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Abstract: In addressing the critical need for advanced diagnostic tools in the realm of ophthalmology, particularly for the detection of
diabetic retinopathy, this paper introduces a novel, ensemble-based approach, fusing the strengths of three distinct classifiers: Naive
Bayes, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). Traditional methods in retinal image analysis often fall
short due to their static nature and inability to adapt to the unique complexities presented by individual images. This limitation manifests
in less precise and accurate diagnostic outcomes, underscoring the urgent need for more dynamic and responsive techniques. The
proposed model marks a significant departure from conventional approaches. By employing an ensemble method, it leverages the unique
strengths of each classifier: the probabilistic analysis of Naive Bayes, the non-linear pattern recognition capability of SVM, and the
intricate feature extraction proficiency of MLP process. The integration of these methods addresses the inherent limitations of using a
singular approach, ensuring a more comprehensive analysis of retinal images & samples. Central to this innovation is the application of
Deep Q Learning (DQL) for dynamic classifier selection. This reinforcement learning technique optimizes the ensemble by adaptively
selecting the most suitable classifier for each specific retinal image, based on learned Q Values for different scenarios. This method not
only enhances the accuracy and precision of diagnosis but also ensures continual adaptation and learning, keeping pace with evolving
data patterns and advancements in imaging technology. The efficacy of this model is demonstrated through rigorous testing on the
IDRID & EyePACS Dataset. Results indicate a notable improvement over existing methods, with a 4.5% increase in precision, 5.5% in
accuracy, 3.9% in recall, 4.9% in AUC (Area Under the Curve), 3.4% in specificity, and an 8.5% reduction in delay. These enhancements
have profound implications for the field of ophthalmology. They signify a leap forward in the accuracy and timeliness of diabetic
retinopathy diagnosis, ultimately leading to improved patient outcomes and a reduction in the burden on healthcare systems. This work,
therefore, not only presents a technical advancement but also a significant stride in patient care, paving the way for more effective
management and treatment of retinal diseases.
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1. Introduction consistently identify the nuanced patterns indicative of

The realm of medical diagnostics has continually sought to
harness the advancements in artificial intelligence and
machine learning to enhance the precision and efficiency of
disease detection. Diabetic retinopathy, a prevalent yet
potentially devastating consequence of diabetes, presents a
unique challenge in this domain. The intricate nature of
retinal images necessitates a diagnostic approach that is
both sensitive to the subtleties of these images and robust
enough to handle their complexity. This paper introduces an
innovative model designed to significantly improve the
diagnosis of diabetic retinopathy, a critical step in
preventing vision loss among diabetic patients.

Historically, the field of ophthalmic diagnostics has
predominantly relied on methods that, while effective to a
degree, exhibit limitations in adaptability and precision.
Traditional image analysis techniques, often based on
single-algorithm  frameworks, have  struggled to
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diabetic retinopathy. This inconsistency stems from a lack
of dynamic adaptability to the diverse presentations of
retinal changes. Consequently, there exists a substantial gap
in the diagnostic process, leading to delayed or inaccurate
detection of this condition.

Addressing these challenges, the proposed model represents
a paradigm shift. It employs an ensemble of classifiers, each
selected for its specific strengths in image analysis. The
Naive Bayes classifier brings a probabilistic perspective,
making it adept at handling clear statistical patterns in
retinal images. The Support Vector Machine (SVM), with
its radial basis function (RBF) kernel, excels in identifying
complex, non-linear patterns, a common characteristic of
retinal images in diabetic retinopathy. Complementing
these is the Multi-Layer Perceptron (MLP), a deep learning
approach that excels in extracting hierarchical features from
data, crucial for discerning subtle patterns in retinal images.

At the heart of this model is the innovative use of Deep Q
Learning (DQL), a technique rooted in reinforcement
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learning. DQL dynamically optimizes the ensemble,
selecting the most appropriate classifier for each specific
retinal image. This approach ensures not only high accuracy
but also adaptability to evolving data patterns and
technological advancements. The model's ability to
continuously learn and adjust its strategy is a substantial
leap forward in retinal image analysis.

The introduction of this model represents more than a
technical advancement; it heralds a new era in diabetic
retinopathy diagnostics. By significantly enhancing the
accuracy and timeliness of diagnosis, it opens the door to
earlier interventions, potentially preventing the progression
of this vision-threatening condition. The implications of this
research extend beyond the technical realm, offering hope
for improved patient outcomes and a reduction in the
healthcare burden associated with diabetic retinopathy. This
paper, therefore, presents not only a groundbreaking
technological development but also a meaningful
contribution to patient care in the field of ophthalmology
scenarios.

Motivation & Obijectives:

The motivation behind this research emanates from the
pressing need to advance the diagnostic accuracy in the field
of ophthalmology, particularly for diabetic retinopathy. As
a leading cause of blindness among the diabetic population,
its early and accurate detection is paramount. Current
diagnostic methods, while beneficial, are often hampered by
limitations such as lack of adaptability and precision,
leading to delayed diagnoses and treatment. This gap in the
diagnostic process underscores the urgency for a more
refined and responsive approach, one that can adapt to the
complex and varied nature of retinal images.

This research is driven by the objective to bridge this gap,
employing cutting-edge machine learning techniques to
enhance the diagnostic process. The model introduced in
this paper is a testament to the potential of artificial
intelligence in revolutionizing medical diagnostics. By
integrating an ensemble of classifiers, each with its distinct
capabilities, the model addresses the limitations of
traditional single-algorithm approaches. This ensemble
approach, coupled with the dynamic optimization provided
by Deep Q Learning (DQL), marks a significant leap in the
accuracy and efficiency of diagnosing diabetic retinopathy.

The contributions of this work are manifold. Firstly, it
introduces a novel ensemble-based approach that
synergizes the strengths of Naive Bayes, Support Vector
Machine (SVM), and Multi-Layer Perceptron (MLP)
classifiers. This combination is specifically tailored to
capture the diverse and intricate patterns present in retinal
images, a task that single-algorithm methods often struggle
with. Secondly, the integration of Deep Q Learning (DQL)
for classifier selection is a pioneering step in medical image

analysis. DQL's adaptive and dynamic nature ensures that
the model continuously evolves, improving its diagnostic
accuracy over time.

Moreover, the research extends beyond the technical realm,
contributing significantly to patient care. By enhancing the
accuracy and timeliness of diabetic retinopathy diagnosis, it
facilitates early intervention, potentially preventing
irreversible vision loss. This contribution is not just a
measure of technical proficiency but also a stride towards
improving the quality of life for diabetic patients.

In summary, this research offers a comprehensive and
dynamic solution to a longstanding challenge in
ophthalmology. It stands as a beacon of innovation,
showcasing the immense potential of machine learning in
transforming medical diagnostics and, by extension, patient
care. The model presented here is not merely an academic
exercise; it is a crucial step towards a future where
technology and healthcare converge for the betterment of
patient outcomes.

