
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 101–116 |  101 

DRECQ: Design of an Efficient Model for Enhanced Diabetic 

Retinopathy Diagnosis Using Ensemble Classifiers and Deep Q Learning 

Process 

Ms. Minakshee Chandankhede1*, Dr. Amol Zade2 

 

Submitted: 24/12/2023    Revised: 30/01/2024     Accepted: 06/02/2024 

Abstract: In addressing the critical need for advanced diagnostic tools in the realm of ophthalmology, particularly for the detection of 

diabetic retinopathy, this paper introduces a novel, ensemble-based approach, fusing the strengths of three distinct classifiers: Naive 

Bayes, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). Traditional methods in retinal image analysis often fall 

short due to their static nature and inability to adapt to the unique complexities presented by individual images. This limitation manifests 

in less precise and accurate diagnostic outcomes, underscoring the urgent need for more dynamic and responsive techniques. The 

proposed model marks a significant departure from conventional approaches. By employing an ensemble method, it leverages the unique 

strengths of each classifier: the probabilistic analysis of Naive Bayes, the non-linear pattern recognition capability of SVM, and the 

intricate feature extraction proficiency of MLP process. The integration of these methods addresses the inherent limitations of using a 

singular approach, ensuring a more comprehensive analysis of retinal images & samples. Central to this innovation is the application of 

Deep Q Learning (DQL) for dynamic classifier selection. This reinforcement learning technique optimizes the ensemble by adaptively 

selecting the most suitable classifier for each specific retinal image, based on learned Q Values for different scenarios. This method not 

only enhances the accuracy and precision of diagnosis but also ensures continual adaptation and learning, keeping pace with evolving 

data patterns and advancements in imaging technology. The efficacy of this model is demonstrated through rigorous testing on the 

IDRiD & EyePACS Dataset. Results indicate a notable improvement over existing methods, with a 4.5% increase in precision, 5.5% in 

accuracy, 3.9% in recall, 4.9% in AUC (Area Under the Curve), 3.4% in specificity, and an 8.5% reduction in delay. These enhancements 

have profound implications for the field of ophthalmology. They signify a leap forward in the accuracy and timeliness of diabetic 

retinopathy diagnosis, ultimately leading to improved patient outcomes and a reduction in the burden on healthcare systems. This work, 

therefore, not only presents a technical advancement but also a significant stride in patient care, paving the way for more effective 

management and treatment of retinal diseases. 

Keywords: Diabetic Retinopathy Detection, Ensemble Classifiers, Deep Q Learning, Retinal Image Analysis, Machine Learning, 

Scenarios 

1. Introduction 

The realm of medical diagnostics has continually sought to 

harness the advancements in artificial intelligence and 

machine learning to enhance the precision and efficiency of 

disease detection. Diabetic retinopathy, a prevalent yet 

potentially devastating consequence of diabetes, presents a 

unique challenge in this domain. The intricate nature of 

retinal images necessitates a diagnostic approach that is 

both sensitive to the subtleties of these images and robust 

enough to handle their complexity. This paper introduces an 

innovative model designed to significantly improve the 

diagnosis of diabetic retinopathy, a critical step in 

preventing vision loss among diabetic patients. 

Historically, the field of ophthalmic diagnostics has 

predominantly relied on methods that, while effective to a 

degree, exhibit limitations in adaptability and precision. 

Traditional image analysis techniques, often based on 

single-algorithm frameworks, have struggled to 

consistently identify the nuanced patterns indicative of 

diabetic retinopathy. This inconsistency stems from a lack 

of dynamic adaptability to the diverse presentations of 

retinal changes. Consequently, there exists a substantial gap 

in the diagnostic process, leading to delayed or inaccurate 

detection of this condition. 

Addressing these challenges, the proposed model represents 

a paradigm shift. It employs an ensemble of classifiers, each 

selected for its specific strengths in image analysis. The 

Naive Bayes classifier brings a probabilistic perspective, 

making it adept at handling clear statistical patterns in 

retinal images. The Support Vector Machine (SVM), with 

its radial basis function (RBF) kernel, excels in identifying 

complex, non-linear patterns, a common characteristic of 

retinal images in diabetic retinopathy. Complementing 

these is the Multi-Layer Perceptron (MLP), a deep learning 

approach that excels in extracting hierarchical features from 

data, crucial for discerning subtle patterns in retinal images. 

At the heart of this model is the innovative use of Deep Q 

Learning (DQL), a technique rooted in reinforcement 
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learning. DQL dynamically optimizes the ensemble, 

selecting the most appropriate classifier for each specific 

retinal image. This approach ensures not only high accuracy 

but also adaptability to evolving data patterns and 

technological advancements. The model's ability to 

continuously learn and adjust its strategy is a substantial 

leap forward in retinal image analysis. 

The introduction of this model represents more than a 

technical advancement; it heralds a new era in diabetic 

retinopathy diagnostics. By significantly enhancing the 

accuracy and timeliness of diagnosis, it opens the door to 

earlier interventions, potentially preventing the progression 

of this vision-threatening condition. The implications of this 

research extend beyond the technical realm, offering hope 

for improved patient outcomes and a reduction in the 

healthcare burden associated with diabetic retinopathy. This 

paper, therefore, presents not only a groundbreaking 

technological development but also a meaningful 

contribution to patient care in the field of ophthalmology 

scenarios. 

Motivation & Objectives: 

The motivation behind this research emanates from the 

pressing need to advance the diagnostic accuracy in the field 

of ophthalmology, particularly for diabetic retinopathy. As 

a leading cause of blindness among the diabetic population, 

its early and accurate detection is paramount. Current 

diagnostic methods, while beneficial, are often hampered by 

limitations such as lack of adaptability and precision, 

leading to delayed diagnoses and treatment. This gap in the 

diagnostic process underscores the urgency for a more 

refined and responsive approach, one that can adapt to the 

complex and varied nature of retinal images. 

This research is driven by the objective to bridge this gap, 

employing cutting-edge machine learning techniques to 

enhance the diagnostic process. The model introduced in 

this paper is a testament to the potential of artificial 

intelligence in revolutionizing medical diagnostics. By 

integrating an ensemble of classifiers, each with its distinct 

capabilities, the model addresses the limitations of 

traditional single-algorithm approaches. This ensemble 

approach, coupled with the dynamic optimization provided 

by Deep Q Learning (DQL), marks a significant leap in the 

accuracy and efficiency of diagnosing diabetic retinopathy. 

The contributions of this work are manifold. Firstly, it 

introduces a novel ensemble-based approach that 

synergizes the strengths of Naive Bayes, Support Vector 

Machine (SVM), and Multi-Layer Perceptron (MLP) 

classifiers. This combination is specifically tailored to 

capture the diverse and intricate patterns present in retinal 

images, a task that single-algorithm methods often struggle 

with. Secondly, the integration of Deep Q Learning (DQL) 

for classifier selection is a pioneering step in medical image 

analysis. DQL's adaptive and dynamic nature ensures that 

the model continuously evolves, improving its diagnostic 

accuracy over time. 

Moreover, the research extends beyond the technical realm, 

contributing significantly to patient care. By enhancing the 

accuracy and timeliness of diabetic retinopathy diagnosis, it 

facilitates early intervention, potentially preventing 

irreversible vision loss. This contribution is not just a 

measure of technical proficiency but also a stride towards 

improving the quality of life for diabetic patients. 

