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Abstract: This study presents a meticulous comparison of plant disease detection models on the Raspberry Pi 5 platform, employing Basic 

CNN, AlexNet, ResNet-50, and MobileNet architectures through MiniTensorflow. Our investigation scrutinizes response time latency, 

individual plant image performance, and overall model efficiency and accuracy. The assessment includes a diverse dataset, the New Plant 

Diseases Dataset from Kaggle, encompassing various plant species and diseases. Response time latency is measured to gauge the processing 

speed of each model, while individual plant image analysis identifies potential efficiency variations across different plant types. A user-

friendly web application, developed using Python Flask, facilitates model accessibility and real-time testing. The study transcends 

traditional accuracy metrics, offering insights into each model's nuanced strengths and limitations. This research contributes a valuable 

perspective on the suitability of these models for real-world deployment on the widely used Raspberry Pi 5, essential for practitioners and 

researchers in the field of plant disease detection. 
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1. Introduction 

The evolution of precision agriculture, driven by 

technological innovations, has significantly impacted crop 

management, emphasizing the need for advanced tools in 

disease detection for sustainable food production. In this 

context, machine learning, and specifically convolutional 

neural networks (CNNs), has emerged as a transformative 

force in plant disease detection, promising heightened 

accuracy and efficiency[1]. As the agricultural sector 

embraces the era of digitalization, the integration of 

intelligent systems on edge devices becomes crucial, 

allowing for real-time monitoring and informed decision-

making in the field. This research undertakes a 

comprehensive examination of plant disease detection 

models, focusing on the popular CNN architectures: Basic 

CNN, AlexNet, ResNet-34, and MobileNet. The 

deployment environment for this study is the Raspberry Pi 

5, a widely used single-board computer renowned for its 

versatility in edge computing. The objective is to scrutinize 

the efficiency and accuracy of these models under the 

resource constraints imposed by the Raspberry Pi 5 

environment. 

The urgency of addressing plant diseases is underscored by 

their significant impact on global crop yields and food 

security. According to the Food and Agriculture 

Organization (FAO), plant diseases contribute to substantial 

annual crop losses, necessitating effective and accessible 

solutions[2]. In response, the integration of CNNs into edge 

devices like the Raspberry Pi 5 offers a decentralized 

approach to disease detection. This allows for on-site 

analysis without the need for reliance on resource-intensive 

cloud-based processing, facilitating timely interventions 

and mitigating potential crop damage. The selection of CNN 

architectures is guided by their proven success in image 

classification tasks. Basic CNN serves as a foundational 

benchmark, while AlexNet, ResNet-34, and MobileNet 

introduce varying degrees of complexity and efficiency, 

enabling a comprehensive comparative analysis of their 

performance[3,4,5].To ensure the robustness and 

practicality of our study, we employ the New Plant Diseases 

Dataset sourced from Kaggle[6]. This dataset spans a 

diverse range of plant species and diseases, providing a 

realistic and representative foundation for training and 

evaluating the models. 

 In addition to traditional metrics like accuracy, our 

investigation delves into response time latency, offering 

insights into the real-world applicability of these models in 

dynamic agricultural settings. Each model's responsiveness 

is crucial in deploying timely interventions and preventing 

the spread of diseases.The research methodology includes 

the development of a user-friendly web application utilizing 

Python Flask, facilitating model accessibility and real-time 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 Department of Computer Engineering & IT, COEP Technological 

University, Pune, Maharashtra, India, tanksalerushikesh@gmail.com , 

+919890689649, https://orcid.org/0009-0004-8527-3020 
2 Department of Computer Engineering & IT, COEP Technological 

University, Pune, Maharashtra, India, sunilbmane@gmail.com, 0000-

0002-7111-4908  

* Corresponding Author Email: tanksalerushikesh@gmail.com 

https://orcid.org/0009-0004-8527-3020
mailto:sunilbmane@gmail.com
http://www.orcid.org/0000-0002-7111-4908
http://www.orcid.org/0000-0002-7111-4908


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 374–383 |  375 

testing. The outcomes of this research are poised to 

contribute valuable insights for practitioners and researchers 

alike, guiding the selection of CNN architectures for 

efficient and accurate plant disease detection in the evolving 

landscape of precision agriculture. 

2. Literature Review 

In recent years, the integration of deep learning (DL) 

techniques has revolutionized plant disease detection, 

presenting a paradigm shift from traditional methodologies. 