2. Literature Review

The literature in the field of diabetic retinopathy detection
has witnessed significant advancements, particularly in the
application of various machine learning and deep learning
techniques. These developments have been pivotal in
enhancing the accuracy and efficiency of diagnostic
processes. This section reviews recent contributions and
developments in this field, highlighting the progressive
strides made and the gaps that the current research aims to
fill.

Jagadesh et al. [1] explored the segmentation of retinal
images using the 1IC2T model, integrating it with a unique
Rock Hyrax Swarm-Based Coordination Attention
Mechanism for classifying diabetic retinopathy. This
method, although innovative, highlights the ongoing
challenge of effectively segmenting and classifying
complex retinal images. Similarly, Nazih et al. [2]
employed a Vision Transformer Model for predicting the
severity of diabetic retinopathy in fundus photography-
based retina images. This approach underscores the growing
trend of using transformer models in medical image
analysis.

Further, the work by Naz et al. [3] introduced an ensembled
deep convolutional generative adversarial network to
address the issue of grading imbalanced diabetic
retinopathy recognition. While this approach tackled the
imbalance in datasets, it also pointed to the need for models
that can adapt to various data distributions. Wong et al. [4]
took a different route, utilizing transfer learning with
simultaneous parameter optimization and a feature-
weighted ECOC ensemble for detecting and grading
diabetic retinopathy. This method demonstrates the
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potential of transfer learning in enhancing model
performance with pre-trained networks.

Feng et al. [5] contributed to the field with their grading of
diabetic retinopathy images based on a Graph Neural
Network. This approach highlights the application of graph-
based techniques in capturing the intricate relationships in
retinal images. Siebert et al. [6] delved into the uncertainty
analysis of deep kernel learning methods on diabetic
retinopathy grading, addressing the crucial aspect of
uncertainty in medical diagnoses.

Aurangzeb et al. [7] provided insights into the systematic
development of Al-enabled diagnostic systems for
glaucoma and diabetic retinopathy. Their work emphasizes
the importance of systematic and holistic approaches in
developing Al systems for medical diagnostics. In a similar
vein, Kukkar et al. [8] focused on optimizing deep learning
model parameters using socially implemented IOMT
systems for the classification of diabetic retinopathy,
highlighting the integration of social and technological
aspects in model optimization.

Palaniswamy and Vellingiri [9] investigated the use of the
Internet of Things and deep learning for diabetic retinopathy
diagnosis using retinal fundus images, showcasing the
potential of 10T in healthcare. Liu and Chi [10] introduced
a Cross-Lesion Attention Network for accurate diabetic
retinopathy grading with fundus images, emphasizing the
need for attention mechanisms in handling complex image
features.

Mohan et al. [11] presented the DRFL, a federated learning
approach in diabetic retinopathy grading using fundus
images, which is a step towards decentralized and privacy-
preserving machine learning in healthcare. Ali et al. [12]
developed a hybrid convolutional neural network model for
automatic diabetic retinopathy classification from fundus
images, combining various neural network architectures for
improved performance.

Raiaan et al. [13] offered a lightweight robust deep learning
model that achieved high accuracy in classifying a wide
range of diabetic retinopathy images, addressing the need
for efficient and scalable

models in clinical settings. Hou et al. [14] explored image
quality assessment guided collaborative learning of image
enhancement and classification for diabetic retinopathy
grading. This study highlights the importance of pre-
processing and image quality enhancement in improving
classification outcomes.

Lastly, Nur-A-Alam et al. [15] developed a Faster RCNN-
based diabetic retinopathy detection method using fused
features from retina images & samples. This approach
signifies the evolving landscape of feature extraction
techniques in enhancing model accuracy levels.

Kumar et al. [16] presented a groundbreaking approach in
retinal lesion segmentation using a DL-UNet Enhanced
Auto Encoder-Decoder. Their method signifies a quantum
leap in fundus image analysis, offering a more refined
segmentation capability that is crucial for accurate
diagnosis. Similarly, Zang et al. [17] introduced an
interpretable diabetic retinopathy diagnosis method based
on biomarker activation maps. This approach provides a
more transparent and explainable model for medical
professionals, addressing the often-cited challenge of
interpretability in deep learning models.

Sundar and Sumathy [18] focused on classifying diabetic
retinopathy disease levels by extracting topological features
using Graph Neural Networks. Their work underscores the
potential of graph-based neural networks in capturing
complex patterns in medical images. In a different vein, Liu
etal. [19] developed TMM-Nets, aimed at lupus retinopathy
diagnosis through transferred multi- to mono-modal
generation. This method demonstrates the versatility of
neural networks in handling various types of retinal
diseases.

Zhang et al. [20] explored the realm of image quality
assessment for diabetic retinopathy using their ADD-Net.
The focus on image quality is crucial, as it directly impacts
the accuracy of subsequent diagnostic processes. Radha and
Karuna [21] contributed with their Modified Depthwise
Parallel Attention UNet for retinal vessel segmentation.
This technique highlights the importance of attention
mechanisms in enhancing the precision of segmentation
tasks.

Pereira et al. [22] innovated in the detection of fundus
lesions using the YOLOR-CSP architecture and slicing
aided hyper inference. Their method signifies
advancements in lesion detection, a critical step in the
diagnosis of various retinal conditions. Hussain [23]
introduced a novel approach to exudate detection by
integrating retinal-based affine mapping and design flow
mechanism to develop lightweight architectures. This work
addresses the need for efficient and resource-light models
in medical imaging.

Bar-David et al. [24] investigated the elastic deformation of
Optical Coherence Tomography images of diabetic macular
edema for deep-learning models training. Their study
provides insights into the challenges and limitations of
using synthetic data augmentations in training deep learning
models. Lastly, Yin et al. [25] presented

a Dual-Branch U-Net Architecture for retinal lesions
segmentation on fundus images. This approach, focusing on
dual-branch networks, enhances the segmentation process
by effectively capturing varied lesion types in retinal
images.
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Collectively, these studies represent significant strides in
the field of diabetic retinopathy detection and retinal image
analysis. They exhibit a trend towards more sophisticated,
accurate, and interpretable models, leveraging advanced
neural network architectures and techniques. From
enhancing segmentation capabilities and image quality
assessments to integrating novel neural network
architectures and addressing interpretability, these
contributions have laid a solid foundation for future
innovations for different use cases.

The current research builds upon these advancements,
aiming to further refine the process of diabetic retinopathy
diagnosis. By integrating an ensemble approach with Deep
Q Learning, this study not only benefits from the strengths
of various classifiers but also introduces a level of
adaptability and precision previously unattained in single-
model approaches. The work presented here is not just a
continuation of existing research but a significant
contribution to the field, introducing a model that is
expected to set a new benchmark in diabetic retinopathy
detection and retinal image analysis.

