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Abstract: Colorectal cancer (CRC) begins in the colon or rectum, gastrointestinal tract organs. It is a common cancer that causes many 

cancer deaths worldwide. CRC usually starts with a polyp, a benign growth that can become cancerous. CRC prevention, treatment, and 

control require early detection and treatment. In this study, we reviewed various, pertinent research based on CRC diagnostic techniques, 

colonoscopy, and the use of AI screening. We performed various quantitative and qualitative comparative analyses of diagnostic techniques 

based on numerous features. Colonoscopy and sigmoidoscopy allow doctors to examine the colon and rectum for abnormalities. Deep 

learning (DL) techniques in medical imaging and Artificial Intelligence (AI) have improved CRC diagnosis, particularly polyp detection. 

We discussed the present and possible use of AI, DL in CRC diagnosis. A sigmoidoscopy, a minimally invasive procedure, shows the 

potential in terms of reducing the number of incidences and mortality. Colonoscopy was the most invasive technique and possesses the 

risk of morbidity. The Markov model demonstrated that cost per life can be saved for a colonoscopy performed once in 10 years. Thus, 

colonoscopy certainly proves to be a golden standard with highest sensitivity with the capability of biopsy during diagnosis. The proposed 

pre-trained VGG19 model confirmed 97% accuracy in polyp detection when applied with the approach of Transfer Learning (TL). The 

model is not overfitting and is proven to be more accurate than the recommended Adenoma Detection Rate (ADR).  
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1. Introduction 

CRC is the third most frequently detected and the second 

highest contributor to cancer-related fatalities on a global 

scale. As a result, it presents a significant challenge to the 

health overall population of the world. In most cases, this 

cancerous growth originates from the inner epithelial layer 

of the colon or rectum, and it frequently begins as polyps, 

which are benign at initial stage. To emphasize the critical 

role that early detection plays in the prevention, treatment, 

and effective management of CRC, it is important to note 

that the transformation from benign polyps to cancerous 

growth occurs gradually over a period of fifteen to twenty 

years. Because CRC is so prevalent all over the world, its 

significance has been brought to light, which has prompted 

the medical community to investigate more advanced 

diagnostic techniques[1]. 

When it comes to identifying abnormalities in the colon 

and rectum, conventional diagnostic methods, such as 

colonoscopy and sigmoidoscopy, have been extremely 

helpful in the past. Nevertheless, these procedures have 

inherent limitations and risks associated with them, which 

highlights the need for diagnostic methods that are more 

effective and less invasive. Over the past few years, the 

utilization of AI and DL approaches in the field of medical 

image processing has emerged as a potentially fruitful 

strategy for enhancing the diagnosis of CRC. 

The development of CRC occurs gradually over a period 

of 15-20 years, beginning with harmless polyps and 

progressing to malignancy. The extended timeline 

underscores the importance of early diagnosis, as it offers 

a vital opportunity for preventive actions, curative 

treatments, and efficient disease control. Colonoscopy and 

sigmoidoscopy are traditional diagnostic techniques that 

have played a crucial role in identifying and diagnosing 

colorectal abnormalities. Although these techniques have 

demonstrated efficacy, they are not without limitations and 

inherent risks. Colonoscopy, for example, is a procedure 

that invades the body and has the potential to cause illness, 

so it is important to investigate other diagnostic methods. 

[2].
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Fig 1: Various stage of CRC (Source-colorectal cancer alliance) 

A revolutionary change has occurred in the field of CRC 

diagnosis as a result of the development of AI, which has 

taken into account the requirement for diagnostic 

procedures that are both more efficient and less invasive. 

AI, specifically deep learning, has demonstrated potential 

in the field of medical imaging, presenting new 

opportunities to improve diagnostic precision and 

effectiveness [3].  

