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Abstract: The persistent issue is that cloud applications fortified post-deployment with security patches remain susceptible to 

sophisticated attack vectors. In response to this, the discourse introduces an innovative, lightweight header layer designed to 

preemptively filter incoming requests prior to their processing by Cloud Virtual Machines (CVMs). Leveraging a combination of 

instantaneous and temporal analytics, this layer is adept at the early detection and neutralization of a broad spectrum of both active and 

passive cybersecurity threats, significantly bolstering the resilience of cloud deployments against malicious endeavors. To 

operationalize this defense mechanism, the system deploys an advanced logging framework capable of high-velocity data capture, 

triggered by an array of header-level events such as authentication attempts, access requests, and the temporal intervals between 

successive requests. This granular data collection strategy equips the system with a comprehensive dataset, derived from continuous 

user interactions, which is subsequently subjected to an intricate post-processing regimen aimed at the extraction of multimodal 

features. This process involves the manual tagging of request-response pairs by a curated group of users, facilitating the identification 

of diverse threat signatures such as temporal attack probabilities, IP-based attack typologies, user access patterns, and anomalies in 

request-response dynamics. At the heart of this model lies a sophisticated deep transfer learning framework, integrating the nuanced 

capabilities of Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU)-based Recurrent Neural Networks 

(RNNs), trained on an extensive corpus of user-generated data. This hybrid RNN methodology enables the model to discern and 

classify a wide array of attack vectors with remarkable accuracy. An incremental learning module further refines the model's efficacy, 

enabling dynamic adaptation and continuous improvement in its predictive accuracy, precision, and recall metrics across various 

attack scenarios, including but not limited to Distributed Denial of Service (DDoS), brute force, cross-site scripting, SQL injection, as 

well as more passive threats like access control breaches and restricted ownership transfer attempts. Empirical evaluations of this 

model underscore its superior performance, achieving notable accuracy rates in detecting authentication attacks (99.3%), unauthorized 

access attempts (97.1%), DDoS and similar request-pattern aberrations (99.1%), and Man in the Middle (MITM) attacks (99.2%). 

When benchmarked against contemporary models, this innovative approach demonstrated a performance uplift of 6.5%, underscoring 

its viability for real-time deployment and scalability across diverse cloud networking scenarios. 

Keywords: Cloud, pattern, feature, classification, attack, detection, accuracy, online, offline, machine, LSTM, GRU, RNN, temporal, 

analysis 

1. Introduction 

The design and fortification of secure cloud networks 

constitute a complex, multi-faceted endeavor that mandates 

a holistic integration of various computational disciplines 

and methodologies. At the heart of this endeavor lies the 

orchestration of advanced data management and analytical 

processes, encompassing efficient data collection, 

meticulous pre-processing, sophisticated feature extraction 

and selection, precise attack classification, and 

comprehensive post-processing techniques. The seamless 

integration of these elements empowers cloud architects to 

construct and maintain cloud infrastructures that are not 

only fortified against a broad spectrum of cyber threats but 

are also optimized for peak performance. 

To actualize this vision, cloud designers are tasked with 

the development of robust data collection frameworks that 

are embedded at every juncture within the cloud 

infrastructure. These frameworks are instrumental in 

facilitating the generation of high-density logs and detailed 

documentation, capturing a granular snapshot of cloud 

interactions and activities. This wealth of data serves as the 

foundational layer upon which security and performance 

optimization strategies are built and refined. 

Once the data is amassed, it undergoes a rigorous pre-

processing phase. This phase is critical for enhancing the 

quality and relevance of the data by eliminating anomalies 

and extraneous information that could potentially skew the 

analysis. A quintessential aspect of this phase involves the 

implementation of rule-based models designed for outlier 

detection and removal. For instance, an exemplary rule 

might be delineated for the exclusion of logs pertaining to 

requests originating from local machine IP addresses. Such 

rules are meticulously crafted and applied to ensure the 
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integrity and utility of the dataset, paving the way for more 

accurate and meaningful insights. 

Equation 1, as referenced, symbolizes a specific instance 

of these rule-based models, offering a mathematical 

representation of the criteria employed to identify and 

eliminate irrelevant or misleading log entries. This step is 

paramount in streamlining the dataset, ensuring that 

subsequent stages of feature extraction, selection, and 

attack classification are based on data that accurately 

reflects genuine cloud interactions, devoid of noise and 

irrelevant artifacts, 

Rlocal = LogsAll ⋂ LogsIP … (1) 

Where, Rlocal represents rules to remove local machine 

logs, while LogsAll & LogsIP represents all logs & logs 

from a particular IP respectively. Within the sophisticated 

landscape of cloud security, the extraction and analysis of 

logs from cloud deployments embody a critical step in 

identifying and mitigating potential threats. Leveraging 

advanced feature extraction models, these processes delve 

into the nuanced, context-sensitive temporal and 

instantaneous aspects of cloud interactions. Such models 

adeptly discern between benign and nefarious requests by 

evaluating a constellation of distinctive features. These 

features might include, but are not limited to, the average 

duration of access sessions, the volume of requests within 

specific temporal windows, and the presence or absence of 

particular character sequences within the requests 

themselves. This meticulous analysis illuminates the 

intricate behavioral patterns that differentiate legitimate 

user activities from potentially malicious endeavors. 