Mohanty et al. conducted a seminal study, emphasizing the 

adaptability of DL models such as AlexNet and GoogLeNet 

on the PlantVillage dataset, achieving impressive accuracies 

ranging from 85.53% to 99.34 [7] . This groundbreaking 

work highlighted the efficacy of end-to-end supervised 

training, eliminating the need for labour-intensive feature 

engineering and showcasing the potential for DL-based crop 

disease diagnosis on a global scale. 

Shoaib et al. contributed to the discourse with a 

comprehensive review, emphasizing the collaborative 

integration of meteorological and plant health data with DL 

models for robust detection and prevention[8]. Their study 

critically identified challenges such as data availability and 

the distinction between healthy and diseased plants. The 

envisioned collaboration between agriculture and plant 

protection specialists, DL algorithms, and farming 

equipment holds significant promise for the advancement of 

plant disease detection. 

In the realm of transfer learning, Andrew J. et al. conducted 

an extensive analysis of various architectures, 

demonstrating that DenseNet-121 outperformed others with 

a remarkable classification accuracy of 99.81% and F1 score 

of 99.8% [9]. This study not only showcased the potential 

for real-time leaf disease identification but also emphasized 

reduced computational complexity, making it suitable for 

new plant diseases inclusion. Their future trajectory 

includes addressing challenges in real-time data collection 

and developing a multi-object DL model for detecting 

diseases in a cluster of leaves. 

Borhani et al. introduced Vision Transformer (ViT) models, 

comparing them with convolutional-based architectures. 

The ViT model exhibited superior accuracy with reduced 

parameters, offering a promising avenue for efficient 

disease classification [10]. Despite the slower performance 

of attention blocks, the study underscored the significance 

of combining attention blocks with convolutional blocks for 

enhanced prediction speed without compromising accuracy. 

Liu and Wang's comprehensive review further explored the 

transition from traditional image processing to end-to-end 

feature extraction in plant disease detection [11]. Challenges 

outlined included early disease recognition and 

complexities in network training, shedding light on the need 

for multi-information fusion methods to create 

comprehensive datasets. 

Expanding on this foundation, additional research papers 

contribute valuable insights. Junde Chen et al. explored the 

application of Vision Transformer for plant disease 

classification, extending the exploration of ViT 

architectures[12]  . Their study contributes to the growing 

body of research on ViT models for diverse datasets. 

Furthermore, Anshul Bhatia et al. delved into the integration 

of unsupervised[13] learning techniques for plant disease 

detection, leveraging prior knowledge of brain-inspired 

computing and human-like visual cognition. Their work 

addresses the ongoing challenge of collecting labeled 

datasets for supervised learning. 

In parallel, Laha Ale et al. focused on real-time crop 

monitoring using DL-based approaches, addressing 

challenges associated with deploying models on mobile 

platforms[14] . Their research contributes to the practical 

implementation of DL techniques in agriculture, 

highlighting the potential for widespread adoption. 

Additionally, Rayene et al. investigated the application of 

Vision Transformer for plant disease classification, 

contributing to the growing body of research on ViT models 

[15] . Further, Benfenati et al. explored the use of 

unsupervised learning techniques for plant disease 

detection, emphasizing the potential of leveraging prior 

knowledge for improved model training[16]. In a study by 

Ahmed et al, real-time crop monitoring using DL-based 

approaches was emphasized, providing insights into 

challenges and opportunities in deploying models on mobile 

platforms[17]. 

Collectively, this body of literature not only showcases 

advancements in DL models for plant disease detection but 

also identifies challenges faced and potential avenues for 

practical application in agriculture. The dynamic landscape 

of research in this field promises continued innovation, with 

the prospect of transforming plant disease detection into an 

efficient and scalable solution for agricultural sustainability. 

3. Research Data 

The dataset employed in our study undergoes a meticulous 

recreation process through offline augmentation derived 

from the original dataset, which is publicly accessible on the 

associated GitHub repository. Comprising approximately 

87,000 RGB images of both healthy and diseased crop 

leaves, the dataset is meticulously categorized into 38 

distinct classes, each representing a specific crop-disease 

pairing. To maintain an effective balance for model training, 

the entire dataset is partitioned into an 80/20 ratio, 

designating 80% for the training set and 20% for the 

validation set while preserving the directory structure. 

Furthermore, a dedicated directory containing 33 test 
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images is subsequently created to facilitate prediction 

purposes. This systematic partitioning ensures a robust 

evaluation of the model's performance across diverse 

subsets of the dataset. 