The present work aims to overcome the constraints of 

current diagnostic methods by conducting a thorough 

examination and comparison of conventional techniques 

used for diagnosing CRC. The objective is to 

comprehensively comprehend their capabilities, 

limitations, and areas requiring enhancement, thereby 

establishing the foundation for the subsequent 

investigation of AI-driven and Computer Aided Diagnosis 

(CAD) solutions. A comprehensive examination is 

undertaken to investigate the role of AI, specifically in the 

field of medical imaging, for the diagnosis of CRC. AI has 

the capacity to transform the field by offering more precise 

and efficient diagnostic capabilities, which can have a 

substantial impact on patient outcomes. This study 

presents a new framework that utilizes the VGG19 model 

to classify polyps, making it a valuable addition to the 

current advancements in this field. The VGG19 model is a 

Convolutional Neural Network (CNN) that has proven to 

be highly effective in tasks involving the classification of 

images. Within the context of CRC, this framework is 

designed to attain an impressive 97% accuracy in 

identifying polyps, surpassing the recommended ADR. 

The model's non-overfitting nature enhances its credibility. 

The anticipated effect of this proposed framework is 

significant. Enhancing the precision and effectiveness of 

CRC diagnosis greatly aids in the early detection, 

treatment, and successful control of the disease. The 

decrease in mortality rates associated with CRC is a 

concrete result that demonstrates the potential of AI 

solutions in revolutionizing healthcare practices and 

improving patient care. This study represents a leading 

position in the transition towards more sophisticated and 

patient-oriented diagnostic approaches in the field of CRC. 

What is Transfer Learning? 

TL is an approach in which a pre-existing model created 

for a specific task is utilized as the initial foundation for a 

model designed for a different task. TL utilizes the 

acquired knowledge from solving one problem to enhance 

the performance on a related yet distinct problem, rather 

than starting the model training process from the 

beginning. 

Let 𝜃𝑠𝑜𝑢𝑟𝑐𝑒= “parameters of the pre-trained model on the 

source task”, 𝜃𝑡𝑎𝑟𝑔𝑒𝑡= “parameters of the model for the 

target task”, ℒ𝑠𝑜𝑢𝑟𝑐𝑒= “Loss on the source task”, ℒ𝑡𝑎𝑟𝑔𝑒𝑡= 

“Loss on the target task”. The idea is to minimize the loss 

on the target task by 𝜃𝑡𝑎𝑟𝑔𝑒𝑡  while utilizing the knowledge 

gained from the pre-trained model on the source task is 

represented by eq.1 

𝑚𝑖𝑛𝜃𝑡𝑎𝑟𝑔𝑒𝑡 (ℒ𝑡𝑎𝑟𝑔𝑒𝑡(𝜃𝑡𝑎𝑟𝑔𝑒𝑡)) + 𝜆. ℒ𝑠𝑜𝑢𝑟𝑐𝑒(𝜃𝑠𝑜𝑢𝑟𝑐𝑒))  

………………………... (eq. 1) 

where, 𝜆= “hyperparameter that controls the influence of 

the source task on the target task”. The model is fine-tuned 

on the target task with a smaller learning rate to prevent 

large updates that may omit useful features learned during 

pre-training. This is implemented using gradient descent 

which is calculated wrt 𝜃𝑡𝑎𝑟𝑔𝑒𝑡  and the weights are 

updated as eq.2: 
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𝜃𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝜃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝛼. ∇𝜃𝑡𝑎𝑟𝑔𝑒𝑡( ℒ𝑡𝑎𝑟𝑔𝑒𝑡( 𝜃𝑡𝑎𝑟𝑔𝑒𝑡) +

𝜆. ℒ𝑠𝑜𝑢𝑟𝑐𝑒(𝜃𝑠𝑜𝑢𝑟𝑐𝑒)) ….…(eq. 2) 

where, 𝛼= “learning rate”. 

The process helps leverage knowledge gained from a 

related task even when there might be limited labeled data 

is available for the target task. TL is essential in improving 

the efficiency and effectiveness of DL models when 

applied to CRC detection. In order to effectively train a 

Deep Neural Network (DNN) for medical image analysis, 

specifically for tasks like detecting polyps in colorectal 

images, a substantial quantity of annotated data is typically 

necessary. Nevertheless, the process of gathering such 

comprehensive datasets can poses difficulties like privacy 

apprehensions, ethical deliberations, and limitations in 

resources. 

