dictions are then evaluated by comparing them to the 

actual output values within the dataset. Among the two 

forecasting methods, ARIMA and VAR, the former 

demonstrates a notably higher degree of line fitting, 

aligning closely with others, while the latter exhibits 

the least degree of line fitting. 

 

Fig. 5 Correlation Matrix for data visualization 

The aforementioned model is evaluated across multiple 

time intervals as Hourly, Daily, Weekly, Monthly, and 

Yearly. 

The results are evaluated across the following three 

metrics: 

• “Mean Absolute Errors (MAE): Absolute 

difference between actual and predicted traffic”. 

• “Mean Square Error (MSE): Square of the 

difference between actual and predicted 

traffic”. 
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• “Root Mean Squared Error (RMSE): Square 

root of the MSE value”. 

The results are mentioned in the tables below: 

To enhance result interpretability, visual 

representations in the form of graphs illustrating the 

comparison between predicted and actual outputs for 

the implemented algorithms are presented in Fig 6 to 

Fig.7 

3.9 Results of VAR 

Fitting the VAR Model: The VAR model is fitted to 

the second differenced data using a maximum lag of 

15 and AIC as the information criterion. 

• Forecasting: Predictions are made for 100 steps 

ahead using the fitted VAR model. 

• Inverting the  Differencing  Transformation:  

The  function  invert transformation  is defined to 

revert the differencing transformation applied to 

the forecasted data. 

• Visualization: The actual vs forecasted 

values are plotted for each sensor data (columns in 

the dataset). The color for the forecasted and actual 

plots is shown in Figure. 

 

Fig. 6 Actual vs Predicted vibrations using ARIMA algorithm 

• Mean Squared Error (MSE): The MSE between 

the test data and the forecasted values is calculated 

using mean squared error from the sklearn.metrics 

module. 

Step : Fitting the VAR model to the 2nd Differenced 

Data and Forecasting for 100 steps ahead the MSE 

value is obtained as Mean Square Error:3.655 

5. Conclusion 

In conclusion, our comparative analysis of ARIMA 

and VAR algorithms for predicting vibration in 

electrical systems reveals valuable insights into their 

respective performances. Over the course of a year-

long dataset collected at various intervals, ARIMA 

consistently demonstrates superior forecasting 

accuracy compared to VAR. This superiority is 

evident across multiple evaluation metrics, including 

Mean Absolute Error (MAE), Mean Squared Error 

(MSE), and Root Mean Squared Error (RMSE). The 

results emphasize the importance of algorithm selection 

in time series forecasting, particularly in applications 

where precision in predicting vibration levels is 

critical for maintaining the reliability and efficiency 

of electrical systems. ARIMA’s effectiveness is 

attributed to its ability to capture and model the 

underlying temporal patterns present in the dataset, 

showcasing its suitability for such applications. 

While VAR is a powerful tool for capturing inter 

dependencies among multiple time series variables, our 

findings suggest that for predicting vibration in 

electrical systems, the univariate approach of ARIMA 

proves more advantageous. 

Our research contributes to the existing body of 

knowledge by providing empirical evidence 

supporting the preferential use of ARIMA in 

scenarios similar to our study. 
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Fig. 7 Actual vs Predicted vibrations using VAR algorithm 

However, it is essential to note that the effectiveness 

of forecasting algorithms is context-dependent, and 

results may vary based on the nature and characteristics 

of the dataset. 

As the field of time series forecasting continues to 

evolve, further research can explore hybrid models or 

advanced machine learning techniques to enhance 

predictive capabilities. Nonetheless, the insights gained 

from this study serve as a valuable guide for 

practitioners and researchers in making informed 

decisions when selecting forecasting algorithms for 

similar applications in HSD pumps. 
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