 

Table 1. Plant-Disease Dataset Classification Table 

 

Plant 
Sub Types Of Images 

Apple Apple scab, Black rot, Cedar 

apple rust, Healthy 

Blueberry Powdery mildew, Healthy 

Cherry Powdery mildew, Healthy 

Corn (maize) Cercospora leaf spot Gray 

leaf spot, Common rust, 

Northern Leaf Blight, 

Healthy 

Grape Black rot, Esca (Black 

Measles), Leaf blight 

(Isariopsis Leaf Spot), 

healthy 

Orange Haunglongbing (Citrus 

greening) 

Peach Bacterial spot, Healthy 

Bell Pepper Bacterial spot, Healthy 

Potato Early blight, Late blight, 

Healthy 

 

Raspberry 

Soybean 

Squash 

Strawberry 

Tomato 

Healthy 

Healthy 

Powdery mildew 

Leaf scorch, Healthy 

Bacterial spot, Early blight, 

Healthy 

 

Below, we present a visual representation of the dataset, 

showcasing a selection of sample images that capture the 

diversity of plant health and disease scenarios. Each image 

corresponds to a specific plant-disease pair, contributing to 

the 38 classes within the dataset. This collection spans 

across various crops, including apples, cherries, corn, 

grapes, oranges, peaches, peppers, potatoes, raspberries, 

soybeans, squash, strawberries, and tomatoes, each 

susceptible to distinct diseases. 

 

The images offer a detailed look at the visual cues associated 

with different plant diseases, ranging from discolorations 

and spots to overall leaf health. Through this visualization, 

one can gain an understanding of the challenges and 

intricacies involved in the automated identification of plant 

diseases. These sample images serve as a foundation for 

training and evaluating machine learning models, providing 

valuable insights into the nuances of plant health assessment 

in agricultural contexts. 

 

Fig 1. Dataset Sample Images 

 

Fig 2. Visual Representation of Data Classes 

The dataset distribution reveals an insightful perspective on 

the prevalence of different plant diseases across various 

crops. The dataset is diverse, containing images from 38 

different classes representing different crops and associated 

diseases. A few key observations and conclusions can be 

drawn from the distribution: 
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A. Class Imbalance: The dataset exhibits varying sizes 

for different classes, indicating class imbalance. Some 

classes, such as "Tomato___healthy" and 

"Soybean___healthy," have a higher number of 

samples, while others, like 

"Corn_(maize)__Cercospora_leaf_spot 

Gray_leaf_spot" and 

"Grape___Leaf_blight(Isariopsis_Leaf_Spot)," have 

comparatively fewer samples. 

B. High Occurrence Diseases: Diseases such as 

"Tomato___Late_blight," 

"Orange___Haunglongbing_(Citrus_greening)," and 

"Soybean___healthy" have a substantial number of 

samples, suggesting their prevalence and significance 

in the dataset. 

C. Crop-Specific Disease Patterns: Each crop shows 

distinct disease patterns, emphasizing the need for 

crop-specific models. For instance, 

"Apple___Apple_scab" and "Apple___Black_rot" are 

prevalent in apple crops, while 

"Corn_(maize)__Northern_Leaf_Blight" and 

"Corn(maize)__Common_rust" impact maize.  

D. Challenges in Detection: Classes with fewer samples 

might pose challenges for machine learning models, 

requiring careful consideration during model training 

to prevent biases and improve overall performance. 

4. Experimental Work 

The conducted experiments were meticulously designed to 

assess the effectiveness and practical applicability of plant 

disease detection models. These experiments encompassed 

various key aspects, providing a holistic understanding of 

the models' performance in real-world scenarios. 

4.1 Accuracy Assessment: 

Accurate evaluation of model performance is fundamental 

to understanding the reliability of plant disease detection. In 

this context, key metrics, including accuracy, precision, 

recall, and F1 score, were employed to provide a nuanced 

evaluation. 

The dataset, consisting of 54,306 plant leaf images with 38 

class labels, was divided into training and validation sets. 

The training phase allowed the model to learn patterns and 

associations within the data, while the validation set served 

as a benchmark for assessing the model's generalization 

ability. 

The confusion matrix, formed by true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) 

values, facilitated the computation of accuracy and other 

performance metrics. These metrics collectively provided a 

comprehensive evaluation of the model's performance on 

both binary and multiclass classification tasks. 

4.1.1 Accuracy: 

Formula: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  (1) 

Explanation: Accuracy represents the overall correctness 

of the model by measuring the ratio of correctly predicted 

instances (both true positives and true negatives) to the total 

instances. 

4.1.2 Precision: 

Formula: Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Explanation: Precision focuses on the accuracy of positive 

predictions. It calculates the ratio of true positives to the sum 

of true positives and false positives. 