In summary, this research offers a comprehensive and 

dynamic solution to a longstanding challenge in 

ophthalmology. It stands as a beacon of innovation, 

showcasing the immense potential of machine learning in 

transforming medical diagnostics and, by extension, patient 

care. The model presented here is not merely an academic 

exercise; it is a crucial step towards a future where 

technology and healthcare converge for the betterment of 

patient outcomes. 

2. Literature Review 

The literature in the field of diabetic retinopathy detection 

has witnessed significant advancements, particularly in the 

application of various machine learning and deep learning 

techniques. These developments have been pivotal in 

enhancing the accuracy and efficiency of diagnostic 

processes. This section reviews recent contributions and 

developments in this field, highlighting the progressive 

strides made and the gaps that the current research aims to 

fill. 

Jagadesh et al. [1] explored the segmentation of retinal 

images using the IC2T model, integrating it with a unique 

Rock Hyrax Swarm-Based Coordination Attention 

Mechanism for classifying diabetic retinopathy. This 

method, although innovative, highlights the ongoing 

challenge of effectively segmenting and classifying 

complex retinal images. Similarly, Nazih et al. [2] 

employed a Vision Transformer Model for predicting the 

severity of diabetic retinopathy in fundus photography-

based retina images. This approach underscores the growing 

trend of using transformer models in medical image 

analysis. 

Further, the work by Naz et al. [3] introduced an ensembled 

deep convolutional generative adversarial network to 

address the issue of grading imbalanced diabetic 

retinopathy recognition. While this approach tackled the 

imbalance in datasets, it also pointed to the need for models 

that can adapt to various data distributions. Wong et al. [4] 

took a different route, utilizing transfer learning with 

simultaneous parameter optimization and a feature-

weighted ECOC ensemble for detecting and grading 

diabetic retinopathy. This method demonstrates the 
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potential of transfer learning in enhancing model 

performance with pre-trained networks. 

Feng et al. [5] contributed to the field with their grading of 

diabetic retinopathy images based on a Graph Neural 

Network. This approach highlights the application of graph-

based techniques in capturing the intricate relationships in 

retinal images. Siebert et al. [6] delved into the uncertainty 

analysis of deep kernel learning methods on diabetic 

retinopathy grading, addressing the crucial aspect of 

uncertainty in medical diagnoses. 

Aurangzeb et al. [7] provided insights into the systematic 

development of AI-enabled diagnostic systems for 

glaucoma and diabetic retinopathy. Their work emphasizes 

the importance of systematic and holistic approaches in 

developing AI systems for medical diagnostics. In a similar 

vein, Kukkar et al. [8] focused on optimizing deep learning 

model parameters using socially implemented IoMT 

systems for the classification of diabetic retinopathy, 

highlighting the integration of social and technological 

aspects in model optimization. 

Palaniswamy and Vellingiri [9] investigated the use of the 

Internet of Things and deep learning for diabetic retinopathy 

diagnosis using retinal fundus images, showcasing the 

potential of IoT in healthcare. Liu and Chi [10] introduced 

a Cross-Lesion Attention Network for accurate diabetic 

retinopathy grading with fundus images, emphasizing the 

need for attention mechanisms in handling complex image 

features. 

Mohan et al. [11] presented the DRFL, a federated learning 

approach in diabetic retinopathy grading using fundus 

images, which is a step towards decentralized and privacy-

preserving machine learning in healthcare. Ali et al. [12] 

developed a hybrid convolutional neural network model for 

automatic diabetic retinopathy classification from fundus 

images, combining various neural network architectures for 

improved performance. 

Raiaan et al. [13] offered a lightweight robust deep learning 

model that achieved high accuracy in classifying a wide 

range of diabetic retinopathy images, addressing the need 

for efficient and scalable 

models in clinical settings. Hou et al. [14] explored image 

quality assessment guided collaborative learning of image 

enhancement and classification for diabetic retinopathy 

grading. This study highlights the importance of pre-

processing and image quality enhancement in improving 

classification outcomes. 

Lastly, Nur-A-Alam et al. [15] developed a Faster RCNN-

based diabetic retinopathy detection method using fused 

features from retina images & samples. This approach 

signifies the evolving landscape of feature extraction 

techniques in enhancing model accuracy levels. 

Kumar et al. [16] presented a groundbreaking approach in 

retinal lesion segmentation using a DL-UNet Enhanced 

Auto Encoder-Decoder. Their method signifies a quantum 

leap in fundus image analysis, offering a more refined 

segmentation capability that is crucial for accurate 

diagnosis. Similarly, Zang et al. [17] introduced an 

interpretable diabetic retinopathy diagnosis method based 

on biomarker activation maps. This approach provides a 

more transparent and explainable model for medical 

professionals, addressing the often-cited challenge of 

interpretability in deep learning models. 

Sundar and Sumathy [18] focused on classifying diabetic 

retinopathy disease levels by extracting topological features 

using Graph Neural Networks. Their work underscores the 

potential of graph-based neural networks in capturing 

complex patterns in medical images. In a different vein, Liu 

et al. [19] developed TMM-Nets, aimed at lupus retinopathy 

diagnosis through transferred multi- to mono-modal 

generation. This method demonstrates the versatility of 

neural networks in handling various types of retinal 

diseases. 

Zhang et al. [20] explored the realm of image quality 

assessment for diabetic retinopathy using their ADD-Net. 

The focus on image quality is crucial, as it directly impacts 

the accuracy of subsequent diagnostic processes. Radha and 

Karuna [21] contributed with their Modified Depthwise 

Parallel Attention UNet for retinal vessel segmentation. 

This technique highlights the importance of attention 

mechanisms in enhancing the precision of segmentation 

tasks. 

Pereira et al. [22] innovated in the detection of fundus 

lesions using the YOLOR-CSP architecture and slicing 

aided hyper inference. Their method signifies 

advancements in lesion detection, a critical step in the 

diagnosis of various retinal conditions. Hussain [23] 

introduced a novel approach to exudate detection by 

integrating retinal-based affine mapping and design flow 

mechanism to develop lightweight architectures. This work 

addresses the need for efficient and resource-light models 

in medical imaging. 

Bar-David et al. [24] investigated the elastic deformation of 

Optical Coherence Tomography images of diabetic macular 

edema for deep-learning models training. Their study 

provides insights into the challenges and limitations of 

using synthetic data augmentations in training deep learning 

models. Lastly, Yin et al. [25] presented 

a Dual-Branch U-Net Architecture for retinal lesions 

segmentation on fundus images. This approach, focusing on 

dual-branch networks, enhances the segmentation process 

by effectively capturing varied lesion types in retinal 

images. 
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Collectively, these studies represent significant strides in 

the field of diabetic retinopathy detection and retinal image 

analysis. They exhibit a trend towards more sophisticated, 

accurate, and interpretable models, leveraging advanced 

neural network architectures and techniques. From 

enhancing segmentation capabilities and image quality 

assessments to integrating novel neural network 

architectures and addressing interpretability, these 

contributions have laid a solid foundation for future 

innovations for different use cases. 

The current research builds upon these advancements, 

aiming to further refine the process of diabetic retinopathy 

diagnosis. By integrating an ensemble approach with Deep 

Q Learning, this study not only benefits from the strengths 

of various classifiers but also introduces a level of 

adaptability and precision previously unattained in single-

model approaches. The work presented here is not just a 

continuation of existing research but a significant 

contribution to the field, introducing a model that is 

expected to set a new benchmark in diabetic retinopathy 

detection and retinal image analysis. 