Following the extraction phase, a sophisticated feature 

selection layer is employed to refine the dataset, 

emphasizing the elimination of superfluous data through a 

methodical examination of class-level statistical attributes. 

An exemplar of this approach is the utilization of variance-

based feature selection mechanisms, as illustrated in 

equation 2. This technique employs the average variance of 

identified features as a benchmark, systematically 

excluding those with variance levels falling below this 

threshold. The objective here is twofold: to streamline the 

dataset by excising redundant or non-informative features 

and to enhance the efficacy of the subsequent classification 

processes. 

The strategic culling of data not only simplifies the dataset 

but also significantly amplifies the accuracy of the 

classifier block. By focusing on features with greater 

variance and, by extension, higher discriminative power, 

the system is better positioned to distinguish between 

malicious and normal requests with heightened precision. 

This nuanced approach to data analysis and feature 

selection underpins the effectiveness of cloud security 

measures, ensuring that protective mechanisms are both 

robust and targeted. Through this refined lens, cloud 

deployments can achieve an optimal balance between 

accessibility and security, safeguarding against the myriad 

threats that pervade the digital domains, 

Var =
∑ fi − ∑

fj

Nf

Nf
j=1

Nf
i=1

Nf

… (2) 

Researchers have proposed a diverse array of classification 

models to effectively distinguish between normal and 

malicious requests. The following section of this text 

provides a survey of these models [3, 4], exploring their 

intricacies, advantages, drawbacks, and prospects for 

future research. This examination reveals that deep 

learning methods, such as Recurrent Neural Networks 

(RNNs) and their variations, contribute to high-

performance classification. However, these models are 

primarily utilized within existing cloud infrastructures, 

limiting their adaptability. Furthermore, they tend to be 

intricate and necessitate frequent reconfiguration when 

interfacing with established cloud deployments. 

To confront these challenges, Section 3 introduces a novel 

approach called Multimodal Feature Analysis for 

mitigating both internal and external attacks in cloud 

environments, leveraging the power of Deep Transfer 

Learning. This method, referred to as MFAAMDTL, 

capitalizes on a hybrid integration of LSTM and GRU 

architectures to construct an RNN-based classifier, 

proficiently discerning normal from malicious requests. 

Subsequently, in Section 4, an empirical assessment of the 

model's capabilities unfolds through the introduction of 

multiple attack scenarios into a simulated cloud 

deployment. The evaluation process hinges on a 

comprehensive array of metrics, encompassing attack 

detection accuracy, precision, recall, and the area under the 

curve (AUC). The model's performance is meticulously 

scrutinized, drawing comparisons with various state-of-

the-art counterparts. These evaluations affirm its potential 

for scalability and deployment in real-world scenarios. 

2. Literature Review 

Numerous security models in the realm of cloud 

computing have been proposed by researchers, all geared 

towards mitigating the risk of attacks in real-time cloud 

deployments. For instance, research efforts [5, 6] have 

introduced concepts like N version programming (NVP) 

and dispersed convergent encryption (DCE) as 

countermeasures against data-level attacks. These 

approaches revolve around the modification of data 

communication packets to enhance attack detection, 

reducing unauthorized access or tampering by malicious 

actors. However, these models are often intricate and 

resource-intensive. 

In contrast, a more streamlined approach is presented in 
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[7], which advocates for Memory introspection-based 

Malware Detection. This method demonstrates efficiency 

and lower complexity in identifying Virtual Machine (VM) 

malwares. Extensions to this model are further elaborated 

in [8, 9], introducing enhanced authentication for Remote 

Data access and learning-driven detection mitigation 

(LEDEM) techniques. These strategies prioritize simplicity 

and adaptability when deployed in real-time cloud 

environments. Similar avenues are explored in [10, 11], 

discussing the adoption of Bayesian Q-Learning Game and 

threshold voting-based N version programming (NVP) to 

counter various attack types. These approaches reduce the 

likelihood of attacks by predicting diverse user inputs, thus 

bolstering cloud security. However, they have limitations 

when it comes to adversarial attacks, limiting their 

practicality in real-time scenarios. 