4.1.3 Recall (Sensitivity): 

Formula: Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

Explanation: Recall assesses the model's ability to capture 

all relevant instances. It calculates the ratio of true positives 

to the sum of true positives and false negatives. 

4.1.4 F1 Score: 

Formula: 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

Explanation: F1 score is the harmonic mean of precision 

and recall. It provides a balanced measure that considers 

both false positives and false negatives, making it suitable 

for imbalanced datasets. 

4.2 Model-Plant Compatibility: 

Understanding the compatibility of models with different 

plant species and diseases is pivotal for deploying them in 

diverse agricultural settings. The models were subjected to 

images representing various crops and diseases, ensuring a 

comprehensive evaluation of their generalization 

capabilities. 

Cross-validation techniques, such as k-fold cross-

validation, were implemented to mitigate biases in the 

dataset and provide a robust assessment of model 

performance. The analysis aimed to identify patterns of 

performance, highlighting the models' strengths and 

potential limitations across a spectrum of plant diseases and 

varieties. 

To ascertain the efficacy of each model across various plant 

types, a dedicated experiment was designed. Each model 

underwent testing with a diverse dataset encompassing 20% 

of each plant type. The objective was to map the accuracy 

of each model for specific plant types, shedding light on the 

compatibility of the model with different crops and diseases. 

Delving into the accuracy of each model in predicting plant 

types, we based our analysis on a sample of 100 images per 
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plant. Notably, these images were not part of the original 

training dataset, ensuring an unbiased assessment of each 

model's predictive capabilities. 

4.3 Latency Measurement: 

Latency measurement is crucial for determining the real-

world viability of deployed models. The Flask micro web 

framework was utilized for model deployment, and latency 

was measured by sending requests for plant disease 

prediction to the deployed models. 

Average latency and throughput were calculated to 

understand how well the models performed under different 

request loads. Throughput, a key metric, assessed the 

model's capacity to handle multiple requests concurrently. 

Striking a balance between average latency and throughput 

was crucial for gauging the efficiency of the models in real-

time scenarios. 

The latency measurements were conducted by deploying 

each model and capturing the response time for different 

batch sizes, specifically 10 images, 50 images, and 100 

images. Additionally, Frames Per Second (FPS) were 

calculated to determine the sustainable throughput of each 

model before exhibiting unresponsiveness. 

4.4 Resource Utilization Analysis: 

In the pursuit of understanding the resource utilization 

dynamics, an integral aspect of the experimentation was an 

in-depth analysis of RAM and CPU utilization. This 

exploration not only sheds light on the computational 

efficiency of the models but also holds particular 

significance for deployment on Resource Instruction Set 

Computing (RISC) devices, such as mobile devices. 

As the RAM and CPU utilization escalate, a consequential 

impact on the device's thermal dynamics becomes apparent. 

The Raspberry Pi, being a compact and energy-efficient 

device, operates within stringent thermal constraints. 

Elevated RAM and CPU utilization contribute to an increase 

in the device's temperature, potentially reaching levels that 

can induce thermal throttling. Thermal throttling occurs 

when the system automatically reduces its performance to 

prevent overheating, thereby affecting the overall 

throughput of the system. 

To mitigate this thermal challenge, the Raspberry Pi was 

equipped with a heatsink and thermal paste. This passive 

cooling solution enhances heat dissipation, preventing the 

device from reaching critical temperatures that trigger 

thermal throttling. The strategic use of a heatsink, coupled 

with thermal paste, facilitates efficient heat transfer from the 

System on Chip (SoC) to the surrounding environment. 

Noteworthy is the decision to opt for passive cooling over 

an active cooling solution, such as a fan. While a fan could 

provide effective cooling, it comes at the cost of increased 

power consumption, which is a critical consideration for 

devices running on battery power. By adopting a passive 

cooling solution, the balance between efficient cooling and 

preserving battery life is maintained, ensuring the device 

operates optimally in extended deployment scenarios. 

This nuanced approach to resource utilization analysis not 

only delves into the computational efficiency of the models 

but also addresses the intricate interplay between system 

performance, thermal management, and power consumption 

on compact and resource-constrained devices like the 

Raspberry Pi. 

4.5 Data Collection Protocol: 

In the pursuit of meticulous experimentation and robust 

analysis, a systematic data collection protocol was 

meticulously devised. Recognizing the pivotal role of 

comprehensive data logs in ensuring reproducibility and 

facilitating post-analysis, a structured approach was 

implemented. 

4.5.1 Experimental Metrics Logging: 

Purpose: To capture and record key metrics during the 

experimental phase. 