TL overcomes this constraint by enabling the utilization of 

pre-trained models, typically trained on extensive datasets 

for generic image recognition tasks, to be adjusted or 

customized for the particular task of CRC detection. The 

initial layers of these pre-trained models have already 

acquired the ability to identify fundamental characteristics 

such as edges, textures, and shapes, which are pertinent in 

diverse image recognition assignments. TL in CRC 

detection allows the model to utilize the knowledge 

acquired from analyzing a variety of images to enhance its 

understanding and classification of features that are unique 

to colorectal images. TL enhances the accuracy, 

generalization, and robustness of model. 

The Role of DL in Polyp Detection 

DL is crucial in the field of medical imaging, specifically 

in identifying polyps related to CRC. Within the realm of 

CRC, polyps serve as initial precursors that have the 

potential to develop into malignancies, highlighting the 

critical significance of precise and prompt identification. 

Convolutional neural networks (CNNs), a type of DL 

technique, have shown impressive effectiveness in 

automatically detecting polyps from medical images, such 

as those obtained from endoscopic and colonoscopy 

examinations. 

DL is applied in polyp detection by training models, such 

as VGG19, within the proposed framework. This training 

is done using extensive datasets of annotated medical 

images. These models acquire complex patterns and 

distinctive characteristics that are characteristic of both 

typical and atypical tissue, allowing them to accurately 

differentiate polyps from healthy tissue.  

DL models possess the ability to engage in ongoing 

learning and adjustment, enabling them to enhance their 

performance as they encounter a wider range of datasets. 

DL plays a transformative role in polyp detection within 

the context of CRC, providing a more efficient and 

accurate alternative to conventional diagnostic methods. 

DL utilizes neural networks to improve the early detection 

of CRC, leading to prompt intervention and better patient 

outcomes.

 

Fig 2: Role of Deep learning in CRC 

A number of studies have investigated the use of TL for 

polyp detection. In one study, researchers trained a CNN 

on the ImageNet dataset, which contains over 1 million 

images from 1,000 different classes. The CNN was then 

fine-tuned on a dataset of “colonoscopy images”, and it 

achieved an accuracy of 96.41% in detecting polyps. 

Another study used a pre-trained CNN called ResNet50 to 

detect polyps in “colonoscopy images”. ResNet50 was first 

trained on the ImageNet dataset, and then it was fine-tuned 

on a dataset of “colonoscopy images”. The study achieved 

an accuracy of 93.8% in detecting polyps. In addition to 

CNNs, other types of AI models have also been used for 

polyp detection using transfer learning. For example, one 

study used a Recurrent Neural Network (RNN) to detect 
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polyps in colonoscopy videos. The RNN was first trained 

on a dataset of natural language processing (NLP) tasks, 

and then it was fine-tuned on a dataset of colonoscopy 

videos. The study achieved an accuracy of 92.7% in 

detecting polyps. 

TL has a number of advantages for polyp detection in 

colonoscopy. First, it allows AI models to be trained on 

large datasets of general images, which can lead to better 

performance than training on smaller datasets of 

“colonoscopy images” alone. Second, TL is relatively fast 

and efficient, as it does not require the AI model to be 

trained from scratch on a dataset of “colonoscopy images”. 

TL offers several advantages in the context of polyp 

detection: 

• Improved Performance: By leveraging “pre-trained 

models”, TL can enhance the performance of polyp 

detection algorithms. The pre-trained models have 

already learned generic features from large-scale 

datasets, which can be highly relevant for polyp 

detection. 

• Reduced Training Time: Training DL models from 

scratch requires a significant amount of time and 

computational resources. TL reduces the training time 

by starting with a “pre-trained model” and “fine-

tuning” it on a smaller dataset of polyp images or 

videos. 

• Enhanced Generalization: TL helps the model 

generalize well to new, unseen data. The “pre-trained 

models” have learned generic features that can be 

utilized for a wide variety of different activities, 

including polyp detection. 

• Overcoming Data Limitations: Obtaining a large 

annotated dataset of polyp images or videos can be 

challenging. TL allows the utilization of pre-existing 

large-scale datasets, making it possible to train accurate 

polyp detection models even with limited data. 