To address the challenge of adversarial attacks, researchers 

have proposed methods like Federated Models for Defense 

against adversarial attacks (FDA3) [12], Group data 

sharing with anonymous and traceable cryptanalysis [13], 

queueing theory for mitigating low-rate DoS attacks [14], 

and a Dynamic pricing-based Resilient Model [15]. These 

approaches excel at extracting high-density features from 

user requests for classification into one or multiple attack 

types. Extensions to these approaches are discussed in [16, 

17, 18], covering topics like Optimal Load Distribution, 

scale inside out for DDoS detection, and block Design-

based key agreement for Group Data sharing to streamline 

data communication within the network, reducing 

overhead. However, these models require prior knowledge 

about requesting nodes, limiting their applicability in ad-

hoc environments. 

To overcome this limitation, researchers propose the 

adoption of Software Defined Network (SDN), ad-hoc 

Machine Learning Models, and an enhanced history-based 

IP filtering scheme in [19, 20, 21]. These solutions conduct 

temporal data assessments and make decisions based on 

these evaluations. Similar models are presented in [22, 23, 

24], where researchers employ enhanced cryptographic 

techniques, untrusted on-chip security deployments, and 

dynamically traceable Ciphertext-policy attribute-based 

encryption (DT CP ABE) to enhance privacy and security 

at the application layers. These models simplify 

computational requirements by replacing complex 

computations with more straightforward alternatives, thus 

enhancing both speed and security performance. 

Building upon these models, researchers have introduced 

specialized solutions such as Secure Software-Defined 

Networks (SecSDN) [25], Mixture Localization-based 

Outliers (MLO) [26], division and replication of data cloud 

for optimal performance and security (DROPS) [27], a 

Naïve Bayes-based Attack Resilient cloud-assisted IoT 

model [28], and the implementation of strict transport 

security [29, 30]. While these models enhance attack 

detection capabilities for specific application-specific 

deployments, they may not be suitable for general-purpose 

application scenarios. 

To address these limitations and design a faster and more 

accurate attack detection model, the subsequent section 

introduces the development of a Multimodal Feature 

Analysis method for internal and external Attack 

Mitigation in cloud environments through Deep Transfer 

Learning. This model has undergone rigorous evaluation, 

assessing accuracy and delay across various attack 

detection scenarios. These parameters are then compared 

against different state-of-the-art methods, providing a 

comprehensive performance assessment across diverse 

deployment scenarios.  

3. Proposed Multimodal Feature Analysis 

Method for Internal & External Attack 

Mitigation for Clouds via Deep Transfer 

Learning 

The literature review reveals a plethora of cloud security 

models proposed by researchers, with most of them 

tailored to specific deployment contexts. While some of 

these models find utility in general-purpose public cloud 

deployments, they tend to offer only moderate levels of 

security and quality of service (QoS) performance. 

Furthermore, the integration of these methods into existing 

cloud deployments brings about a host of security and 

privacy concerns inherent to these models. Consequently, 

cloud applications that incorporate post-deployment 

security patches may not achieve complete security, 

leaving room for attackers to launch aggregated and 

distributed attacks. 

To address these shortcomings, this section introduces a 

novel Multimodal Feature Analysis approach for 

mitigating both internal and external attacks through a 

Deep Transfer Learning process. The model's overall 

workflow is illustrated in Figure 1, where a lightweight 

header-level checker is employed to assess request 

patterns. These patterns undergo both online and offline 

processing phases, facilitating comprehensive attack 

detection. Notably, the model operates at the request level, 

making it independent of the underlying cloud deployment 

infrastructure. This characteristic renders the model 

deployable across a wide array of cloud applications, 

requiring minimal reconfiguration efforts for activation. 

The model incorporates an online checking layer, 

responsible for evaluating request periodicity, user access, 

authentication, and request parameter values. These inputs 

are amalgamated to generate a request status, aiding the 

cloud system in determining the authenticity or malicious 

nature of incoming requests. The outcomes of this 
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decision-making process are stored in a database, 

contributing to the training of the offline layer. 

 

Fig 1. Overall flow of the proposed model 

The offline layer plays a crucial role in the evaluation of 

various offline features, encompassing temporal attack 

probability, attack types per IP, average page access time 

per IP, total attacks per IP, page access patterns, request 

patterns, and temporal response patterns. These patterns 

undergo processing using a hybrid LSTM and GRU model, 

which aids in feature augmentation to train a highly 

efficient Recurrent Neural Network (RNN) model. The 

outcomes from both the online and offline phases are 

merged through an aggregation layer, facilitating the 

identification of authentic and malicious requests. 