3. Proposed Design of an Efficient Model for
Enhanced Diabetic Retinopathy Diagnosis
Using Ensemble Classifiers and Deep Q
Learning Process

Based on the review of existing models used for
identification of Diabetic Retinopathic Images, it can be
observed that most of these models either have high
complexity, or have low efficiency when deployed in real-
time scenarios. To overcome these issues, this section
discusses design of an efficient model for diabetic
retinopathy diagnosis. As per figure 1.1, the integration of
Naive Bayes, Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP), and Deep Q Learning (DQL) play
pivotal roles. Naive Bayes, with its probabilistic foundation,
excels in making predictions based on the likelihood of
different outcomes, offering a fast and effective means of
initial assessment for real-time scenarios. This is
complemented by the SVM's robust capability in pattern
recognition, especially in high-dimensional spaces, where it
constructs hyperplanes in a multidimensional space to
distinctly classify data points. Concurrently, the MLP, a
form of neural network, delves deeper into the data,
extracting intricate and non-linear features through its
multiple layers, each consisting of neurons with activation
functions, thereby capturing complex patterns that simpler
models might miss. The crux of this model, however, is the
DQL block, which acts as a dynamic decision-maker. By
continuously learning and adapting through reinforcement
learning, DQL evaluates the outputs from Naive Bayes,
SVM, and MLP, assigning Q Values as a measure of their
effectiveness in varying scenarios.

Retinal Image Input Training Dataset Testing Dataset

Data Preprocessing

Preprocessed Image

Feature Extraction

Feature Vector

—

.

Support Vector Machine

Multi-Layer Perceptron

\ ! /

| SVM Output ‘ MLP Output

I

‘ Dynamic Classifier Selection

’ Naive Bayes Classifier

Naive Bayes Output

Deep Q Learning

Ensemble Integration

Final Diagnosis Decision

}

Performance Evaluation

Model Update

Fig 1.1. Model Architecture for the Proposed Diabetic
Retinopathy Analysis

It then selects the most suitable classifier or a combination
thereof for each specific case, ensuring optimized
diagnostic accuracy. This ensemble approach, underpinned
by DQL's adaptability, enables the model to tackle the
multifaceted nature of retinal images in diabetic
retinopathy, ensuring a level of diagnostic precision and
reliability that is a substantial leap from traditional single-
method approaches. The seamless interplay of these diverse
yet complementary techniques exemplifies an advanced
stride in machine learning, harmonizing different
methodologies to enhance medical diagnostic capabilities.

Before applying these classifiers, the proposed model uses
an efficien thresholding engine, which is a critical
component in the analysis of retinal images for the detection
of diabetic retinopathy. This engine operates on a series of
intricate steps, transforming input images into a detailed
segmentation of exudates, vessels, retina, and nerves. This
engine begins its operation upon receiving collected input
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images, which are typically in a high-resolution format,
encapsulating visual information crucial for accurate
diagnosis.

The first operation involves pre-processing the input images
to enhance their quality and prepare them for subsequent
analysis. This pre-processing includes noise reduction and
contrast enhancement. Noise reduction is achieved through
a Gaussian filter, represented via equation 1,

G(x,y) = ( )e_xzzz e (D

2mo?

Where, ¢ is the standard deviation of the Gaussian
distribution. Following pre-processing, the engine employs
a series of thresholding techniques to isolate distinct
features within the retinal images, namely exudates, vessels,
retina, and nerves. The thresholding process for exudates
detection involves identifying the bright lesions
characteristic of exudates. This is often achieved using
Otsu's method, which computes a threshold value (t) by
minimizing the intraclass variance via equation 2,

o?(t) = wl(t)o?(1,t) + wi(t)o?(2,t)...(2)

where ®!, »? are the probabilities of the two classes
separated by the threshold t, and o> are variances of these
two classes. For vessel extraction, the engine applies a
combination of edge detection and morphological
operations. Edge detection might involve the Sobel
operator, which uses the gradients Gx and Gy which are
fused via equation 3,

G = ’(ze + Gy*)..(3)

This assists in identifying regions with high spatial
frequency corresponding to vessel edges. Morphological
operations including dilation and erosion are further applied
to refine the wvessel structures, employing structuring
elements whose shapes are tailored to the expected
morphology of retinal vessels.

Retina segmentation is achieved through methods that
identify the circular outline of the optic discs. This involve
the Hough Transform, a technique for detecting shapes,
represented via equation 4,

(x—a)+ @y —-hb2=1r2..4)

Where, (a, b) and r are the circle's center and radius,
respectively. The transform detects circles in the image by
a voting procedure in the Hough parameter space. Nerve
fiber layer segmentation, a more challenging task due to the
subtle nature of these features, and employs Gabor filters.
These filters are used to enhance the visibility of nerve
fibers and are represented via equation 5,

G(x,y; 4,6,¢,0,7)

x'?+ y2y'? 2rx’
= exp|— 52 cos

+ w) - (5)

Where, x' = xcosf + ysin8, y = —xsinf +
y cos 8, and A, 0, y, o, y are parameters of the Gabor filter
defining wavelength, orientation, phase offset, standard
deviation, and spatial aspect ratio, respectively.

The output of these sequential thresholding and

segmentation processes is a set of images where exudates,
vessels, retina, and nerves are distinctly isolated and
highlighted. These segmented components are crucial for
further analysis in the diagnosis of diabetic retinopathy,
providing detailed insights into the pathological changes
within the retina, which can be observed from figure 1.2 as
follows,

Fig 1.2. Segmentation Results for different Fundus Image
Sets

Upon receiving the segmented retinal features, the
convolutional engine initiates its primary convolution
process. In this process, each input image is convolved with
a set of learnable filters or kernels, designed to extract
specific features. The convolution operation for each filter
k is mathematically represented via equation 6,

Fk(i,j) = ¥XI({+m,j +n)* Kk(m,n) ...(6)

Where, Fk is the feature map obtained by applying the k-th
filter, 1 is the input image, and Kk is the k-th kernel. This
operation traverses the entire image, producing a feature
map that highlights particular attributes including edges,
textures, or patterns corresponding to the retinal structures.

Subsequent to convolution, the engine applies nonlinear
activation using Rectified Linear Unit (ReLU), to introduce
nonlinearity into the model, allowing it to capture complex
patterns. The ReLU function is defined via equation 7,

R(x) = max(0,x) ...(7)

Where, X is the input to the neurons. This function retains
only positive values, passing them forward while discarding
negative values, thereby simplifying the computational
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complexity. The next operation involves max pooling, to
reduce the spatial dimensions of the feature maps, thus
decreasing the number of parameters and computational
load. Max pooling operates on each feature map separately,
and for each sub-region r, it is defined via equatui 8,

P(r) = max([(r)) ..(8)

Where, I(r) is the input in region r sets. This process not only
reduces data size but also aids in making the representation
more robust to variations in the position of features.

The convolutional engine may consist of multiple layers of

convolution, ReLU, and pooling, each extracting
increasingly abstract and complex features. In deeper
layers, the convolutions might capture high-level

representations like the network of vessels or the nuanced
distribution of exudates.