2. Literature Review 

Worldwide 9,30,000 fatalities and 19,00,000 cases of CRC 

were reported in 2020 [4]. In Europe, CRC ranks as the 

second most common cancerous disease in incidences and 

deaths both with 5,19,820 new cases and 2,44,824 deaths 

in 2020 [4].  These numbers indicate that CRC is 

associated with higher rates of morbidity and mortality 

among different types of oncological diseases. The most 

well-known types of polyps are those in the colon, while 

they can also occur in the “ear canal, cervix, stomach, nose, 

uterus, bladder, and throat”. A polyp is a little growth of 

extra tissue that forms on the colon's lining. They are 

common, even though they are unpleasant. Around 25% of 

population, including men and women, 50 years or older, 

have colon and rectal polyps. [5] These polyps are 

categorized into two types, based on the shape as they 

mature. 

Boonsim 2023 presents an optimized DL technique using 

the InceptionResnetV2 model and Faster R-CNN 

framework, achieving high precision, recall, and F1-

Measure in polyp detection [6]. Tzavara 2021 explores 

“transfer learning in polyp and endoscopic tool 

segmentation”, showing improved performance with pre-

training of models [7]. Luca 2019 provides an overview of 

recent contributions in automatic polyp detection, 

including the application of DL [8]. Tang 2021 focuses on 

computer-aided colon polyp detection using transfer 

learning, demonstrating the potential for real-time 

detection and classification with improved accuracy [9]. 

These findings collectively highlight the effectiveness of 

TL in enhancing polyp detection during colonoscopy. 

TL has gained attention in polyp research as a way to 

address the challenge of limited data for training large-

scale segmentation networks. It allows for the use of pre-

trained models from a source task, reducing the need for 

extensive data collection and labeling. The Poly-SAM 

model, a finetuned version of the Segment Anything 

Model (SAM), achieved state-of-the-art performance on 

multiple datasets, with dice scores above 88% [10]. TL 

also enables fast prototyping of machine learning models 

by leveraging pre-trained models, which is particularly 

beneficial when training on millions of images is time-

consuming and resource-intensive [11]. Overall, TL has 

demonstrated its potential in improving polyp 

segmentation and accelerating research in this field [12-

13]. 

The purpose of this study is to develop a software program 

that will assist medical professionals in the fight against 

colon cancer, both during the detection phase and after the 

surgery has been performed [14-15]. TL has been 

employed to create algorithms for the automated 

identification and categorization of colorectal polyps in 

"colonoscopy images". Multiple investigations have been 

undertaken regarding the identification and categorization 

of colorectal polyps through the utilization of DL 

techniques. These studies have demonstrated encouraging 

outcomes in relation to precision and responsiveness. The 

“Z-line, pylorus, and cecum” serve as anatomical reference 

points to determine the extent of the colonoscopy 

procedure F6. The proposed model demonstrates a 92% 

accuracy in detecting and categorizing colorectal polyps 

from colonoscopy images [16]. A novel method for 

classifying polyp images, “Network-in-Network” (NIN), 

has been developed utilizing transfer learning. [17]. The 

efficacy of utilizing DL for real-time identification of 

colon polyps during colonoscopy has been confirmed 

through the validation of four separate datasets. The text is 

accompanied by a reference number [18]. A novel 

approach to colorectal polyp classification using deep 
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ensemble learning has been introduced that incorporates 

optimized network parameters and includes crucial 

information on hyperparametric settings for model 

optimization [19]. 

A recent research study by Noppakun Boonsim and 

Saranya Kanjaruek from Khon Kaen University in 

Thailand focused on optimizing the parameters for polyp 

detection using a DL technique called InceptionResnetV2. 

The researchers trained the model on a dataset of polyp and 

non-polyp images and used the Faster R-CNN framework 

for precise polyp detection. The proposed method achieved 

remarkable results, with a precision of 92.9%, recall of 

82.3%, F1-Measure of 87.3%, and F2-Measure of 54.6% 

on a public ETIS-LARIB dataset. This optimized TL 

approach significantly reduced the chances of missing 

polyps during clinical inspections and improved the 

detection of multiple polyps in colon images. [6] 

Another research study by Ji Young Lee et al, focused on 

the real-time detection of colon polyps using deep 

learning. The researchers developed a deep-learning 

algorithm based on YOLOv2 and validated it using four 

independent datasets. The algorithm exhibited high 

sensitivity (96.7%) and accuracy in polyp detection. All 38 

polyps detected by the endoscopists were identified by the 

algorithm in addition to discovery of seven polyps that 

were missed by the human observers. The algorithm's 

performance was further tested on 15 unaltered 

colonoscopy videos, where it achieved a per-image 

sensitivity of 89.3% and a low false positive rate of 8.3%. 