3. Proposed Design of an Efficient Model for 

Enhanced Diabetic Retinopathy Diagnosis 

Using Ensemble Classifiers and Deep Q 

Learning Process 

Based on the review of existing models used for 

identification of Diabetic Retinopathic Images, it can be 

observed that most of these models either have high 

complexity, or have low efficiency when deployed in real-

time scenarios. To overcome these issues, this section 

discusses design of an efficient model for diabetic 

retinopathy diagnosis. As per figure 1.1, the integration of 

Naive Bayes, Support Vector Machine (SVM), Multi-Layer 

Perceptron (MLP), and Deep Q Learning (DQL) play 

pivotal roles. Naive Bayes, with its probabilistic foundation, 

excels in making predictions based on the likelihood of 

different outcomes, offering a fast and effective means of 

initial assessment for real-time scenarios. This is 

complemented by the SVM's robust capability in pattern 

recognition, especially in high-dimensional spaces, where it 

constructs hyperplanes in a multidimensional space to 

distinctly classify data points. Concurrently, the MLP, a 

form of neural network, delves deeper into the data, 

extracting intricate and non-linear features through its 

multiple layers, each consisting of neurons with activation 

functions, thereby capturing complex patterns that simpler 

models might miss. The crux of this model, however, is the 

DQL block, which acts as a dynamic decision-maker. By 

continuously learning and adapting through reinforcement 

learning, DQL evaluates the outputs from Naive Bayes, 

SVM, and MLP, assigning Q Values as a measure of their 

effectiveness in varying scenarios.  

 

Fig 1.1. Model Architecture for the Proposed Diabetic 

Retinopathy Analysis 

It then selects the most suitable classifier or a combination 

thereof for each specific case, ensuring optimized 

diagnostic accuracy. This ensemble approach, underpinned 

by DQL's adaptability, enables the model to tackle the 

multifaceted nature of retinal images in diabetic 

retinopathy, ensuring a level of diagnostic precision and 

reliability that is a substantial leap from traditional single-

method approaches. The seamless interplay of these diverse 

yet complementary techniques exemplifies an advanced 

stride in machine learning, harmonizing different 

methodologies to enhance medical diagnostic capabilities. 

Before applying these classifiers, the proposed model uses 

an efficien thresholding engine, which is a critical 

component in the analysis of retinal images for the detection 

of diabetic retinopathy. This engine operates on a series of 

intricate steps, transforming input images into a detailed 

segmentation of exudates, vessels, retina, and nerves. This 

engine begins its operation upon receiving collected input 
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images, which are typically in a high-resolution format, 

encapsulating visual information crucial for accurate 

diagnosis. 

The first operation involves pre-processing the input images 

to enhance their quality and prepare them for subsequent 

analysis. This pre-processing includes noise reduction and 

contrast enhancement. Noise reduction is achieved through 

a Gaussian filter, represented via equation 1, 

𝐺(𝑥, 𝑦) =  (
1

2𝜋𝜎2
) 𝑒

−
𝑥2+𝑦2

2𝜎2 … . (1) 

Where, σ is the standard deviation of the Gaussian 

distribution. Following pre-processing, the engine employs 

a series of thresholding techniques to isolate distinct 

features within the retinal images, namely exudates, vessels, 

retina, and nerves. The thresholding process for exudates 

detection involves identifying the bright lesions 

characteristic of exudates. This is often achieved using 

Otsu's method, which computes a threshold value (t) by 

minimizing the intraclass variance via equation 2, 

𝜎2(𝑡) =  𝜔1(𝑡)𝜎2(1, 𝑡) +  𝜔2(𝑡)𝜎2(2, 𝑡) … (2) 

where ω1, ω2 are the probabilities of the two classes 

separated by the threshold t, and σ² are variances of these 

two classes. For vessel extraction, the engine applies a 

combination of edge detection and morphological 

operations. Edge detection might involve the Sobel 

operator, which uses the gradients Gx and Gy which are 

fused via equation 3, 

𝐺 =  √(𝐺𝑥² +  𝐺𝑦²) … (3) 

This assists in identifying regions with high spatial 

frequency corresponding to vessel edges. Morphological 

operations including dilation and erosion are further applied 

to refine the vessel structures, employing structuring 

elements whose shapes are tailored to the expected 

morphology of retinal vessels. 

Retina segmentation is achieved through methods that 

identify the circular outline of the optic discs. This involve 

the Hough Transform, a technique for detecting shapes, 

represented via equation 4, 

(𝑥 −  𝑎)2 + (𝑦 −  𝑏)2 =  𝑟2 … (4) 

Where, (a, b) and r are the circle's center and radius, 

respectively. The transform detects circles in the image by 

a voting procedure in the Hough parameter space. Nerve 

fiber layer segmentation, a more challenging task due to the 

subtle nature of these features, and employs Gabor filters. 

These filters are used to enhance the visibility of nerve 

fibers and are represented via equation 5, 

𝐺(𝑥, 𝑦;  𝜆, 𝜃, 𝜓, 𝜎, 𝛾)

=  𝑒𝑥𝑝 (−
𝑥′2 +  𝛾2𝑦′2

2𝜎2
) 𝑐𝑜𝑠 (

2𝜋𝑥′

𝜆

+  𝜓) … (5) 

Where, 𝑥′ =  𝑥 𝑐𝑜𝑠 𝜃 +  𝑦 𝑠𝑖𝑛 𝜃, 𝑦′ =  −𝑥 𝑠𝑖𝑛 𝜃 +

 𝑦 𝑐𝑜𝑠 𝜃, and λ, θ, ψ, σ, γ are parameters of the Gabor filter 

defining wavelength, orientation, phase offset, standard 

deviation, and spatial aspect ratio, respectively. 

The output of these sequential thresholding and 

segmentation processes is a set of images where exudates, 

vessels, retina, and nerves are distinctly isolated and 

highlighted. These segmented components are crucial for 

further analysis in the diagnosis of diabetic retinopathy, 

providing detailed insights into the pathological changes 

within the retina, which can be observed from figure 1.2 as 

follows, 

 

Fig 1.2. Segmentation Results for different Fundus Image 

Sets 

Upon receiving the segmented retinal features, the 

convolutional engine initiates its primary convolution 

process. In this process, each input image is convolved with 

a set of learnable filters or kernels, designed to extract 

specific features. The convolution operation for each filter 

k is mathematically represented via equation 6, 

𝐹𝑘(𝑖, 𝑗) =  ∑∑𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∗  𝐾𝑘(𝑚, 𝑛) … (6) 

Where, Fk is the feature map obtained by applying the k-th 

filter, I is the input image, and Kk is the k-th kernel. This 

operation traverses the entire image, producing a feature 

map that highlights particular attributes including edges, 

textures, or patterns corresponding to the retinal structures. 

Subsequent to convolution, the engine applies nonlinear 

activation using Rectified Linear Unit (ReLU), to introduce 

nonlinearity into the model, allowing it to capture complex 

patterns. The ReLU function is defined via equation 7, 

𝑅(𝑥) =  𝑚𝑎𝑥(0, 𝑥) … (7) 

Where, x is the input to the neurons. This function retains 

only positive values, passing them forward while discarding 

negative values, thereby simplifying the computational 
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complexity. The next operation involves max pooling, to 

reduce the spatial dimensions of the feature maps, thus 

decreasing the number of parameters and computational 

load. Max pooling operates on each feature map separately, 

and for each sub-region r, it is defined via equatui 8, 

𝑃(𝑟) =  𝑚𝑎𝑥(𝐼(𝑟)) … (8) 

Where, I(r) is the input in region r sets. This process not only 

reduces data size but also aids in making the representation 

more robust to variations in the position of features. 