After passing through these layers, the extracted features are
flattened to form a one-dimensional vector, suitable for
classification process. The flattening operation transforms a
2D feature map F of size MxN into a one-dimensional
vector V of size 1x(M*N), ensuring the compatibility of
these features with subsequent fully connected layers.

The engine then employs multiple fully connected layers,
where each neuron is connected to all the elements in the
previous layer. These layers perform high-level reasoning
based on the extracted features. The operation in a fully
connected layer is described via equation 9,

Y =W=X + B..(9)

Where, X is the input vector, W represents the weight
matrix, B is the bias vector, and Y is the output vector from
this process. This output vector is given to an efficient
classification engine of the model, whch is a complex
system designed to categorize retinal image samples into
distinct classes indicative of various stages of diabetic
retinopathy. This engine employs an ensemble of three
distinct classifiers: Naive Bayes, Support Vector Machine
(SVM), and Multi-Layer Perceptron (MLP), each playing a
crucial role in the classification process by leveraging the
extracted convolutional features.

The Naive Bayes classifier, the first component of this
ensemble, operates on the principle of probabilistic
inference sets. It assumes that the features are independent
of each other given the class label, an assumption known as
conditional independence levels. The classifier calculates
the posterior probability of each class given the feature
vector, using Bayes' theorem via equation 10,
P(Ck)
P(Ck|x) = P(x| Ck)m... (10)

Where, P(Ck | x) is the posterior probability of class Ck
given feature vector x, P(x | Ck) is the likelihood, P(CK) is
the class prior probability, and P(x) is the evidence for these

classes. For each class, it computes the product of the
individual feature probabilities, and the class with the
highest posterior probability is selected as the outputs.

The SVM classifier, another key element of the ensemble,
is particularly adept at handling high-dimensional data
samples. It functions by finding the optimal hyperplane that
separates the classes in the feature space sets. This
hyperplane is determined by solving the optimization task
represented via equation 11,

1
min (E) ||w||25ubject toyi(w - xi + b)
> 1,Vi..(11)

Where, w is the weight vector, b is the bias, and yi are the
class labels. The solution to this task involves Lagrangian
multipliers, leading to a dual task which is solved to find the
optimal margin hyperplanes. In cases of non-linear
separability, SVM employs Radial Basis Function (RBF),
which is evaluated via equation 12,

o . 112
K(xi,xj) = exp (—y [Ixi — xjl| ) (12)
Where, y is a parameter controlling the kernel's width sets.

After this, MLP is applied, which is a type of neural network
designed to capture complex, non-linear relationships in the
data samples. It consists of multiple layers of neurons, each
layer fully connected to the next one for different class
types. The operation of each neuron is described via
equation 13,

f(x) = gGwixi + b)...(13)

Where, f(X) is the neuron's output, xi are the inputs, wi are
the weights, b is the bias, and g is a non-linear sigmoid
which is represented via equation 14,

1
O'(X) = m (14)

The MLP learns to classify the input by adjusting its weights
and biases through backpropagation, a process involving the
calculation of the gradient of a loss function with respect to
the weights and biases and adjusting them in the direction
that minimizes the loss. Upon receiving the convolutional
features, each classifier in the ensemble processes them
independently which assists in ensembling operations. The
Naive Bayes classifier rapidly computes the posterior
probabilities, the SVM delineates the feature space with its
optimal hyperplane, and the MLP, through its layers,
progressively refines its classification decisions. The
outputs of these classifiers, although individually
significant, are further processed in a subsequent stage for
final decision-making process.

The output from this ensemble classification engine is a
comprehensive assessment of the diabetic retinopathy
stages, based on the intricate patterns and characteristics
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identified in the retinal images & its samples. The
combination of Naive Bayes, SVM, and MLP allows the
model to harness both probabilistic reasoning, linear and
non-linear pattern recognition capabilities, ensuring a
nuanced and accurate classification of the disease stages.

After this, the application of Deep Q Learning (DQL) model
represents a sophisticated and innovative approach to
optimizing the ensemble classifier system for diabetic
retinopathy diagnosis. Central to DQL is the concept of
reinforcement learning, where the algorithm learns to make
decisions by interacting with an environment for optimizing
classification outputs. In this model, the environment is the
process of classifying retinal images, and the goal is to
select the most suitable classifier — Naive Bayes, SVM, or
MLP — for each specific image to maximize diagnostic
accuracy levels.

The core operation of DQL involves learning a value
function, specifically the Q-function, which estimates the
value of taking a certain action (selecting a classifier) in a
given state (features of a retinal image) for different class
types. This Q-function is represented as Q(s, a), where s is
a state, and a is an action for this process. The aim is to learn
a policy m that maximizes the expected reward over time,
which is defined as the sum of discounted future rewards
via equation 15,

(o0}

Rt = Zykr(t +1)...(15)
k=1

Where, r is the reward, and vy is the discount factor (0 <y <
1), which determines the importance of future rewards.
DQL employs a neural network, known as the Q Nnetwork,
to approximate the Q-function for different operations. The
inputs to this network are the states (features of the retinal
image), and the outputs are the Q Values for each possible
action (classifier choice) sets. The Q-network is trained by
minimizing the loss function which is represented via
equation 16,

L(O)=E [(r + ymaxa’ Q(s’,a’; 6")
- (s, 0))°] . (16)

Where, 0 are the weights of the network, r is the reward
received after taking action a in state s, s’ is the subsequent
state, and a’ is the subsequent action in the process. The
training process involves updating the Q Values based on
the reward received and the maximum Q Value of the next
state, a method known as Temporal Difference (TD)
learning process. The Q-network is updated using the
gradient of the loss function, VOL(0), which is computed
through backpropagation process. This update rule is
represented via equation 17,

0 « 0+ avoL®)..(17)

Where, o represents learning rate for this process. In
practice, DQL utilizes experience replay to break the
correlation between consecutive learning updates. The
algorithm stores the agent's experiences (s, a, 1, s’) in a
replay memory and stochastically samples mini-batches
from this memory to update the Q-network. This stochastic
sampling increases the efficiency and stability of the
learning process.

Another key element of DQL is the exploration-exploitation
trade-off, typically managed by an e-greedy strategy
process. The algorithm chooses actions either stochastically
(exploration) with probability € or according to the highest
Q Value (exploitation) with probability 1-¢ to enhance its
efficiency levels. Over temporal instances, ¢ is decayed to
encourage more exploitation of the learned policies.

The output of the DQL process in this model is the
optimized selection of classifiers for each retinal image. By
adaptively choosing the most suitable classifier based on the
learned Q Values, the model can effectively handle the
variability and complexity inherent in diabetic retinopathy
diagnosis. This dynamic classifier selection mechanism
ensures that the model not only achieves high accuracy in
its current state but also continually adapts and improves as
it encounters new data samples.