[20] The polyps are also categorized based on their 

carcinogenic risk, as outlined in Table 1. 

Table 1 Polyp types, occurrences, and associated cancer risk [21] 

Sr. No Type of polyp How common Cancer risk 

1. Inflammatory Typically seen in people with 

“ulcerative colitis” or “Crohn's 

disease”, “inflammatory bowel 

illnesses”. 

Low; most growths are benign 

2. Hamartomatous Discovered in individuals who 

have polyposis syndromes, such 

Peutz-Jaeger, Cowden, or Juvinille 

Polyposis. 

Commonly non-cancerous 

 

3. Hyperplastic Usually tiny and typically situated 

at the end of the colon and the 

rectum. 

Considered as being lower risk 

4. Adenomatous 

(tubular adenoma) 

These type of colon polyps are 

most common and make almost 

70% of polyps. 

The majority of these polyps do not 

progress to cancer, although larger 

polyps possess a higher threat. 

5. Villous or 

tubulovillous 

adenoma 

Make about approximately 15% of 

polyps. 

The majority of these polyps do not 

progress to cancer, although larger 

polyps possess a higher threat. 

6. Serrated Adenoma Make about 10 to 15% of all 

polyps. 

These polyps result into 20–30% of 

colon cancer cases. 

7. Adenocarcenoma Make about 2% of all polyps. These polyps are 100% cancerous. 

 

Present Diagnostic Techniques:  

Multiple diagnostic techniques are used by physicians to 

find and to diagnose cancer. These tests are also useful in 

analyzing the growth and spread of cancer that indicate the 

stage and metastasis, respectively. These tests further help 

in planning the course of treatment and types of medication 

to be prescribed to the patient. Currently, a biopsy is the 

only reliable method for confirmation tests with many 

types of cancers. In cases where a biopsy is not possible, 

doctors may recommend other tests for the accurate 

diagnosis. Various diagnostic techniques are used to 

identify CRC and abnormalities in the colon. A few of 

these important tests and techniques are considered for 

study 

• Colonoscopy [22-24]. 

• Computed tomographic colonography (CTC) [25-29]. 

• Double contrast barium enema (DCBE) [30-31]. 

• Flexible sigmoidoscopy (FS) [32-34]. 

• “Fecal immunochemical test” (FIT) [35-40]. 
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• “High-sensitivity guaiac-based fecal occult blood test” 

(HSgFOBT) [41-42]. 

• “Multi-target stool DNA” (MT-sDNA) [43]. 

Present use of AI in Diagnostic techniques 

AI is revolutionizing the entire medical field. 

Gastroenterology practice is no exception. The importance 

and utilization are increasing for use of AI in 

gastroenterology with acceptance from practitioners and 

government bodies. AI has proven its role in early 

detection and prevention of CRC, thereby, ultimately 

reducing the time and cost of treatment and increasing the 

year expectancy of the patient. In this section, the use of 

AI is explained various diagnostic techniques [44-47] like 

colonoscopy, CTC [42] and FIT [43]. 

Table 2 Summary of diagnostic techniques and corresponding application of AI 

Sr. No Diagnostic Technique Present scope and objectives based on AI 

1 Colonoscopy To detect polyps, to classify polyps, to characterize the polyp. 

To reduce unnecessary removal of non-neoplastic polyps 

To detect deficient coverage in colonoscopies [24] 

2 CTC To minimize the patient's exposure to radiation through optimization. 

Automated segmentation of organs to identify and describe pathology. 

To lessen the likelihood of performance and interpretation errors [29]. 

3 FIT For prioritization of colonoscopy [40]. 

To automate the interpretation of results. 

To automate the wider BCSP – to deliver results and forwarding of patient 

information where required. 

4 HSgFOBT, DCBE, FS, 

MT-sDNA 

Lack of research articles that have documented the utilization of AI. 

 

3. Methodology 

VGG-19 has demonstrated impressive results in diverse 

image classification tasks and is widely recognized as a 

standard architecture in the field of computer vision. 