Authenticated requests proceed to the cloud server, while 

malicious ones are reintegrated into the database for 

incremental learning purposes. The design of the proposed 

model is segmented into multiple sub-parts, each of which 

is elaborated upon in different sub-sections of this text. 

This segmentation facilitates researchers in deploying 

these models either partially or in their entirety, depending 

on their specific application requirements. 

3.1 Design of the Header-Level Checker 

All incoming requests are processed through a header-level 

checker, which employs lightweight parallel logging and 

rule-based request evaluations. This approach ensures swift 

decision-making within the model, minimizing any adverse 

impact on the cloud's response time. The design of this 

engine can be described through the following steps: 

Step 1: Users are required to log in using standard key-

value pairing mechanisms. 

• All inputs undergo the following checks, aiding in the 

detection of SQL Injection and Cross Site Scripting 

(XSS) attacks: 

• If the input contains single quotes, double dashes (--), 

or hypertext tags (<tag>), these characters are 

replaced with blanks. 

• Scripting constants such as mocha, view-source, vbs, 

livescript, wscript, Javascript, jar, applescript, jscript, 

and vbscript found in the input are replaced with 

blank characters. 

• In case any of the conditions are met, the following 

parameters are used to generate an event log: Attack 

type (SQLi or XSS), a timestamp instance, and the IP 

address requesting the instance. 

• Requests failing the login process are logged with the 

following parameters: Attack Type (Inadequate 

Verification), IP address requesting, the current 

timestamp instance, and the variables passed during 

authentication. 

• The server retains the identity of the current user as 

an immutable session variable for subsequent 

requests, controlling access to different cloud areas 

and verifying authentication. 

• The utilization of this session variable enables the 

header-level check layer. 

• All input variables passed by the user, including 

POST, GET, DELETE, and PUT request types, are 

scanned for further evaluation. 

• The following information is logged whenever a user 

attempts to view a page for which access is denied 

,Attack Type (o): Incorrect Access , IP address 

request; Current Timestamp instance;  Authentication 

variables; oURL of the page being viewed, and After 

checking the logs, a temporal validity score is 

evaluated for each user IP via equation 3, 

TscoreIP
= [

∑ RinvalidIP

t2
T=t1

∑ RvalidIP
+ RinvalidIP

t2
T=t1

] … (3) 

Where, TvalidIP
 represents the temporal validity score 

between time occurrences t1 and t2, and RvalidTIP
 and 

RinvalidTIP
 denote the total number of valid and invalid 

requests found between the specified time instances. More 

than 10% of all requests are invalid if TscoreIP
>0.1. When 

this occurs, the user logs out and reports the activity 

through the logging layer with the following information: 

o Attack Type: Inappropriate Temporal Access o IP addres

s request o Current Timestamp instance o Authentication v

ariables passed o URL of the page being accessed 

Based on these operations, a large number of logs are 

stored on the cloud, and are processed via both offline & 

offline phases. These phases assist in detection & 

mitigation of multiple application-level attacks before they 

are processed by the processing cloud.  

3.2 Design of Online Checking Layer 
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The logs stored on cloud are initially processed via an 

online checking layer, which assists in making 

instantaneous decisions based on real-time requests. This 

layer stores linked log data on the cloud using the process 

indicated in figure 2, wherein the following information is 

stored at user & client level, 

• User identifier & their IP address 

• Types of attacks detected by the logging layer for 

this IP & user 

• Timestamp of these attacks 

• URI on which these attacks are detected 

• Request variables passed by user or IP 

• Values of these variables passed by user or IP 

• Authorization & session information 

• Meta data about the requests 

Based on these logs, both user-level & IP-level metrics are 

evaluated. These metrics include, access control score 

(ACscore), authentication score (AUscore), page-level access 

control score (ACpage), request periodicity (Rperiodicity), & 

pattern attack score (Pscore), and are evaluated via 

equations 4, 5, 6, 7 & 8 as follows, 

ACscore(IP) =
∑ B(IP)i

Nreq

i=1

Nreq

… (4.1) 

ACscore(User) =
∑ B(User)i

Nreq

i=1

Nreq

… (4.2) 

Where, B(IP) & B(User) represents number of blocked 

requests for the given IP & the given user respectively, & 

Nreq represents number of requests sent by the IP or user 

for which this metric is being evaluated.  