The convolutional engine may consist of multiple layers of 

convolution, ReLU, and pooling, each extracting 

increasingly abstract and complex features. In deeper 

layers, the convolutions might capture high-level 

representations like the network of vessels or the nuanced 

distribution of exudates. 

After passing through these layers, the extracted features are 

flattened to form a one-dimensional vector, suitable for 

classification process. The flattening operation transforms a 

2D feature map F of size M×N into a one-dimensional 

vector V of size 1×(M*N), ensuring the compatibility of 

these features with subsequent fully connected layers. 

The engine then employs multiple fully connected layers, 

where each neuron is connected to all the elements in the 

previous layer. These layers perform high-level reasoning 

based on the extracted features. The operation in a fully 

connected layer is described via equation 9, 

𝑌 =  𝑊 ∗ 𝑋 +  𝐵 … (9) 

Where, X is the input vector, W represents the weight 

matrix, B is the bias vector, and Y is the output vector from 

this process.  This output vector is given to an efficient 

classification engine of the model, whch is a complex 

system designed to categorize retinal image samples into 

distinct classes indicative of various stages of diabetic 

retinopathy. This engine employs an ensemble of three 

distinct classifiers: Naive Bayes, Support Vector Machine 

(SVM), and Multi-Layer Perceptron (MLP), each playing a 

crucial role in the classification process by leveraging the 

extracted convolutional features. 

The Naive Bayes classifier, the first component of this 

ensemble, operates on the principle of probabilistic 

inference sets. It assumes that the features are independent 

of each other given the class label, an assumption known as 

conditional independence levels. The classifier calculates 

the posterior probability of each class given the feature 

vector, using Bayes' theorem via equation 10, 

𝑃(𝐶𝑘 | 𝑥)  =  𝑃(𝑥 | 𝐶𝑘)
𝑃(𝐶𝑘)

𝑃(𝑥)
… (10) 

Where, P(Ck | x) is the posterior probability of class Ck 

given feature vector x, P(x | Ck) is the likelihood, P(Ck) is 

the class prior probability, and P(x) is the evidence for these 

classes. For each class, it computes the product of the 

individual feature probabilities, and the class with the 

highest posterior probability is selected as the outputs. 

The SVM classifier, another key element of the ensemble, 

is particularly adept at handling high-dimensional data 

samples. It functions by finding the optimal hyperplane that 

separates the classes in the feature space sets. This 

hyperplane is determined by solving the optimization task 

represented via equation 11, 

𝑚𝑖𝑛 (
1

2
) ||𝑤||

2
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤 ·  𝑥𝑖 +  𝑏)

≥  1, ∀𝑖 … (11) 

Where, w is the weight vector, b is the bias, and yi are the 

class labels. The solution to this task involves Lagrangian 

multipliers, leading to a dual task which is solved to find the 

optimal margin hyperplanes. In cases of non-linear 

separability, SVM employs Radial Basis Function (RBF), 

which is evaluated via equation 12, 

𝐾(𝑥𝑖, 𝑥𝑗) =  𝑒𝑥𝑝 (−𝛾 ||𝑥𝑖 −  𝑥𝑗||
2

) … (12) 

Where, γ is a parameter controlling the kernel's width sets. 

After this, MLP is applied, which is a type of neural network 

designed to capture complex, non-linear relationships in the 

data samples. It consists of multiple layers of neurons, each 

layer fully connected to the next one for different class 

types. The operation of each neuron is described via 

equation 13, 

𝑓(𝑥) =  𝑔(∑𝑤𝑖 𝑥𝑖 +  𝑏) … (13) 

Where, f(x) is the neuron's output, xi are the inputs, wi are 

the weights, b is the bias, and g is a non-linear sigmoid 

which is represented via equation 14, 

𝜎(𝑥) =
1

1 +  𝑒−𝑥
… (14) 

The MLP learns to classify the input by adjusting its weights 

and biases through backpropagation, a process involving the 

calculation of the gradient of a loss function with respect to 

the weights and biases and adjusting them in the direction 

that minimizes the loss. Upon receiving the convolutional 

features, each classifier in the ensemble processes them 

independently which assists in ensembling operations. The 

Naive Bayes classifier rapidly computes the posterior 

probabilities, the SVM delineates the feature space with its 

optimal hyperplane, and the MLP, through its layers, 

progressively refines its classification decisions. The 

outputs of these classifiers, although individually 

significant, are further processed in a subsequent stage for 

final decision-making process. 

The output from this ensemble classification engine is a 

comprehensive assessment of the diabetic retinopathy 

stages, based on the intricate patterns and characteristics 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 101–116 |  107 

identified in the retinal images & its samples. The 

combination of Naive Bayes, SVM, and MLP allows the 

model to harness both probabilistic reasoning, linear and 

non-linear pattern recognition capabilities, ensuring a 

nuanced and accurate classification of the disease stages. 

After this, the application of Deep Q Learning (DQL) model 

represents a sophisticated and innovative approach to 

optimizing the ensemble classifier system for diabetic 

retinopathy diagnosis. Central to DQL is the concept of 

reinforcement learning, where the algorithm learns to make 

decisions by interacting with an environment for optimizing 

classification outputs. In this model, the environment is the 

process of classifying retinal images, and the goal is to 

select the most suitable classifier – Naive Bayes, SVM, or 

MLP – for each specific image to maximize diagnostic 

accuracy levels. 

The core operation of DQL involves learning a value 

function, specifically the Q-function, which estimates the 

value of taking a certain action (selecting a classifier) in a 

given state (features of a retinal image) for different class 

types. This Q-function is represented as Q(s, a), where s is 

a state, and a is an action for this process. The aim is to learn 

a policy π that maximizes the expected reward over time, 

which is defined as the sum of discounted future rewards 

via equation 15, 

 𝑅𝑡 =  ∑ 𝛾𝑘𝑟(𝑡 + 𝑘)

∞

𝑘=1

… (15) 

Where, r is the reward, and γ is the discount factor (0 ≤ γ ≤ 

1), which determines the importance of future rewards. 

DQL employs a neural network, known as the Q Nnetwork, 

to approximate the Q-function for different operations. The 

inputs to this network are the states (features of the retinal 

image), and the outputs are the Q Values for each possible 

action (classifier choice) sets. The Q-network is trained by 

minimizing the loss function which is represented via 

equation 16, 

𝐿(𝜃) =  𝐸 [(𝑟 +  𝛾 𝑚𝑎𝑥𝑎’ 𝑄(𝑠’, 𝑎’;  𝜃’)

−  𝑄(𝑠, 𝑎;  𝜃))
2

] … (16) 

Where, θ are the weights of the network, r is the reward 

received after taking action a in state s, s’ is the subsequent 

state, and a’ is the subsequent action in the process. The 

training process involves updating the Q Values based on 

the reward received and the maximum Q Value of the next 

state, a method known as Temporal Difference (TD) 

learning process. The Q-network is updated using the 

gradient of the loss function, ∇θL(θ), which is computed 

through backpropagation process. This update rule is 

represented via equation 17, 

 𝜃 ←  𝜃 +  𝛼 𝛻𝜃 𝐿(𝜃) … (17) 

Where, α represents learning rate for this process. In 

practice, DQL utilizes experience replay to break the 

correlation between consecutive learning updates. The 

algorithm stores the agent's experiences (s, a, r, s’) in a 

replay memory and stochastically samples mini-batches 

from this memory to update the Q-network. This stochastic 

sampling increases the efficiency and stability of the 

learning process. 