In essence, the integration of Deep Q Learning into the
model's architecture underscores a sophisticated application
of reinforcement learning in medical image classification.
Through its intricate design and complex learning
mechanisms, DQL significantly enhances the model's
capability to make intelligent, adaptive decisions, thereby
optimizing the diagnostic process for diabetic retinopathy
sets. An example use case of this model is discussed in the
next section of this text, followed by an in-depth analysis &
comparison of the proposed model under real-time
scenarios.

Example Use Case

To illustrate the complex diagnostic process for diabetic
retinopathy, a example with sample data samples is
presented in this section of this text. The following
processes are applied to these data samples: Thresholding
Engine, Convolutional Process, Ensemble Engine, and
Deep Q Learning (DQL) process.

Pre-writeup Note: The data samples used in this
illustration include various retinal images for diabetic
retinopathy diagnosis. These images undergo a series of
processing steps, starting with thresholding, followed by
feature extraction through convolutional processing. The
ensemble engine combines the results of multiple
classifiers, and finally, DQL optimizes the classifier
selection process.

Table 1: Pre-Thresholding Engine Data Samples
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Data Sample | Exudates | Vessels | Retina | Nerves numerically and are essential for subsequent classification
ID tasks. The table presents a subset of the extracted features
for each data sample, with each feature assigned a numerical

1 128 255 40 70

value.

2 70 200 30 60 Table 4: Ensemble Engine Classification Results

3 150 220 3% 80 Data Classifie | Classifie | Classifie | Ensembl

4 90 180 25 50 Sampl |r 1ir 2|r 3 | e Result

elD (Naive (SVM) (MLP)

5 110 210 45 75

Bayes)
Before applying t.he thre.sholc.jlng englne, a _set of data 1 0.86 0.92 0.88 Diabetic
samples representing retinal images is provided. These
samples contain values for different features, including 2 0.74 0.81 0.76 Non-
exudates, vessels, retina, and nerves. These features are Diabetic
crucial for diabetic retinopathy diagnosis. 3 0.90 0.93 089 Diabetic
Table 2: Post-Thresholding Engine Results 2 072 079 075 Nom-

Data Exudate | Vessels Retina Nerves Diabetic

Sampl | s Extracte | Extracte | Extracte 5 0.85 0.91 087 Diabetic

elD Extracte | d d d

d The ensemble engine combines the classification results

1 1 1 1 1 from three distinct classifiers: Naive Bayes, Support Vector

Machine (SVM), and Multi-Layer Perceptron (MLP). Each

2 0 1 0 1 classifier assigns a probability score to each data sample,

indicating the likelihood of diabetic retinopathy. The

3 1 1 1 1 . .

ensemble result is determined based on a consensus of these

4 0 1 0 1 scores, leading to a final classification decision.

5 1 1 1 1 Table 5: Deep Q Learning (DQL) Classifier Selection
After applying the thresholding engine, the data samples are Data Q Values | Q Q Selected
processed to extract relevant features, including exudates, Sample | (Naive Values | Values | Classifier
vessels, retina, and nerves. The values in the table represent ID Bayes) (SVM) | (MLP)

\évrlether a Ipar?rc]_ular feature |§ detetcted_(l) Iq;_nott r(]O) dlntea}ch 1 [0.75, [0.88, [0.62, SUM

aba sampte. is p_reprocessmg step simplifies the data for 0.62,0.69] | 0.74, 0.79,
subsequent processing. 0.81] 0.76]

Table 3: Convolutional Process Feature Extraction > 071, [0.79, [0.75, Naive
Data Featur | Featur | Featur | .. | Featur 0.58,0.66] | 0.72, 0.70, Bayes
Sampl |el e?2 e3 . | eN 0.78] 0.73]
elb 3 [0.86, [0.91, | [0.88, |SVM
1 0.84 0.62 0.75 . 1091 0.72,0.80] | 0.84, 0.83,

0.88] 0.87]
2 0.72 0.58 0.69 .. 1085 4 [0.69, [0.77, [0.74, Naive
0.57, 0.65] | 0.70, 0.68, Bayes

3 0.91 0.67 0.79 .. 1093 0.75] 0.72]

5 [0.82, [0.89, [0.86, SVM
0.68, 0.75] | 0.82, 0.80,

4 0.65 0.54 0.61 . 1077 0.87] 0.84]

Deep Q Learning (DQL) plays a crucial role in selecting the

S 0.78 0.60 0.72 - | 089 most suitable classifier (Naive Bayes, SVM, or MLP) for

each data sample. The Q Values represent the learned

The convolutional process extracts a set of features from the
preprocessed data samples. These features are represented

estimates of the expected future rewards for choosing each
classifier in a given state (data sample). Based on these Q
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Values, DQL dynamically selects the classifier that is
expected to provide the most accurate diagnosis for each
retinal image.

These tables and the accompanying descriptions
demonstrate the intricate and dynamic nature of the diabetic
retinopathy diagnostic process, showcasing how data
samples are transformed and classified through a series of
sophisticated steps to achieve accurate results.

4. Result Analysis & Comparisons

In this pioneering study, the researchers have ingeniously
crafted a unique model that integrates the distinct
capabilities of three classifiers: Naive Bayes, Support
Vector Machine (SVM), and Multi-Layer Perceptron
(MLP), to tackle the challenges in diabetic retinopathy
detection. This ensemble approach marks a significant
evolution from traditional methods, which often falter due
to their static nature and limited adaptability to the intricate
variances in retinal images. Naive Bayes brings its
probabilistic analytical strength, SVM contributes its
proficiency in non-linear pattern recognition, and MLP adds
its intricate feature extraction capabilities. This
amalgamation leads to a more nuanced and comprehensive
analysis of retinal images, transcending the constraints of
singular methodologies. The model's core innovation lies in
the incorporation of Deep Q Learning (DQL), a
sophisticated reinforcement learning technique. DQL
dynamically optimizes the ensemble by intelligently
selecting the most appropriate classifier for each specific
retinal image. This selection is based on learned Q Values,
which are essentially decision-making metrics tailored to
different scenarios. By doing so, the model adapts in real-
time to the unigque complexities of each image, significantly
enhancing the precision and accuracy of diabetic
retinopathy diagnosis. This approach exemplifies a
remarkable stride in machine learning application,
harnessing the power of ensemble learning and adaptive
algorithms to revolutionize retinal image analysis in
ophthalmology sets.

In the experimental setup section of the paper, which
focuses on the design of an efficient model for enhanced
diabetic retinopathy diagnosis using ensemble classifiers
and Deep Q Learning, a detailed and comprehensive
approach was employed. The experiment was meticulously
structured to assess the efficacy of the proposed DRECQ
model in comparison with existing models such as
DCGAN, GNN, and RCNN. The evaluation was conducted
using two prominent diabetic retinopathy databases: IDRiD
and EyePACS.

Data Sources:

e IDRID (Indian Diabetic Retinopathy Image
Dataset): This dataset comprises high-resolution

retinal images, characterized by varied manifestations
of diabetic retinopathy. The images in IDRID are
annotated for typical diabetic retinopathy lesions and
are used to facilitate algorithmic development in
automated disease diagnosis.

e EyePACS: A widely used database in diabetic
retinopathy research, EyePACS consists of a large
collection of retinal images sourced from diverse
populations and imaging environments. It is
instrumental in evaluating the generalizability and
robustness of diagnostic models across different
demographics and equipment.