 

 

Fig 2. Generated graph on a per-user and per-IP basis 

Similarly, authentication score is evaluated via equation 5 

as follows, 

AUscore(IP) =
∑ NonAuth(IP)i

Nreqauth
i=1

Nreqauth

… (5) 

Where, NonAuth(IP) represents number of authorization 

requests which are blocked requests for the given IP, & 

Nreqauth
 represents number of authorization requests sent 

by the IP which this metric is being calculated. The page 

level access control score is evaluated on a per-page & per 

user/IP basis via equation 6 as follows, 

ACpage(IP) =
∑ B(IP)i

Nreqpage

i=1

Nreqpage

… (6.1) 

ACpage(User) =
∑ B(User)i

Nreqpage

i=1

Nreqpage

… (6.2) 

Where, Nreqpage
 represents number of requests sent by the 

IP or user for which this metric is being evaluated on this 

page, and is updated continuously. Similarly, request 

periodicity is evaluated via equation 7 as follows, 

Rperiodicity(IP | User) =
[∑ ti+1 − ti

Nreq−1

i=1
]

Nreq − 1
… (7) 

Where, ti represents time instant at which this request is 

sent by the user or IP for which periodicity is being 

evaluated. Similarly, pattern attack score is evaluated via 

equation 8 as follows, 

Pscore(User | IP) =
∑ Bpatterni

Nreq

i=1

Nreq

… (8) 

Where, Bpattern represents number of blocked pattern 

requests were removed from by the model as SQL 

Injection & XSS attack types. If any of these score values 

is above a particular threshold, then request from user or IP 

address are blocked, & any further access instances are 

reported to the cloud designers. The evaluated metrics are 

used during the offline phase, which is discussed in the 

next section of this text. 

3.3. Design of Offline Checking Layer with hybrid 

combination of LSTM & GRU models 

Numerous metrics are assessed at both the user level and 

IP level during the online phase, with their scope expanded 

through the estimation of Multimodal parameters. These 

parameters encompass various aspects, including: 

• Temporal attack probability (𝑃𝑇𝐴) 

• Type of attacks originating from the IP (𝑇𝑎𝑡𝑡) 

• Average page access time per IP (𝐷𝑎𝑐𝑐𝑒𝑠𝑠) 

• Probability of total attacks performed by the IP (𝐴𝑡𝑡𝐼𝑃) 

• Page access patterns (𝐴𝑐𝑐𝑝𝑎𝑡𝑡𝑒𝑟𝑛) 

• Request patterns (𝑅𝑒𝑞𝑝𝑎𝑡𝑡𝑒𝑟𝑛) 

• Temporal response patterns (𝑅𝑒𝑠𝑝𝑝𝑎𝑡𝑡𝑒𝑟𝑛) 
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These parameters are evaluated via equations 9, 10, 11, 12, 

13, 14, and 15 as described as follows, 

PTA(r) =

ACscore(r) + AUscore(r) +

ACpage(r) + Pscore(r)

4
… (9) 

In this context, "r" signifies the request originator type, 

which may be either IP or User, the evaluation of the type 

of attacks originating from the IP is conducted via equation 

10, outlined as follows, 

Tatt(r) = Max ( ⋃ PTA

Nattacks

i=1

(r)) … (10) 

Where, Nattacks represents number of attacks injected by 

the user or the IP address. The average page access time is 

evaluated via equation 11, 

Daccess =
[∑ trespi

− t_reqi

Nreq

i=1
]

Nreq

… (11) 

Where, tresp & treq represents response timestamp & 

request timestamp for the given user or IP address. This 

assists in estimating the delay with which requests are 

being responded for the given requesting device. Similarly, 

probability of total attacks performed by the IP or User are 

evaluated via equation 12 as follows, 

P(Attp) = 4 ∗ PTA ∗ log (
1

PTA

) … (12) 

Page access patterns are evaluated via equation 13, 

wherein time instances for accessing particular pages are 

estimated for each IP and user as follows, 

Accpattern = ∑
trespi

− treqi

Npages

Npages

i=1

… (13) 

Where, tresp & treq represents response timestamp & 

request timestamp for page i, while Npages represents 

number of pages or access areas on the cloud deployment. 

Similarly, request & response patterns are evaluated via 

equation 14 & 15 as follows, 

Reqpattern =
∑ ti − ti−1

Nreq

i=2

Nreq

… (14) 

Resppattern =
∑ ti − ti−1

Nresp

i=2

Nresp

… (15) 

In the context of this analysis, Nreq and Nresp are 

variables denoting the quantities of requests and responses 

attributed to specific IP addresses and users. These 

particular characteristics, pertaining to the request-

response interactions, are systematically compiled and 

subsequently furnished as input to a classification model, 

which adopts a hybrid architecture comprising GRU 

(Gated Recurrent Unit) and LSTM (Long Short-Term 

Memory) components. The structural intricacies of this 

hybrid GRU-LSTM based classification model can be 

observed in Figure 3. Within this framework, the feature 

sets initially undergo a processing stage via the GRU 

component, followed by further refinement through the 

utilization of LSTM techniques. This entails the 

application of a GRU layer to assess the more general 

attributes of the input features, as delineated by equations 

16 through 21. During this phase, specific constants 

associated with the GRU layer play a pivotal role in 

enhancing the features under consideration. Subsequently, 

the augmented features are subjected to the LSTM layer, 

contributing to the overall classification process, which 

aims to categorize requests into two distinct groups: 

Normal and Malicious. 