Despite its computational expense due to a large number 

of parameters, VGG-19 has significantly influenced the 

advancement of DNN architectures for image recognition 

tasks. It is pre-trained on ImageNet dataset with more than 

a thousand classes and “CIFAR 100” dataset [48]. VGG19 

has three additional fully connected layers compared to 

VGG16 and plays a significant role in extracting low-level 

spatial information [49]. The accuracy of VGG19 in 

disease classification is reported to be 94% [50]. In the 

context of crime prediction, VGG19 is used for feature 

extraction and object comparison, achieving 81% accuracy 

[51]. For rice plant disease detection, a Deep CNN TL 

method based on VGG19 is proposed, achieving an 

accuracy of 97% [52]. 

Dataset:  

The open-source dataset, CVC-Clinic DB, has been 

investigated for the experimental setup [53]. Annotation 

was used to produce the positive and negative images of 

polyps. For training, testing, and validation purposes, the 

cropped photographs were organized in separate sets. The 

images are divided into positive and negative subgroups 

within each of these sets. 

Table 3 Summary of Dataset used in experiment. 

Sr. No. Particular Details 

1 True colour (RGB) images 612 frames extracted from colonoscopy videos 

2 Polyp mask 

(Monochrome Images) 

612 images identical to the RGB images in dimensions. Black and white 

represents a polyp positive and negative respectively. 

3 Sequences 29 

4 Dimensions 384 by 288 

5 True Image size (in kB)  324 kB 
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6 Polyp mask size (in kB) 108 kB 

7 Size of dataset 258 MB 

 

The dataset used in this study was “CVC-ClinicDB”, 

created for the Endoscopic Vision Challenge and contains 

frames that were taken from videos of colonoscopies. Two 

kinds of images were included in the “CVC-ClinicDB” 

database: “colored Red Green Blue” (RGB) images, and 

corresponding “monochrome polyp masks”. Table 3 

contains a description of the dataset. [54] Figure 3 has 3 

randomly selected images from the dataset included, as 

well as each image's associated monochrome mask. 

 

Fig 3: RGB polyp frames are in the top row and corresponding monochrome polyp masks are in the bottom row. 

Algorithm for Proposed methodology 

ALGORITHM 1: POLYP DETECTION USING VGG19 

1 Data Preprocessing: 

2  Resize RGB images → 96x96. 

3  Apply image augmentation techniques (blur, flip, rotation, brightness) generate 10,010 

images. 

4  Split the data training, validation, and testing sets. 

5  Create positive and negative subsets within each set. 

6 Feature Extraction: 

7  Load pre-trained VGG19 model. 

8  Freeze  convolutional layers. 

9  Extract features from the last convolutional layer of the VGG19 model  

10 Fine-tuning: 

11  Add a new fully-connected layer with 1024 neurons followed by a “ReLU” activation 

function. 

12  Add another fully-connected layer with 2 neurons followed by a “Softmax” activation 

function. 

13  Train the newly added layers on the training set using the “Adam optimizer” and categorical 

cross-entropy loss function. 

14 Evaluation: 

15  Evaluate the model using metrics → Accuracy, Precision, Recall, F1-Score 
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16 Prediction: 

17  Use the trained model to predict the class (polyp positive or negative) for each image in the 

testing set. 

18 Analysis: 

19  Analyze  results and identify areas for improvement. 

20  Visualize the results using techniques like heatmaps to understand which parts of the image 

are most. influential in the prediction 

 

Convolutional Neural Network Architecture: VGG-19 

The architecture of VGG-19is a specific type of CNN that 

has been specifically created for the purpose of classifying 

images. The model is a member of the Visual Geometry 

Group (VGG) family and is known for its straightforward 

and consistent architecture. VGG-19 model is developed 

by the Visual Geometry Group at the University of Oxford 

that consists of 19 processing layers, which comprise both 

convolutional and fully linked layers. 

Overview of Architecture: 

• Input Layer: The input layer of the network is 

designed to receive images with dimensions of 

224×224×3, where 3 represents the RGB color 

channels. 

• Convolutional Blocks: Comprises four sets of 

convolutional layers, each thereafter accompanied by a 

max-pooling layer. 

o Convolutional layers employ 3x3 filters with a stride of 

1. 

o The max-pooling layers utilize a window size of 2x2 

and a stride of 2. 