Experimental Parameters:

o Number of Test Samples (NTS): The experiment
was conducted over a range of test samples, from
7,000 to 120,000 images, to assess model
performance in both small and large datasets.

e Ensemble Classifiers: The DRECQ model
integrated three classifiers — Naive Bayes, SVM,
and MLP — each with specific parameter settings:

o Naive Bayes: Default parameterization.

e SVM: Kernel type - Radial Basis
Function (RBF); Gamma - 'scale’; C - 1.0.

e MLP: Hidden layers - (100,); Activation
function - 'ReLU"; Solver - 'adam’.

e Deep Q Learning (DQL): Employed for dynamic
classifier selection with the following settings:

e Discount factor (y) - 0.95;
e Learning rate (o) - 0.001,;
e  Exploration rate (g) - 0.1.

e Training Split: The datasets were split into 80%
for training and 20% for testing purposes.

Evaluation Metrics: The performance of the models was
evaluated using several metrics, including Precision,
Accuracy, Recall, AUC (Area Under the Curve),
Specificity, and Delay (in milliseconds).

Computational Environment:

e The experiments were run on a system equipped
with an Intel Core i7 processor, 16GB RAM, and
an NVIDIA GTX 1080 Ti GPU.

o Software framework: Python 3.7, with libraries
such as TensorFlow, Keras, and Scikit-learn.

Procedure:
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e Data Preprocessing: Images were resized to a standard
dimension and normalized to ensure uniformity in the
dataset.

e Model Training: Each classifier within the DRECQ
model was trained on the training set of the IDRID and
EyePACS databases.

e Classifier Integration and Optimization: The DQL
algorithm was implemented to dynamically select the
appropriate classifier for each test sample.

e Performance Evaluation: The models were evaluated
on the test set using the specified metrics, and
comparisons were drawn against the benchmark
models (DCGAN, GNN, RCNN).

This experimental setup ensures a comprehensive
evaluation of the DRECQ model, providing insights into its
efficacy in the detection of diabetic retinopathy across
diverse and extensive datasets. The use of IDRIiD and
EyePACS databases ensures that the findings are relevant
and applicable to a wide range of real-world scenarios.
Based on this setup, equations 18, 19, and 20 were used to
assess the precision (P), accuracy (A), and recall (R), levels
based on this technique, while equations 21 & 22 were used
to estimate the overall precision (AUC) & Specificity (Sp)
as follows,

Precision = . (18)

TP + FP’

TP + TN
TP + TN + FP + FN’

Accuracy = . (19)

Recall = m .

AUC = [ TPR(FPR)dFPR ...(21)

. (20)

Sp .(22)

TN +FP’
There are three different kinds of test set predictions: True
Positive (TP) (DR instance sets), False Positive (FP) (DR
instance sets), and False Negative (FN) (number of
instances in test sets that were incorrectly predicted as
negative; this includes Normal Instance Samples). The
documentation for the test sets makes use of all these
terminologies. To determine the appropriate TP, TN, FP,
and FN values for these scenarios, we compared the
projected Diabetic Retinopathic Instances likelihood to the
actual Diabetic Retinopathic Instances status in the test
dataset samples using the Deep Convolutional Generative
Adversarial Network (DCGAN) [3], Graph Neural Network
(GNN) [5], and RCNN [15] techniques. As such, we were
able to predict these metrics for the results of the suggested
model process. The precision levels based on these
assessments are displayed as follows in Figure 2,
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Fig 2. Observed Precision for Classification of Diabetic
Retinopathic Image Samples

For lower NTS values (7k to 26k), DRECQ consistently
outperforms the other models, demonstrating a remarkable
precision increase. For instance, at 7k NTS, DRECQ
achieves a precision of 80.04%, surpassing DCGAN by
4.24%, GNN by 14.46%, and RCNN by 11.84%. This trend
of superior precision is sustained in the intermediate NTS
range (30k to 65k), where DRECQ exhibits a notable
advantage, particularly at 39k NTS with a precision of
86.60%, which is significantly higher than the next best
performing model, GNN, at 70.43%.

In the higher NTS range (70k to 120k), DRECQ maintains
its leading position, although the margin narrows slightly.
For example, at 100k NTS, DRECQ records a precision of
81.76%, which is 6.28% higher than DCGAN and 3.60%
higher than RCNN. The consistently high precision of
DRECQ across varied NTS values indicates its robustness
and adaptability in accurately classifying diabetic
retinopathic images.

The superior performance of DRECQ can be attributed to
its ensemble approach, integrating Naive Bayes, SVM, and
MLP classifiers, complemented by the dynamic selection
mechanism provided by Deep Q Learning. This
combination allows DRECQ to effectively tackle the
inherent challenges in retinal image analysis, such as the
variability and complexity of image features associated with
diabetic retinopathy.

The impact of this improved precision is substantial in the
field of ophthalmology, particularly in the early and
accurate diagnosis of diabetic retinopathy. By achieving
higher precision, DRECQ reduces the likelihood of false
positives, ensuring that patients receive timely and
appropriate treatment. Moreover, the model's adaptability to
varying NTS values highlights its potential in handling
diverse and extensive datasets, making it a valuable tool for

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(17s), 101-116 | 110



clinicians and researchers in the ongoing battle against
diabetic retinopathy. Similar to that, accuracy of the models
was compared in Figure 3 as follows,
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Fig 3. Observed Accuracy for Classification of Diabetic
Retinopathic Image Samples

Beginning with the lower NTS (7k to 26k), DRECQ
consistently shows higher accuracy compared to its
counterparts. For example, at 7k NTS, DRECQ achieves an
accuracy of 76.75%, which is notably higher than DCGAN
(71.74%), GNN (67.82%), and RCNN (70.93%). This trend
of enhanced accuracy is maintained throughout the dataset
range. In the mid-range NTS (30k to 65k), DRECQ's
accuracy remains superior, with a significant peak at 65k
NTS, where it reaches 81.39%, surpassing the other models
by a considerable margin.

In the higher NTS values (70k to 120k), the advantage of
DRECQ becomes even more pronounced. Notably, at 110k
NTS, DRECQ exhibits an impressive accuracy of 87.55%,
substantially higher than its nearest competitor, RCNN, at
71.61%. This consistent outperformance across various
NTS values underscores DRECQ's robustness and
effectiveness in accurately classifying diabetic retinopathic
images.

The reason behind DRECQ's superior performance lies in
its innovative design that combines ensemble classifiers
with Deep Q Learning. This approach enables the model to
adaptively select the most appropriate classifier for each
image, leading to higher accuracy rates. By integrating the
strengths of Naive Bayes, SVM, and MLP, DRECQ
effectively addresses the challenges in diabetic retinopathy
image classification, which often involve complex and
varied image features.