 

Fig 3. Combination of GRU & LSTM for better feature 

augmentation 

The intensity of one feature set directly depends on the 

intensity of features extracted via earlier layers when these 

features are evaluated in a cascade manner. Equation 16 is 

first used to evaluate an intermediate feature vector I using 

input features xin, 

i = var(xin ∗ Ui + ht−1 ∗ Wi) … (16) 

Similarly, frequent features & omni features are evaluated 

via equation 17 & 18 as follows, 

f = var(xin ∗ Uf + ht−1 ∗ Wf) … (17) 

o = var(xin ∗ Uo + ht−1 ∗ Wo) … (18) 

These feature sets are combined, and an initial 

convolutional & temporal feature set is evaluated via 

equation 19 & 20 respectively, 

Ct
′ = tanh(xin ∗ Ug + ht−1 ∗ Wg) … (19) 

Tout = var(ft ∗ xin(t − 1) + i ∗ Ct
′) … (20) 

Using these feature sets, the final output of GRU layer is 

estimated via equation 21 as follows, 

hout = tanh(Tout) ∗ o … (21) 

Where, suffixes of U & W represents GRU constants, and 

are evaluated via the RNN model by continuously tuning 

the internal layers. The extracted features are processed via 
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a LSTM layer, which results in augmented feature sets. 

These feature sets are evaluated via equations 22 through 

25 as follows, 

z = var(Wz ∗ [hout ∗  Tout]) … (22) 

r = var(Wr ∗ [hout ∗  Ct
′]) … (23) 

Based on these intermediate feature set, the output filter 

metric ht and output feature metric xout are evaluated via 

equations 24 & 25 as follows, 

ht
′ = tanh(W ∗ [r ∗ hout ∗  Tout]) … (24) 

xout = (1 − z) ∗ ht
′ + z ∗ hout … (25) 

In this context, the variable W represents a constant 

associated with the LSTM component, and its 

determination is a critical step within the RNN model to 

optimize accuracy metrics. The subsequent stages of 

feature processing involve the utilization of a Recurrent 

Neural Network (RNN), as evident in Figure 4. Within this 

architectural framework, the combined features derived 

from the GRU and LSTM layers of one level are harnessed 

to compute higher-density features for the subsequent 

layer. 

This model operates by extracting and evaluating multiple 

features within each layer and then transmitting these 

features to the subsequent layer to facilitate more robust 

feature augmentations. The amalgamation of these features 

culminates in the creation of an augmented recurrent 

metric, which plays a pivotal role in the final classification 

of user requests into either the 'normal' or 'malicious' 

categories. 

The determination of the output class within the RNN 

model is carried out through the application of equation 26. 

This equation incorporates a pure-linear activation 

function, specifically tailored for the purpose of request 

type classification. This multifaceted approach, combining 

LSTM constants, recurrent feature processing, and linear 

activation functions, synergistically contributes to the 

classification task's accuracy optimization. 

Cout = purelin (∑ xouti
∗ Wi

N

i=1

) … (26) 

Where, Wi represents weight for given feature set, while 

Cout represents output probability for the given input 

features to be in either malicious or normal categories. 

 

Fig 4. Design of the hybrid GRU & LSTM based RNN 

model 

The output generated by the RNN model is synergistically 

integrated with the outcomes produced by the online 

request check layer, and together, they collectively form a 

comprehensive response aggregation layer. This 

aggregation layer plays a pivotal role in shaping the final 

decision-making process concerning user requests. 

Detailed insights into the intricacies of this response 

aggregation layer's design are expounded upon in the 

subsequent section of this text. 

3.4. Design of Response Aggregation Layer 

The consolidation of responses emanating from both the 

online and offline learning layers is achieved through a 

weighted sum methodology. This approach effectively 

amalgamates the accuracy of offline learning with the real-

time adaptability of online learning, culminating in the 

formulation of definitive access decisions. 