Another key element of DQL is the exploration-exploitation 

trade-off, typically managed by an ε-greedy strategy 

process. The algorithm chooses actions either stochastically 

(exploration) with probability ε or according to the highest 

Q Value (exploitation) with probability 1-ε to enhance its 

efficiency levels. Over temporal instances, ε is decayed to 

encourage more exploitation of the learned policies. 

The output of the DQL process in this model is the 

optimized selection of classifiers for each retinal image. By 

adaptively choosing the most suitable classifier based on the 

learned Q Values, the model can effectively handle the 

variability and complexity inherent in diabetic retinopathy 

diagnosis. This dynamic classifier selection mechanism 

ensures that the model not only achieves high accuracy in 

its current state but also continually adapts and improves as 

it encounters new data samples. 

In essence, the integration of Deep Q Learning into the 

model's architecture underscores a sophisticated application 

of reinforcement learning in medical image classification. 

Through its intricate design and complex learning 

mechanisms, DQL significantly enhances the model's 

capability to make intelligent, adaptive decisions, thereby 

optimizing the diagnostic process for diabetic retinopathy 

sets. An example use case of this model is discussed in the 

next section of this text, followed by an in-depth analysis & 

comparison of the proposed model under real-time 

scenarios. 

Example Use Case 

To illustrate the complex diagnostic process for diabetic 

retinopathy, a example with sample data samples is 

presented in this section of this text. The following 

processes are applied to these data samples: Thresholding 

Engine, Convolutional Process, Ensemble Engine, and 

Deep Q Learning (DQL) process.  

Pre-writeup Note: The data samples used in this 

illustration include various retinal images for diabetic 

retinopathy diagnosis. These images undergo a series of 

processing steps, starting with thresholding, followed by 

feature extraction through convolutional processing. The 

ensemble engine combines the results of multiple 

classifiers, and finally, DQL optimizes the classifier 

selection process. 

Table 1: Pre-Thresholding Engine Data Samples 
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Data Sample 

ID 

Exudates Vessels Retina Nerves 

1 128 255 40 70 

2 70 200 30 60 

3 150 220 35 80 

4 90 180 25 50 

5 110 210 45 75 

Before applying the thresholding engine, a set of data 

samples representing retinal images is provided. These 

samples contain values for different features, including 

exudates, vessels, retina, and nerves. These features are 

crucial for diabetic retinopathy diagnosis. 

Table 2: Post-Thresholding Engine Results 

Data 

Sampl

e ID 

Exudate

s 

Extracte

d 

Vessels 

Extracte

d 

Retina 

Extracte

d 

Nerves 

Extracte

d 

1 1 1 1 1 

2 0 1 0 1 

3 1 1 1 1 

4 0 1 0 1 

5 1 1 1 1 

After applying the thresholding engine, the data samples are 

processed to extract relevant features, including exudates, 

vessels, retina, and nerves. The values in the table represent 

whether a particular feature is detected (1) or not (0) in each 

data sample. This preprocessing step simplifies the data for 

subsequent processing. 

Table 3: Convolutional Process Feature Extraction 

Data 

Sampl

e ID 

Featur

e 1 

Featur

e 2 

Featur

e 3 

..

. 

Featur

e N 

1 0.84 0.62 0.75 ..

. 

0.91 

2 0.72 0.58 0.69 ..

. 

0.85 

3 0.91 0.67 0.79 ..

. 

0.93 

4 0.65 0.54 0.61 ..

. 

0.77 

5 0.78 0.60 0.72 ..

. 

0.89 

The convolutional process extracts a set of features from the 

preprocessed data samples. These features are represented 

numerically and are essential for subsequent classification 

tasks. The table presents a subset of the extracted features 

for each data sample, with each feature assigned a numerical 

value. 

Table 4: Ensemble Engine Classification Results 

Data 

Sampl

e ID 

Classifie

r 1 

(Naive 

Bayes) 

Classifie

r 2 

(SVM) 

Classifie

r 3 

(MLP) 

Ensembl

e Result 

1 0.86 0.92 0.88 Diabetic 

2 0.74 0.81 0.76 Non-

Diabetic 

3 0.90 0.93 0.89 Diabetic 

4 0.72 0.79 0.75 Non-

Diabetic 

5 0.85 0.91 0.87 Diabetic 

The ensemble engine combines the classification results 

from three distinct classifiers: Naive Bayes, Support Vector 

Machine (SVM), and Multi-Layer Perceptron (MLP). Each 

classifier assigns a probability score to each data sample, 

indicating the likelihood of diabetic retinopathy. The 

ensemble result is determined based on a consensus of these 

scores, leading to a final classification decision. 

Table 5: Deep Q Learning (DQL) Classifier Selection 

Data 

Sample 

ID 

Q Values 

(Naive 

Bayes) 

Q 

Values 

(SVM) 

Q 

Values 

(MLP) 

Selected 

Classifier 

1 [0.75, 

0.62, 0.69] 

[0.88, 

0.74, 

0.81] 

[0.82, 

0.79, 

0.76] 

SVM 

2 [0.71, 

0.58, 0.66] 

[0.79, 

0.72, 

0.78] 

[0.75, 

0.70, 

0.73] 

Naive 

Bayes 

3 [0.86, 

0.72, 0.80] 

[0.91, 

0.84, 

0.88] 

[0.88, 

0.83, 

0.87] 

SVM 

4 [0.69, 

0.57, 0.65] 

[0.77, 

0.70, 

0.75] 

[0.74, 

0.68, 

0.72] 

Naive 

Bayes 

5 [0.82, 

0.68, 0.75] 

[0.89, 

0.82, 

0.87] 

[0.86, 

0.80, 

0.84] 

SVM 

Deep Q Learning (DQL) plays a crucial role in selecting the 

most suitable classifier (Naive Bayes, SVM, or MLP) for 

each data sample. The Q Values represent the learned 

estimates of the expected future rewards for choosing each 

classifier in a given state (data sample). Based on these Q 
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Values, DQL dynamically selects the classifier that is 

expected to provide the most accurate diagnosis for each 

retinal image. 

These tables and the accompanying descriptions 

demonstrate the intricate and dynamic nature of the diabetic 

retinopathy diagnostic process, showcasing how data 

samples are transformed and classified through a series of 

sophisticated steps to achieve accurate results. 

4. Result Analysis & Comparisons 

In this pioneering study, the researchers have ingeniously 

crafted a unique model that integrates the distinct 

capabilities of three classifiers: Naive Bayes, Support 

Vector Machine (SVM), and Multi-Layer Perceptron 

(MLP), to tackle the challenges in diabetic retinopathy 

detection. This ensemble approach marks a significant 

evolution from traditional methods, which often falter due 

to their static nature and limited adaptability to the intricate 

variances in retinal images. Naive Bayes brings its 

probabilistic analytical strength, SVM contributes its 

proficiency in non-linear pattern recognition, and MLP adds 

its intricate feature extraction capabilities. This 

amalgamation leads to a more nuanced and comprehensive 

analysis of retinal images, transcending the constraints of 

singular methodologies. The model's core innovation lies in 

the incorporation of Deep Q Learning (DQL), a 

sophisticated reinforcement learning technique. DQL 

dynamically optimizes the ensemble by intelligently 

selecting the most appropriate classifier for each specific 

retinal image. This selection is based on learned Q Values, 

which are essentially decision-making metrics tailored to 

different scenarios. By doing so, the model adapts in real-

time to the unique complexities of each image, significantly 

enhancing the precision and accuracy of diabetic 

retinopathy diagnosis. This approach exemplifies a 

remarkable stride in machine learning application, 

harnessing the power of ensemble learning and adaptive 

algorithms to revolutionize retinal image analysis in 

ophthalmology sets. 