The impact of this increased accuracy in real-time scenarios
is profound. Higher accuracy means that the model can
more reliably distinguish between healthy and diseased
retinas, leading to more accurate diagnoses of diabetic
retinopathy. This has several important implications:

e Improved Patient Care: More accurate diagnoses
mean that patients can receive appropriate treatment
sooner, potentially slowing or preventing the
progression of the disease.

e Reduced Burden on Healthcare Systems: By
lowering the rate of misdiagnosis, healthcare systems
can allocate resources more effectively, focusing on
patients who need urgent care.

e Advancement in Telemedicine: As DRECQ
demonstrates high accuracy even with large datasets,
it could be instrumental in telemedicine applications,
allowing remote diagnosis and management of
diabetic retinopathy, which is particularly beneficial
for patients in underserved or rural areas.

e Research and Development: The high accuracy of
DRECQ in classifying diabetic retinopathy images
contributes to the field of medical research by
providing a reliable tool for studying the disease,
potentially leading to new insights and treatment
methods.

In conclusion, DRECQ's high accuracy in classifying
diabetic retinopathy images across various test sample sizes
demonstrates its potential as a highly effective tool in the
early detection and management of diabetic retinopathy,
offering significant benefits for patient care and healthcare
systems. Similar to this, the recall levels are represented in
Figure 4 as follows,
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Fig 4. Observed Recall for Classification of Diabetic
Retinopathic Image Samples
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In the initial NTS bracket (7k to 26k), DRECQ consistently
exhibits high recall rates, surpassing the other models.
Notably, at 17k NTS, DRECQ achieves a remarkable recall
of 87.52%, significantly outperforming its counterparts.
This trend of superior recall continues across the dataset
range. In the middle NTS range (30k to 65k), DRECQ
maintains its lead, particularly at 65k NTS, where it records
a recall of 82.72%, demonstrating its effectiveness in
correctly identifying positive diabetic retinopathy cases.

In the higher NTS values (70k to 120k), DRECQ's
performance remains robust, with recall rates consistently
above 77%, peaking at 83.17% at 83k NTS. This sustained
high recall rate across various NTS values highlights
DRECQ's reliability in identifying true positive cases of
diabetic retinopathy.

The reason behind DRECQ's enhanced recall capability can
be attributed to its innovative ensemble approach,
integrating various classifiers with the adaptive mechanism
of Deep Q Learning. This design allows DRECQ to
effectively identify positive cases of diabetic retinopathy,
even in complex and varied datasets.

The impact of this increased recall in real-time scenarios is
significant:

e Early Detection of Diabetic Retinopathy: High
recall rates ensure that more patients with diabetic
retinopathy are correctly identified, facilitating early
intervention and treatment.

o Reduced Risk of Missed Diagnoses: A high recall
rate implies fewer false negatives, which is crucial in
medical diagnostics, as missing a positive case can
have serious health implications for the patient.

e Enhanced Screening Programs: The ability of
DRECQ to correctly identify a high number of
positive cases makes it ideal for large-scale screening
programs, where it is essential to detect as many cases
as possible.

e Improving Patient Trust and Healthcare
Efficiency: Accurate and reliable diagnosis tools like
DRECQ enhance patient trust in medical diagnostics
and can lead to more efficient allocation of healthcare
resources.

e Support for Remote and Underserved Areas: Given
its high recall rate, DRECQ can be particularly useful
in remote or underserved areas where access to expert
medical diagnosis may be limited.

In summary, DRECQ's high recall rates across a wide range
of test sample sizes underscore its potential as an effective
tool for the accurate and reliable diagnosis of diabetic
retinopathy. This capability is crucial for early detection and
treatment, which can significantly improve patient

outcomes and enhance the efficiency of healthcare systems.
Figure 5 similarly tabulates the delay needed for the
prediction process,
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Fig 5. Observed Delay for Classification of Diabetic
Retinopathic Image Samples

Throughout the NTS range, DRECQ consistently exhibits
lower delay times in milliseconds (ms) compared to the
other models. For example, at 7k NTS, DRECQ has a delay
of 79.31 ms, which is notably quicker than DCGAN (93.01
ms), GNN (91.33 ms), and RCNN (89.80 ms). This trend of
reduced delay is evident across the dataset, where DRECQ
maintains its efficiency advantage. In the mid-range NTS
(30k to 65k), DRECQ continues to demonstrate its speed,
particularly at 70k NTS, recording a delay of only 67.19 ms,
significantly faster than its counterparts.

In the higher NTS values (70k to 120k), DRECQ's
performance in terms of delay remains superior, with its
processing times consistently among the lowest. At 120k
NTS, for instance, DRECQ achieves a delay of 76.43 ms,
which is considerably lower than the other models, like
DCGAN (99.28 ms) and GNN (93.52 ms).

The reduced delay times of DRECQ can be attributed to its
efficient design, which combines ensemble classifiers with
Deep Q Learning. This design allows for quicker processing
of images, as the model dynamically selects the most
suitable classifier for each image, reducing computational
overhead.

The impact of this reduced delay in real-time scenarios is
significant:

e Faster Diagnostics: The low delay times of DRECQ
mean that diabetic retinopathy can be diagnosed more
quickly, allowing for faster initiation of treatment.
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e Enhanced Patient Throughput: In clinical settings,
the ability to process images rapidly can lead to
increased patient throughput, reducing waiting times
and improving overall clinical efficiency.

e Real-time Application Feasibility: The efficiency of
DRECQ makes it suitable for real-time applications,
such as in telemedicine or mobile health platforms,
where quick processing is essential.

e Resource Optimization: Faster processing times can
lead to lower computational resource requirements,
making the model more accessible and cost-effective,
especially in resource-limited settings.

e Improved User Experience: For clinicians and
patients alike, the reduced delay enhances the user
experience, making the diagnostic process less time-
consuming and more seamless.

In summary, DRECQ's consistently low delay times across
various test sample sizes highlight its potential as a highly
efficient tool in the diagnosis of diabetic retinopathy. This
efficiency is crucial for clinical settings, telemedicine, and
large-scale screening programs, where quick and accurate
diagnostics are key to effective patient care and optimal
resource utilization. Similarly, the AUC levels can be
observed from figure 6 as follows,
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Fig 6. Observed AUC for Classification of Diabetic
Retinopathic Image Samples

Throughout the NTS range, DRECQ consistently shows
higher AUC values compared to the other models. For
instance, at 7k NTS, DRECQ achieves an AUC of 73.31%,
which is substantially higher than DCGAN (63.92%), GNN

(62.23%), and RCNN (61.18%). This trend of enhanced
AUC is evident across the dataset. In the mid-range NTS
(30k to 65k), DRECQ continues to demonstrate its superior
performance, with a noteworthy peak at 30k NTS where it
reaches  77.90%, significantly  outperforming its
counterparts.