The evaluation of the final decision is executed by 

applying equation 27, where the outputs from the offline 

learning classification and the online learning's 

determination of malicious status are harmoniously 

integrated. This fusion of information encapsulated in 

equation 27 constitutes a crucial step in the decision-

making process, combining the strengths of both learning 

layers to reach a comprehensive and informed verdicts for 

different input sets. 

facc = woffline ∗ doffline + wonline ∗ donline … (27) 

Where, woffline & wonline are different weights of the given 

offline & online models which are evaluated from equation 

28, 

wi =
Nc

Nt

… (28) 

Within this context, Nc represents the count of requests 

that have been accurately classified, while Nt stands for the 
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total number of requests that have undergone processing 

within this phase. It's worth noting that requests that have 

been rejected by the online phase are excluded from 

processing by the offline phase. Consequently, the sum of 

𝑤𝑜𝑓𝑓𝑙𝑖𝑛𝑒  and 𝑤𝑜𝑛𝑙𝑖𝑛𝑒  will invariably be less than 1, 

eliminating the necessity for quantization of these values 

for different use cases. 

The variables 𝑑𝑜𝑛𝑙𝑖𝑛𝑒 and 𝑑𝑜𝑓𝑓𝑙𝑖𝑛𝑒 denote the decisions 

made by the online and offline phases regarding the 

acceptance or rejection of requests. Those requests deemed 

acceptable by these phases are directly routed to the cloud 

infrastructure for further handling, whereas the discarded 

requests are allocated for the purpose of retraining the 

RNN model. This retraining process facilitates incremental 

enhancements in the model's performance over temporal 

instance sets. The evaluation of performance is carried out 

by considering several key parameters, including but not 

limited to: 

• Authorization Attack Detection Accuracy (AADA) 

• Invalid Access Detection Accuracy (IADA) 

• Accuracy for Detection of SQL, XSS, and DDoS 

Attacks (ASDX) 

• Accuracy for Detection of Man-in-the-Middle Attacks 

(AMITM) 

• Authorization Attack Detection Delay (DAA) 

• Invalid Access Detection Delay (DIA) 

• Delay for Detection of SQL, XSS, and DDoS Attacks 

(DSDX) 

• Delay for Detection of Man-in-the-Middle Attacks 

(DMITM) 

These performance metrics serve as critical benchmarks 

for evaluating the effectiveness and efficiency of the 

proposed security model. A comparative analysis of these 

parameters with various state-of-the-art security models is 

presented in the subsequent section of this document, 

shedding light on the model's strengths and capabilities. 

4. Comparative Analysis of Results for Proposed 

Model in different Scenarios 

The proposed model employs a dual-phase approach, 

incorporating both online and offline components, to 

enhance the effectiveness of attack detection mechanisms. 

To evaluate the performance of this model, a Dropbox-like 

application was developed, encompassing the following 

key functionalities: 

• User registration and login via Email and Password 

combination. 

• File upload and download capabilities. 

• File sharing with read-only access for other users. 

• File sharing with modify access for other users. 

This model was deployed on the Apache Cloud 

infrastructure, and various types of cyberattacks were 

simulated to assess its robustness. The simulated attack 

scenarios included Brute Force attacks, Distributed Denial 

of Service (DDoS) attacks, Man-in-the-Middle (MITM) 

attacks, Cross-Site Scripting (XSS) attacks, SQL Injection 

attempts, improper authorization, and inadequate access 

control measures. 

The creation of attack scenarios followed a systematic 

process: 

• For SQL Injection attacks, attack packets containing 

sample queries (e.g., single quotes, double dashes) 

were generated and transmitted to the server for 

evaluation sets. 

• XSS requests involving redirections and session 

hijacking were initiated, and their responses were 

analyzed under different circumstances. 

• Packets with high-frequency patterns were sent from 

various IP addresses to the server, and their responses 

were assessed in various use cases. 

To structure these attack scenarios, attack trees were 

employed, providing a graphical representation to illustrate 

potential threats to the system. Attack trees are designed on 

the premise that each potential attacker possesses unique 

goals and skill sets. These trees help in identifying possible 

targets, routes to success, and the potential impact of 

vulnerabilities. Preventative actions are then determined 

based on the sensitivity and impact of the threat. 

In this environment, nearly 9 million requests were 

generated from malicious nodes, and the model's 

performance was assessed using several key metrics, 

including: 

• Authorization Attack Detection Accuracy (AADA) 

• Invalid Access Detection Accuracy (IADA) 

• Accuracy for Detection of SQL, XSS, and DDoS 

Attacks (ASDX) 

• Accuracy for Detection of Man-in-the-Middle Attacks 

(AMITM) 

• Authorization Attack Detection Delay (DAA) 

• Invalid Access Detection Delay (DIA) 

• Delay for Detection of SQL, XSS, and DDoS Attacks 

(DSDX) 

• Delay for Detection of Man-in-the-Middle Attacks 

(DMITM) 
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These metrics were also calculated for other security 

models such as LE DEM [9], FDA3 [12], and DT CP ABE 

[24], which operate in similar execution environments. The 

LEDEM model emphasizes internal attack detection 

mechanisms, FDA3 focuses on authentication and access 

control models, and DTCPABE enhances security against 

data attacks. Consequently, these three models were 

selected for comparative purposes. 