• Fully connected layers: Following the convolutional 

blocks, there are three fully linked layers, each 

consisting of 4096 neurons. 

o The output of each fully linked layer is subjected to 

Rectified Linear Unit (ReLU) activation functions. 

• Output Layer: The last layer consists of a fully 

connected neuron that use a sigmoid activation 

function for binary classification or softmax for multi-

class classification. 

The following eq.3 to eq.7 represents the operations within 

one convolutional block depicts the sequential 

transformations that allows VGG-19 to capture features for 

image classification (Polyp) task. 

𝑍1 = 𝐶𝑜𝑛𝑣(𝑋, 𝑊1) + 𝑏1     ……… (eq. 3) 

𝐴1 = 𝑅𝑒𝐿𝑈(𝑍1)         ………………..( eq. 4) 

𝑍2 = 𝐶𝑜𝑛𝑣(𝐴1, 𝑊2) + 𝑏2     ……..( eq. 5) 

𝐴2 = 𝑅𝑒𝐿𝑈(𝑍2)    …………………….( eq. 6) 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐴2)       ……( eq. 7) 

where, 𝑾𝟏 & 𝑾𝟐= “convolutional filters”, 𝒃𝟏& 𝒃𝟐= “bias 

terms”, ReLU= “REctified Linear Unit activation 

function”. 

Experimental Setup 

The images that have been annotated were further 

processed with image augmentation with objective to 

increase dataset. In order to reduce the dimensionality of 

the photos, they were scaled down from 384 by 288 to 96 

by 96. The initial dataset of 910 images was augmented by 

applying 11 transformation operations to generate 10,010 

images for processing. The various operation performed on 

selected images for data augmentation were – blur, flip, 

rotation, brightness, etc. Figure 4 illustrates how these 

photos were divided into three sets—training, validation, 

and testing—each with two subsets: positive and negative.

  

 

Fig 4: Data hierarchy – (a) Cropped dataset grouped in 3 sub datasets and (b) each sub dataset has two groups of datasets – 

positive and negative samples. 
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The Keras library contains several pre-trained CNN 

models that were trained using the ImageNet dataset. 

These already-trained models may be used for feature 

extraction, prediction, and fine-tuning. Few of these well-

known pre-trained models include VGG16, ResNet50, 

Inception V3, Xception, and GoogLeNet. 

 

Fig 5: Proposed Deep Learning Architecture for Polyp Detection 

 

VGG19 outperformed but with larger memory 

requirements than VGG16. The 16 and 19 layers in the 

VGG16 and VGG19 models, respectively, are made up of 

convolution layers, layers with maximum pooling, and 

fully connected layers. VGG16 is investigated and also 

modified [33] with reference to the work published 

previously [32] to examine the effectiveness for the 

diagnosis of gastrointestinal polyps. Figure- 4 displays a 

diagrammatic representation of the VGG16 architecture. 

[50] The major stages in the experiment are as shown in 

Figure-5,6. 

 

 

Fig 6: Layered architecture of VGG19 

The layers are called "3 by 3 conv, X" layers, where "conv" 

denotes convolutional layers with 3 by 3 kernels and "X" 

denotes the quantity of filters. The MaxPool layer 

implemented the reduction of dimensions by a factor of 2. 

Fully Connected layer had 1000 and 4096 units at the very 

end. Softmax generates one of a thousand classifications 

using labeled data from ImageNet. 

4. Results 

In this present work, the VGG16 model was executed for 

polyp detection i.e., ‘polyp detected’ and ‘polyp not 

detected’. In the implementation, the VGG16 model 

weights were assigned from ‘imagenet’. As we are aimed 

at binary classification, the output layer was flattened to 1. 

The ‘relu’ and ‘sigmoid’ activation functions were used 

with 1024 hidden units and a drop rate of 0.4. After 

execution of this model, the outcomes are depicted in 

Figure-7 (a). 
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Fig 7: (a) The plot of accuracy and loss in training and validation and (b) Training accuracy and validation accuracy 

zoomed from 0.90 to 1.00 graph. 