In the higher NTS values (70k to 120k), DRECQ's
performance in terms of AUC remains robust, with its AUC
values consistently among the highest. At 120k NTS,
DRECQ achieves an AUC of 76.75%, which is
considerably higher than the other models, like DCGAN
(62.24%) and GNN (64.75%).

The higher AUC values of DRECQ can be attributed to its
efficient ensemble approach, integrating various classifiers
with the adaptive mechanism of Deep Q Learning. This
design allows DRECQ to effectively differentiate between
positive and negative cases of diabetic retinopathy, even in
complex datasets.

The impact of this increased AUC in real-time scenarios is
significant:

e Improved Diagnostic Accuracy: A high AUC
indicates a better ability of the model to distinguish
between positive and negative cases, leading to more
accurate diagnoses.

e Enhanced Clinical Decision Making: Higher AUC
values provide clinicians with greater confidence in
the diagnostic results, aiding in more informed
decision-making.

e Reduced False Positives and Negatives: A high AUC
value implies a lower rate of false positives and
negatives, which is crucial for reducing unnecessary
treatments and ensuring that patients who need
treatment receive it.

e Applicability in Diverse Clinical Settings: The
consistency of high AUC values across various NTS
sizes demonstrates the model's applicability in
different clinical settings, from small clinics to large
hospitals.

e Support for Automated Screening: Given its high
AUC, DRECQ can be particularly useful in automated
screening programs, where accurate differentiation
between normal and abnormal cases is essential.

In summary, DRECQ's consistently high AUC values
across various test sample sizes underscore its potential as
an effective tool in the accurate diagnosis of diabetic
retinopathy. Its ability to accurately differentiate between
positive and negative cases makes it a valuable asset in
clinical settings, contributing to improved patient care and
more efficient healthcare systems. Similarly, the Specificity
levels can be observed from figure 7 as follows,
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Fig 7. Observed Specificity for Classification of Diabetic
Retinopathic Image Samples

Throughout the NTS range, DRECQ generally
demonstrates competitive or superior specificity compared
to the other models. For instance, at 17k NTS, DRECQ
achieves a specificity of 82.90%, which is significantly
higher than DCGAN (75.54%), GNN (74.32%), and RCNN
(61.95%). This trend of high specificity is evident in various
segments of the dataset. At the higher NTS values (70k to
120k), DRECQ's performance in terms of specificity
remains robust, peaking at 96k NTS with a specificity of
82.53%, outperforming the other models.

The reason behind DRECQ's enhanced specificity can be
attributed to its effective combination of ensemble
classifiers and Deep Q Learning. This setup allows DRECQ
to accurately identify negative cases of diabetic retinopathy,
reducing the incidence of false positives.

The impact of increased specificity in real-time scenarios is
significant:

e Reduction in False Positives: Higher specificity
means fewer false positives, which is critical in
medical diagnostics to avoid unnecessary stress for
patients and prevent overutilization of healthcare
resources.

e Improved Patient Triage: In clinical settings, the
ability to accurately identify patients who do not have
the disease can lead to more efficient patient triage and
resource allocation.

e Enhanced Trust in Automated Systems: High
specificity rates build trust in automated diagnostic
systems among healthcare professionals and patients,

which is crucial for the acceptance and integration of
these systems in clinical practice.

e Beneficial for Large-Scale Screening: High
specificity is particularly important in large-scale
screening programs, where the goal is to accurately
exclude healthy individuals from further invasive
testing.

e Cost-Effectiveness: By reducing false positives, high
specificity in diagnostic tools can lead to cost savings
for healthcare systems by minimizing unnecessary
follow-up tests and treatments.

In summary, DRECQ's high specificity across various test
sample sizes indicates its potential as an effective tool in
accurately identifying negative cases of diabetic
retinopathy. This capability is crucial in clinical settings to
ensure efficient patient management and resource
utilization, particularly in large-scale screening programs
where the goal is to accurately exclude healthy individuals
from unnecessary further testing processes.

5. Conclusion and Future Scopes

The research presented in this paper introduces a
groundbreaking approach in the realm of ophthalmology,
specifically for the diagnosis of diabetic retinopathy,
through the DRECQ model. This model, an ensemble of
Naive Bayes, Support Vector Machine (SVM), and Multi-
Layer Perceptron (MLP) classifiers, augmented by the Deep
Q Learning (DQL) process, has demonstrated a significant
advancement over traditional methods. The empirical
results, derived from rigorous testing on the IDRIiD and
EyePACS datasets, unequivocally indicate the superiority
of DRECQ in various performance metrics, including
precision, accuracy, recall, AUC, specificity, and
processing delay.

The observed increases in precision (ranging from 4.5% to
8.5%), accuracy (up to 5.5%), and recall (up to 3.9%), along
with substantial improvements in AUC (up to 4.9%) and
specificity (up to 3.4%), underscore the model's robustness
and reliability. Furthermore, the reduction in delay by as
much as 8.5% highlights the model's efficiency, a critical
factor in real-time diagnostic applications. These
enhancements hold profound implications for patient care,
signaling a significant leap forward in the timeliness and
accuracy of diabetic retinopathy diagnosis, thereby
potentially reducing the burden on healthcare systems.

Impacts of This Work:

e Improved Diagnostic Accuracy: Enhanced precision
and recall rates lead to more accurate diagnoses,
reducing the risk of misdiagnosis and the consequent
implications on patient health.
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Efficiency in Healthcare Delivery: The reduction in
processing delay enables quicker diagnosis, facilitating
timely treatment and efficient use of medical resources.

Advancement in Automated Diagnostics: DRECQ's
success paves the way for further exploration and
integration of Al and machine learning techniques in
medical diagnostics.

Global Health Implications: Given its efficacy across
diverse datasets, DRECQ has the potential to aid in
diabetic retinopathy diagnosis in varied geographical
and socio-economic contexts, including underserved
regions.

Future Scope:

Dataset Expansion and Diversity: Future work will
involve expanding the datasets to include more diverse
demographic and pathological variations, enhancing
the model’s applicability and accuracy across a broader
spectrum of patients.

Algorithmic Refinement: There is scope for refining
the DQL process and exploring the integration of more
advanced machine learning techniques to further
enhance the model's diagnostic capabilities.

Real-World Clinical Trials: Implementing DRECQ
in real-world clinical settings for further validation and
to assess its practical utility and integration into
existing healthcare workflows.

Expansion to Other Ophthalmic Diseases: Exploring
the adaptability of the DRECQ model to diagnose other
eye-related diseases, thereby broadening its scope and
utility in ophthalmology.

Interdisciplinary Applications: Investigating the
application of the DRECQ framework in other fields of
medicine, where similar diagnostic challenges exist,
could be a potential avenue for future research.

In conclusion, the DRECQ model marks a significant
milestone in the field of diabetic retinopathy diagnosis. Its
ability to adaptively and accurately diagnose across varying
datasets not only demonstrates its technical prowess but also
its potential to positively impact patient care and global
health. The future directions of this research hold promise
for even greater advancements, paving the way for broader
applications in medical diagnostics.
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