Based on the analysis and Figure 5, it becomes evident that 

the MFAAMDTL model outperforms its counterparts with 

a 4.5% higher accuracy in authorization attack detection 

than LE DEM [9], a 4.3% higher accuracy than FDA3 

[12], and a 6.8% higher accuracy than DT CP ABE [24]. 

This improvement in accuracy can be attributed to the 

hybrid approach that combines online and offline phases, 

reducing detection errors, especially for a substantial 

volume of authorization requests. Similar trends were 

observed in the delay of authorization checks (DIA), as 

detailed in Table 2, where the delay is compared across 

different models concerning the number of requests 

processed by the cloud model from various requesting 

users. 

 

Fig 5. Accuracy for authorization attack detection (AADA) 

for different models 

 

Fig 6 Delay for authorization attack detection (DAA) for 

different models 

Based on this analysis & figure 6, it can be observed that 

the MFAAMDTL model has 15.6% lower delay than LE 

DEM [9], 15.5% lower delay than FDA3 [12], and 8.5% 

lower delay than DT CP ABE [24] for authorization attack 

detection, thereby showcasing its superior performance for 

real-time deployments. The reason for this reduction in 

delay is deployment of light-weight header level checking 

layer, which assists in reducing computational overheads 

for checking malicious requests. Similar observations were 

made for invalid access detection accuracy (IADA). 

Table 1: Percentage Improvement of Mfaamdtl Model 

with Respect to. Other Security Models 

Metrics 

LE 

DEM  

[9] 

FDA3  

[12] 

DTABE 

[24] 
Remarks 

AADA 4.05% 
3.87

% 
6.12% 

Higher 

Efficiency 

DAA 14.04% 
13.95

% 
7.65% Fast 

IADA 37.35% 
35.64

% 
19.71% 

Higher 

Efficiency 

DIA 21.51% 
21.51

% 
14.85% Fast 
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ASDX 5.31% 
4.86

% 
6.12% 

Higher 

Efficiency 

DSDX 13.86% 
1.71

% 
4.77% Fast 

AMITM 4.86% 
4.41

% 
6.48% 

Higher 

Efficiency 

DMITM 7.65% 
0.45

% 
5.31% Fast 

 

These benefits make the suggested approach suitable for a 

wide range of cloud applications that need more security 

with lower overhead. 

5. Conclusion and Future Scope 

The MFAAMDTL model, as put forward, initiates the 

extraction of an extensive array of user-specific and IP-

specific attributes. These attributes encompass factors such 

as temporal attack probabilities, attack types, average page 

access durations, cumulative attack counts, access and 

request patterns, as well as temporal response profiles. The 

treatment of these patterns takes place in both online and 

offline modes, which contributes to achieving a low-

overhead attack detection capability with heightened 

accuracy when juxtaposed with various existing models. 

Noteworthy is the observation that the accuracy of this 

proposed model exhibits an incremental trend in relation to 

the volume of requests processed. This trend is attributed 

to the presence of a response aggregation layer, a dynamic 

component that continuously updates the database 

contingent upon the classification of attacks. 

Consequently, the proposed model attains an impressive 

accuracy rate of 99.3% in detecting authentication attacks, 

97.1% in identifying invalid access attempts, 99.1% in 

countering DDoS and other request-pattern attacks, and 

99.2% when dealing with Man-in-the-Middle (MITM) 

attack scenarios. This performance superiority over various 

existing methods renders the proposed model highly 

suitable for deployment across a spectrum of real-time 

scenarios. 

Furthermore, the model introduces the concept of a 

streamlined header-level request verification layer, 

effectively curtailing the computational overhead 

associated with security measures. As a consequence, the 

proposed model manages to reduce the time delay required 

for various attack detections by more than 15% when 

juxtaposed with preexisting models. These advantages 

position the proposed model as an ideal choice for 

deployment in high-speed and high-accuracy real-time 

cloud applications. 

For future prospects, researchers are encouraged to subject 

the proposed model to rigorous evaluation under diverse 

cloud-based scenarios. This scrutiny may unveil potential 

shortcomings that warrant attention before considering 

large-scale deployment. Additionally, researchers can 

explore the substitution of the existing RNN model with 

alternative techniques such as CNN, Q-Learning, or deep 

reinforcement learning. Such experimentation will 

facilitate the assessment of performance variations, 

ultimately leading to the identification of the most optimal 

models tailored to specific deployment scenarios. 
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