The graph in 7 (a) is magnified further from 0.90 to 1.00 

on y-axis to plot the details of validation accuracy and 

training accuracy as shown in Figure 7(b). The scores 

obtained in the table 4 are visualized using a graph as 

shown in Figure-8 (a). To test the implementation, 445 

samples from each set i.e., positive, and negative were 

considered with class labels as ‘polyp not present’ and 

‘polyp is present’ as shown in Figure-8 (b). 

  

Fig 8: (a) Bar graph to plot the multiple scores and (b) The test dataset of positive and negative images  

To measure the performance of classification for the 

implemented system, confusion matrix is used. The score 

value for the “Receiver Operating Characteristic” (ROC) 

curve's “Area Under Curve” (AUC) is also obtained. These 

obtained scores are as given in table 4. 

Table 4 Performance measurement scores 

Sr. No Measurement Parameter Value 

1 Test Loss 0.214212 

2 Test Accuracy 0.976024 

3 AUC-ROC 0.986348 

4 Recall 0.978022 

5 Precision 0.967391 

6 F1 Score 0.972679 

 

From the dataset displayed in Figure-4 (b), we selected 10 

random samples and presented the results as shown in 

Figure-9. In these 10 images, ‘0’ represents negative 

sample, i.e. polyp not present and ‘1’ represents positive 

sample, i.e., polyp present. 
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Fig 9: Visual test results obtained for 10 randomly selected test images 

The ‘actual’ means the class of test image, i.e. positive or 

negative and ‘predicted’ is the output generated by the 

implemented system. The results can be obtained for any 

given specific input images. The result obtained for a 

specific input is shown in Figure-10. 

 

Fig 10: Polyp detection in a specific image.  

5. Discussion 

The colonoscopy continues to proves to be the golden 

standard with highest-sensitivity, specificity, and accuracy 

with capability of biopsy. Screening tests demonstrate the 

potential to prevent CRC at an early detection stage, hence, 

nations should implement regular population-based CRC 

screening programs [56-61]. The success of population-

based programs depends on factors, such as (a) screening 

costs, (b) number of skilled colonoscopist/endoscopist per 

thousand population, (c) ergonomic burden of screening 

procedures on professionals, (d) patients’ participation in 

programs, (e) need of social distancing in pandemic 

situations like COVID19, (f) training and long learning 

curve to achieve to achieve satisfactory experience by 

practitioners (g), increase in number of “need-to-screen” 

individuals due to increasing population, changes in 

lifestyle and environmental factors like pollution and 

climate change, (h) standardization of instruments and 

procedures, and (i) diagnostic methods used. The 

acceptance and approval of ColonFlag, GI-Genius, and 

Cologuard defines the success of AI in endoscopy.  

The application of AI techniques in polyp detection has not 

yet been fully integrated into the cyber-physical domain. 

There is a limited amount of research that was conducted 

on the utilization of cyber-physical systems for the 

automated diagnosis of polyps. In the current context, it is 

possible to enhance the capabilities of cameras used in 

colonoscopy by integrating processing units and 

communication systems that adhere to standard protocols.  

6. Conclusion 

The use of TL in polyp detection during colonoscopy is a 

game-changer in CRC screening. It significantly improves 

the performance of DL algorithms. Studies have shown 

that optimized TL approaches can enhance polyp detection 

sensitivity, reduce false positives, and increase the chances 

of detecting multiple polyps. Hence TL is promising 

candidate in CAD. At the same time, challenge in polyp 

detection using TL is the performance variation based on 

dataset for fine-tuning. Another challenge is that TL can be 

susceptible to overfitting, which can lead to poor 

performance on new data. Transfer learning is a promising 

approach for improving the accuracy and efficiency of 
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polyp detection in colonoscopy. However, more research 

is needed to address the challenges of transfer learning, 

such as dataset variability and overfitting. 

Future research on transfer learning for polyp detection in 

colonoscopy could focus on the following areas: 

• Developing more robust AI models that are less 

susceptible to overfitting. 

• Developing methods for combining transfer learning 

with other AI techniques, such as deep reinforcement 

learning. 

• Developing methods for integrating transfer learning-

based CAD systems into clinical practice. 

By addressing these challenges, transfer learning has the 

potential to revolutionize the way that polyps are detected 

during colonoscopy. 
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