In the experimental setup section of the paper, which 

focuses on the design of an efficient model for enhanced 

diabetic retinopathy diagnosis using ensemble classifiers 

and Deep Q Learning, a detailed and comprehensive 

approach was employed. The experiment was meticulously 

structured to assess the efficacy of the proposed DRECQ 

model in comparison with existing models such as 

DCGAN, GNN, and RCNN. The evaluation was conducted 

using two prominent diabetic retinopathy databases: IDRiD 

and EyePACS. 

Data Sources: 

• IDRiD (Indian Diabetic Retinopathy Image 

Dataset): This dataset comprises high-resolution 

retinal images, characterized by varied manifestations 

of diabetic retinopathy. The images in IDRiD are 

annotated for typical diabetic retinopathy lesions and 

are used to facilitate algorithmic development in 

automated disease diagnosis. 

• EyePACS: A widely used database in diabetic 

retinopathy research, EyePACS consists of a large 

collection of retinal images sourced from diverse 

populations and imaging environments. It is 

instrumental in evaluating the generalizability and 

robustness of diagnostic models across different 

demographics and equipment. 

Experimental Parameters: 

• Number of Test Samples (NTS): The experiment 

was conducted over a range of test samples, from 

7,000 to 120,000 images, to assess model 

performance in both small and large datasets. 

• Ensemble Classifiers: The DRECQ model 

integrated three classifiers – Naive Bayes, SVM, 

and MLP – each with specific parameter settings: 

• Naive Bayes: Default parameterization. 

• SVM: Kernel type - Radial Basis 

Function (RBF); Gamma - 'scale'; C - 1.0. 

• MLP: Hidden layers - (100,); Activation 

function - 'ReLU'; Solver - 'adam'. 

• Deep Q Learning (DQL): Employed for dynamic 

classifier selection with the following settings: 

• Discount factor (γ) - 0.95; 

• Learning rate (α) - 0.001; 

• Exploration rate (ε) - 0.1. 

• Training Split: The datasets were split into 80% 

for training and 20% for testing purposes. 

Evaluation Metrics: The performance of the models was 

evaluated using several metrics, including Precision, 

Accuracy, Recall, AUC (Area Under the Curve), 

Specificity, and Delay (in milliseconds). 

Computational Environment: 

• The experiments were run on a system equipped 

with an Intel Core i7 processor, 16GB RAM, and 

an NVIDIA GTX 1080 Ti GPU. 

• Software framework: Python 3.7, with libraries 

such as TensorFlow, Keras, and Scikit-learn. 

Procedure: 
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• Data Preprocessing: Images were resized to a standard 

dimension and normalized to ensure uniformity in the 

dataset. 

• Model Training: Each classifier within the DRECQ 

model was trained on the training set of the IDRiD and 

EyePACS databases. 

• Classifier Integration and Optimization: The DQL 

algorithm was implemented to dynamically select the 

appropriate classifier for each test sample. 

• Performance Evaluation: The models were evaluated 

on the test set using the specified metrics, and 

comparisons were drawn against the benchmark 

models (DCGAN, GNN, RCNN). 

This experimental setup ensures a comprehensive 

evaluation of the DRECQ model, providing insights into its 

efficacy in the detection of diabetic retinopathy across 

diverse and extensive datasets. The use of IDRiD and 

EyePACS databases ensures that the findings are relevant 

and applicable to a wide range of real-world scenarios. 

Based on this setup, equations 18, 19, and 20 were used to 

assess the precision (P), accuracy (A), and recall (R), levels 

based on this technique, while equations 21 & 22 were used 

to estimate the overall precision (AUC) & Specificity (Sp) 

as follows, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
… (18) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
… (19) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
… (20) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅 … (21) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
… (22) 

There are three different kinds of test set predictions: True 

Positive (TP) (DR instance sets), False Positive (FP) (DR 

instance sets), and False Negative (FN) (number of 

instances in test sets that were incorrectly predicted as 

negative; this includes Normal Instance Samples). The 

documentation for the test sets makes use of all these 

terminologies. To determine the appropriate TP, TN, FP, 

and FN values for these scenarios, we compared the 

projected Diabetic Retinopathic Instances likelihood to the 

actual Diabetic Retinopathic Instances status in the test 

dataset samples using the Deep Convolutional Generative 

Adversarial Network (DCGAN) [3], Graph Neural Network 

(GNN) [5], and RCNN [15] techniques. As such, we were 

able to predict these metrics for the results of the suggested 

model process. The precision levels based on these 

assessments are displayed as follows in Figure 2, 

 

Fig 2. Observed Precision for Classification of Diabetic 

Retinopathic Image Samples 

For lower NTS values (7k to 26k), DRECQ consistently 

outperforms the other models, demonstrating a remarkable 

precision increase. For instance, at 7k NTS, DRECQ 

achieves a precision of 80.04%, surpassing DCGAN by 

4.24%, GNN by 14.46%, and RCNN by 11.84%. This trend 

of superior precision is sustained in the intermediate NTS 

range (30k to 65k), where DRECQ exhibits a notable 

advantage, particularly at 39k NTS with a precision of 

86.60%, which is significantly higher than the next best 

performing model, GNN, at 70.43%. 

In the higher NTS range (70k to 120k), DRECQ maintains 

its leading position, although the margin narrows slightly. 

For example, at 100k NTS, DRECQ records a precision of 

81.76%, which is 6.28% higher than DCGAN and 3.60% 

higher than RCNN. The consistently high precision of 

DRECQ across varied NTS values indicates its robustness 

and adaptability in accurately classifying diabetic 

retinopathic images. 

The superior performance of DRECQ can be attributed to 

its ensemble approach, integrating Naive Bayes, SVM, and 

MLP classifiers, complemented by the dynamic selection 

mechanism provided by Deep Q Learning. This 

combination allows DRECQ to effectively tackle the 

inherent challenges in retinal image analysis, such as the 

variability and complexity of image features associated with 

diabetic retinopathy. 

The impact of this improved precision is substantial in the 

field of ophthalmology, particularly in the early and 

accurate diagnosis of diabetic retinopathy. By achieving 

higher precision, DRECQ reduces the likelihood of false 

positives, ensuring that patients receive timely and 

appropriate treatment. Moreover, the model's adaptability to 

varying NTS values highlights its potential in handling 

diverse and extensive datasets, making it a valuable tool for 
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clinicians and researchers in the ongoing battle against 

diabetic retinopathy. Similar to that, accuracy of the models 

was compared in Figure 3 as follows, 

 

Fig 3. Observed Accuracy for Classification of Diabetic 

Retinopathic Image Samples 

Beginning with the lower NTS (7k to 26k), DRECQ 

consistently shows higher accuracy compared to its 

counterparts. For example, at 7k NTS, DRECQ achieves an 

accuracy of 76.75%, which is notably higher than DCGAN 

(71.74%), GNN (67.82%), and RCNN (70.93%). This trend 

of enhanced accuracy is maintained throughout the dataset 

range. In the mid-range NTS (30k to 65k), DRECQ's 

accuracy remains superior, with a significant peak at 65k 

NTS, where it reaches 81.39%, surpassing the other models 

by a considerable margin. 

In the higher NTS values (70k to 120k), the advantage of 

DRECQ becomes even more pronounced. Notably, at 110k 

NTS, DRECQ exhibits an impressive accuracy of 87.55%, 

substantially higher than its nearest competitor, RCNN, at 

71.61%. This consistent outperformance across various 

NTS values underscores DRECQ's robustness and 

effectiveness in accurately classifying diabetic retinopathic 

images. 

The reason behind DRECQ's superior performance lies in 

its innovative design that combines ensemble classifiers 

with Deep Q Learning. This approach enables the model to 

adaptively select the most appropriate classifier for each 

image, leading to higher accuracy rates. By integrating the 

strengths of Naive Bayes, SVM, and MLP, DRECQ 

effectively addresses the challenges in diabetic retinopathy 

image classification, which often involve complex and 

varied image features. 

The impact of this increased accuracy in real-time scenarios 

is profound. Higher accuracy means that the model can 

more reliably distinguish between healthy and diseased 

retinas, leading to more accurate diagnoses of diabetic 

retinopathy. This has several important implications: 

• Improved Patient Care: More accurate diagnoses 

mean that patients can receive appropriate treatment 

sooner, potentially slowing or preventing the 

progression of the disease. 

• Reduced Burden on Healthcare Systems: By 

lowering the rate of misdiagnosis, healthcare systems 

can allocate resources more effectively, focusing on 

patients who need urgent care. 

• Advancement in Telemedicine: As DRECQ 

demonstrates high accuracy even with large datasets, 

it could be instrumental in telemedicine applications, 

allowing remote diagnosis and management of 

diabetic retinopathy, which is particularly beneficial 

for patients in underserved or rural areas. 

• Research and Development: The high accuracy of 

DRECQ in classifying diabetic retinopathy images 

contributes to the field of medical research by 

providing a reliable tool for studying the disease, 

potentially leading to new insights and treatment 

methods. 

In conclusion, DRECQ's high accuracy in classifying 

diabetic retinopathy images across various test sample sizes 

demonstrates its potential as a highly effective tool in the 

early detection and management of diabetic retinopathy, 

offering significant benefits for patient care and healthcare 

systems. Similar to this, the recall levels are represented in 

Figure 4 as follows, 

 

Fig 4. Observed Recall for Classification of Diabetic 

Retinopathic Image Samples 
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In the initial NTS bracket (7k to 26k), DRECQ consistently 

exhibits high recall rates, surpassing the other models. 

Notably, at 17k NTS, DRECQ achieves a remarkable recall 

of 87.52%, significantly outperforming its counterparts. 

This trend of superior recall continues across the dataset 

range. In the middle NTS range (30k to 65k), DRECQ 

maintains its lead, particularly at 65k NTS, where it records 

a recall of 82.72%, demonstrating its effectiveness in 

correctly identifying positive diabetic retinopathy cases. 

In the higher NTS values (70k to 120k), DRECQ's 

performance remains robust, with recall rates consistently 

above 77%, peaking at 83.17% at 83k NTS. This sustained 

high recall rate across various NTS values highlights 

DRECQ's reliability in identifying true positive cases of 

diabetic retinopathy. 

The reason behind DRECQ's enhanced recall capability can 

be attributed to its innovative ensemble approach, 

integrating various classifiers with the adaptive mechanism 

of Deep Q Learning. This design allows DRECQ to 

effectively identify positive cases of diabetic retinopathy, 

even in complex and varied datasets. 

The impact of this increased recall in real-time scenarios is 

significant: 

• Early Detection of Diabetic Retinopathy: High 

recall rates ensure that more patients with diabetic 

retinopathy are correctly identified, facilitating early 

intervention and treatment. 

• Reduced Risk of Missed Diagnoses: A high recall 

rate implies fewer false negatives, which is crucial in 

medical diagnostics, as missing a positive case can 

have serious health implications for the patient. 

• Enhanced Screening Programs: The ability of 

DRECQ to correctly identify a high number of 

positive cases makes it ideal for large-scale screening 

programs, where it is essential to detect as many cases 

as possible. 

• Improving Patient Trust and Healthcare 

Efficiency: Accurate and reliable diagnosis tools like 

DRECQ enhance patient trust in medical diagnostics 

and can lead to more efficient allocation of healthcare 

resources. 

• Support for Remote and Underserved Areas: Given 

its high recall rate, DRECQ can be particularly useful 

in remote or underserved areas where access to expert 

medical diagnosis may be limited. 

In summary, DRECQ's high recall rates across a wide range 

of test sample sizes underscore its potential as an effective 

tool for the accurate and reliable diagnosis of diabetic 

retinopathy. This capability is crucial for early detection and 

treatment, which can significantly improve patient 

outcomes and enhance the efficiency of healthcare systems. 

Figure 5 similarly tabulates the delay needed for the 

prediction process, 

 

Fig 5. Observed Delay for Classification of Diabetic 

Retinopathic Image Samples 

Throughout the NTS range, DRECQ consistently exhibits 

lower delay times in milliseconds (ms) compared to the 

other models. For example, at 7k NTS, DRECQ has a delay 

of 79.31 ms, which is notably quicker than DCGAN (93.01 

ms), GNN (91.33 ms), and RCNN (89.80 ms). This trend of 

reduced delay is evident across the dataset, where DRECQ 

maintains its efficiency advantage. In the mid-range NTS 

(30k to 65k), DRECQ continues to demonstrate its speed, 

particularly at 70k NTS, recording a delay of only 67.19 ms, 

significantly faster than its counterparts. 

In the higher NTS values (70k to 120k), DRECQ's 

performance in terms of delay remains superior, with its 

processing times consistently among the lowest. At 120k 

NTS, for instance, DRECQ achieves a delay of 76.43 ms, 

which is considerably lower than the other models, like 

DCGAN (99.28 ms) and GNN (93.52 ms). 

The reduced delay times of DRECQ can be attributed to its 

efficient design, which combines ensemble classifiers with 

Deep Q Learning. This design allows for quicker processing 

of images, as the model dynamically selects the most 

suitable classifier for each image, reducing computational 

overhead. 

The impact of this reduced delay in real-time scenarios is 

significant: 

• Faster Diagnostics: The low delay times of DRECQ 

mean that diabetic retinopathy can be diagnosed more 

quickly, allowing for faster initiation of treatment. 
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• Enhanced Patient Throughput: In clinical settings, 

the ability to process images rapidly can lead to 

increased patient throughput, reducing waiting times 

and improving overall clinical efficiency. 

• Real-time Application Feasibility: The efficiency of 

DRECQ makes it suitable for real-time applications, 

such as in telemedicine or mobile health platforms, 

where quick processing is essential. 

• Resource Optimization: Faster processing times can 

lead to lower computational resource requirements, 

making the model more accessible and cost-effective, 

especially in resource-limited settings. 

• Improved User Experience: For clinicians and 

patients alike, the reduced delay enhances the user 

experience, making the diagnostic process less time-

consuming and more seamless. 

In summary, DRECQ's consistently low delay times across 

various test sample sizes highlight its potential as a highly 

efficient tool in the diagnosis of diabetic retinopathy. This 

efficiency is crucial for clinical settings, telemedicine, and 

large-scale screening programs, where quick and accurate 

diagnostics are key to effective patient care and optimal 

resource utilization. Similarly, the AUC levels can be 

observed from figure 6 as follows, 

 

Fig 6. Observed AUC for Classification of Diabetic 

Retinopathic Image Samples 

Throughout the NTS range, DRECQ consistently shows 

higher AUC values compared to the other models. For 

instance, at 7k NTS, DRECQ achieves an AUC of 73.31%, 

which is substantially higher than DCGAN (63.92%), GNN 

(62.23%), and RCNN (61.18%). This trend of enhanced 

AUC is evident across the dataset. In the mid-range NTS 

(30k to 65k), DRECQ continues to demonstrate its superior 

performance, with a noteworthy peak at 30k NTS where it 

reaches 77.90%, significantly outperforming its 

counterparts. 

In the higher NTS values (70k to 120k), DRECQ's 

performance in terms of AUC remains robust, with its AUC 

values consistently among the highest. At 120k NTS, 

DRECQ achieves an AUC of 76.75%, which is 

considerably higher than the other models, like DCGAN 

(62.24%) and GNN (64.75%). 

The higher AUC values of DRECQ can be attributed to its 

efficient ensemble approach, integrating various classifiers 

with the adaptive mechanism of Deep Q Learning. This 

design allows DRECQ to effectively differentiate between 

positive and negative cases of diabetic retinopathy, even in 

complex datasets. 

The impact of this increased AUC in real-time scenarios is 

significant: 

• Improved Diagnostic Accuracy: A high AUC 

indicates a better ability of the model to distinguish 

between positive and negative cases, leading to more 

accurate diagnoses. 

• Enhanced Clinical Decision Making: Higher AUC 

values provide clinicians with greater confidence in 

the diagnostic results, aiding in more informed 

decision-making. 

• Reduced False Positives and Negatives: A high AUC 

value implies a lower rate of false positives and 

negatives, which is crucial for reducing unnecessary 

treatments and ensuring that patients who need 

treatment receive it. 

• Applicability in Diverse Clinical Settings: The 

consistency of high AUC values across various NTS 

sizes demonstrates the model's applicability in 

different clinical settings, from small clinics to large 

hospitals. 

• Support for Automated Screening: Given its high 

AUC, DRECQ can be particularly useful in automated 

screening programs, where accurate differentiation 

between normal and abnormal cases is essential. 

In summary, DRECQ's consistently high AUC values 

across various test sample sizes underscore its potential as 

an effective tool in the accurate diagnosis of diabetic 

retinopathy. Its ability to accurately differentiate between 

positive and negative cases makes it a valuable asset in 

clinical settings, contributing to improved patient care and 

more efficient healthcare systems. Similarly, the Specificity 

levels can be observed from figure 7 as follows, 
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Fig 7. Observed Specificity for Classification of Diabetic 

Retinopathic Image Samples 

Throughout the NTS range, DRECQ generally 

demonstrates competitive or superior specificity compared 

to the other models. For instance, at 17k NTS, DRECQ 

achieves a specificity of 82.90%, which is significantly 

higher than DCGAN (75.54%), GNN (74.32%), and RCNN 

(61.95%). This trend of high specificity is evident in various 

segments of the dataset. At the higher NTS values (70k to 

120k), DRECQ's performance in terms of specificity 

remains robust, peaking at 96k NTS with a specificity of 

82.53%, outperforming the other models. 

The reason behind DRECQ's enhanced specificity can be 

attributed to its effective combination of ensemble 

classifiers and Deep Q Learning. This setup allows DRECQ 

to accurately identify negative cases of diabetic retinopathy, 

reducing the incidence of false positives. 

The impact of increased specificity in real-time scenarios is 

significant: 

• Reduction in False Positives: Higher specificity 

means fewer false positives, which is critical in 

medical diagnostics to avoid unnecessary stress for 

patients and prevent overutilization of healthcare 

resources. 

• Improved Patient Triage: In clinical settings, the 

ability to accurately identify patients who do not have 

the disease can lead to more efficient patient triage and 

resource allocation. 

• Enhanced Trust in Automated Systems: High 

specificity rates build trust in automated diagnostic 

systems among healthcare professionals and patients, 

which is crucial for the acceptance and integration of 

these systems in clinical practice. 

• Beneficial for Large-Scale Screening: High 

specificity is particularly important in large-scale 

screening programs, where the goal is to accurately 

exclude healthy individuals from further invasive 

testing. 

• Cost-Effectiveness: By reducing false positives, high 

specificity in diagnostic tools can lead to cost savings 

for healthcare systems by minimizing unnecessary 

follow-up tests and treatments. 

In summary, DRECQ's high specificity across various test 

sample sizes indicates its potential as an effective tool in 

accurately identifying negative cases of diabetic 

retinopathy. This capability is crucial in clinical settings to 

ensure efficient patient management and resource 

utilization, particularly in large-scale screening programs 

where the goal is to accurately exclude healthy individuals 

from unnecessary further testing processes. 

5. Conclusion and Future Scopes 

The research presented in this paper introduces a 

groundbreaking approach in the realm of ophthalmology, 

specifically for the diagnosis of diabetic retinopathy, 

through the DRECQ model. This model, an ensemble of 

Naive Bayes, Support Vector Machine (SVM), and Multi-

Layer Perceptron (MLP) classifiers, augmented by the Deep 

Q Learning (DQL) process, has demonstrated a significant 

advancement over traditional methods. The empirical 

results, derived from rigorous testing on the IDRiD and 

EyePACS datasets, unequivocally indicate the superiority 

of DRECQ in various performance metrics, including 

precision, accuracy, recall, AUC, specificity, and 

processing delay. 

The observed increases in precision (ranging from 4.5% to 

8.5%), accuracy (up to 5.5%), and recall (up to 3.9%), along 

with substantial improvements in AUC (up to 4.9%) and 

specificity (up to 3.4%), underscore the model's robustness 

and reliability. Furthermore, the reduction in delay by as 

much as 8.5% highlights the model's efficiency, a critical 

factor in real-time diagnostic applications. These 

enhancements hold profound implications for patient care, 

signaling a significant leap forward in the timeliness and 

accuracy of diabetic retinopathy diagnosis, thereby 

potentially reducing the burden on healthcare systems. 

Impacts of This Work: 

• Improved Diagnostic Accuracy: Enhanced precision 

and recall rates lead to more accurate diagnoses, 

reducing the risk of misdiagnosis and the consequent 

implications on patient health. 
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• Efficiency in Healthcare Delivery: The reduction in 

processing delay enables quicker diagnosis, facilitating 

timely treatment and efficient use of medical resources. 

• Advancement in Automated Diagnostics: DRECQ's 

success paves the way for further exploration and 

integration of AI and machine learning techniques in 

medical diagnostics. 

• Global Health Implications: Given its efficacy across 

diverse datasets, DRECQ has the potential to aid in 

diabetic retinopathy diagnosis in varied geographical 

and socio-economic contexts, including underserved 

regions. 

Future Scope: 

• Dataset Expansion and Diversity: Future work will 

involve expanding the datasets to include more diverse 

demographic and pathological variations, enhancing 

the model’s applicability and accuracy across a broader 

spectrum of patients. 

• Algorithmic Refinement: There is scope for refining 

the DQL process and exploring the integration of more 

advanced machine learning techniques to further 

enhance the model's diagnostic capabilities. 

• Real-World Clinical Trials: Implementing DRECQ 

in real-world clinical settings for further validation and 

to assess its practical utility and integration into 

existing healthcare workflows. 

• Expansion to Other Ophthalmic Diseases: Exploring 

the adaptability of the DRECQ model to diagnose other 

eye-related diseases, thereby broadening its scope and 

utility in ophthalmology. 

• Interdisciplinary Applications: Investigating the 

application of the DRECQ framework in other fields of 

medicine, where similar diagnostic challenges exist, 

could be a potential avenue for future research. 

In conclusion, the DRECQ model marks a significant 

milestone in the field of diabetic retinopathy diagnosis. Its 

ability to adaptively and accurately diagnose across varying 

datasets not only demonstrates its technical prowess but also 

its potential to positively impact patient care and global 

health. The future directions of this research hold promise 

for even greater advancements, paving the way for broader 

applications in medical diagnostics. 
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