Procedure: Metrics such as model accuracy, latency, and 

resource utilization (RAM and CPU) were systematically 

logged. 

Implementation: Custom logging mechanisms were 

integrated into the experimental setup to ensure real-time 

recording of critical metrics. 

4.5.2 Error and Anomaly Logging: 

Purpose: To identify and address errors or anomalies that 

may arise during experimentation. 

Procedure: Any deviations, errors, or unexpected 

behaviours were logged for subsequent analysis. 

Implementation: Automated error logging mechanisms 

were in place to promptly record any irregularities in the 

experimental process. 

4.5.3 Reproducibility and Traceability: 

Purpose: To enable the replication of experiments and trace 

the sequence of events. 

Procedure: Every experimental run was meticulously 

logged to create a chronological record. 

Implementation: Logging included details such as model 

configurations, dataset versions, and environmental 

variables. 

4.5.4  Post-Experiment Analysis: 

Purpose: To glean insights, identify patterns, and refine 

models or experimental procedures. 

Procedure: Comprehensive logs served as a valuable 
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resource for in-depth post-experiment analysis. 

Implementation: Analysis tools were employed to extract 

meaningful patterns and correlations from the extensive log 

data. 

4.5.5 Continuous Refinement Loop: 

Purpose: To iteratively enhance experimental setups based 

on insights from data logs. 

Procedure: Logs were regularly reviewed to identify areas 

of improvement. 

Implementation: Iterative refinements were made to 

models, experimental configurations, and logging 

mechanisms for continuous optimization. 

4.6 Data Collection Protocol: 

The statistical analysis employed a multifaceted approach to 

extract meaningful patterns and insights from the 

experimental data. Descriptive statistical methods, such as 

measures of central tendency and dispersion, provided a 

concise summary of key metrics, ensuring a clear overview 

of the dataset's characteristics. Inferential statistics, 

including hypothesis testing and confidence intervals, 

allowed for generalizing findings from the sample to the 

broader population. 

Correlation analysis was conducted to explore the 

relationships between different variables, shedding light on 

potential dependencies or influences. Time series analysis 

was employed to examine how metrics evolved over the 

course of the experiments, capturing temporal patterns and 

trends. Cross-validation techniques, such as k-fold cross-

validation, ensured robust model evaluation and helped 

mitigate the risk of overfitting. 

Regression analysis played a pivotal role in identifying 

potential predictors of key metrics, unraveling the intricate 

interplay between variables. Outlier detection methods, 

such as the Z-score, were applied to identify and address 

anomalies that could skew the results. These methodical 

statistical approaches collectively fortified the research, 

providing a rigorous framework for interpreting, validating, 

and drawing conclusions from the experimental data. 

4.7 Model Building: 

In this section, we detail the training and evaluation process 

of four distinct models employed for plant disease 

classification. The experiments were conducted on a high-

performance machine equipped with an Intel i9 12900K 

processor, 32GB DDR4 RAM, and an Nvidia 3090 24GB 

GPU. The development environment utilized Windows, 

Jupyter Notebook, and NVME SSD storage. 

4.7.1 Basic CNN: 

The basic Convolutional Neural Network (CNN) 

architecture was trained for 10 epochs. The model consists 

of multiple convolutional layers followed by max-pooling 

layers. The final layer is a dense layer with 38 output nodes, 

corresponding to the number of plant disease classes. After 

training, the model achieved a remarkable 98.25% training 

accuracy and 96.72% test accuracy. 

4.7.2 AlexNet:  

Modelled after the groundbreaking AlexNet architecture, 

our implementation was trained for 20 epochs. AlexNet 

features convolutional and max-pooling layers, along with 

batch normalization and dropout for regularization. The 

final dense layer outputs 38 classes. The AlexNet model 

exhibited a 95.25% training accuracy and 92.72% test 

accuracy. 

4.6.1 ResNet-50 

The ResNet-50 architecture, known for its deep residual 

learning, was employed and trained for 30 epochs. The 

model utilizes skip connections to overcome vanishing 

gradient issues in deep networks. The global average 

pooling layer is followed by dense layers for classification. 

The ResNet-50 model demonstrated a training accuracy of 

98.25% and a test accuracy of 96.22%. 

4.6.2 MobileNet: 

Implementing the efficient MobileNet architecture, our 

model was trained for 30 epochs. MobileNet employs 

depthwise separable convolutions to achieve efficiency. The 

model includes a global average pooling layer, dropout for 

regularization, and a dense layer for classification. The 

MobileNet achieved a training accuracy of 97.96% and a 

test accuracy of 95.05%. 

4.6.3 Model Analysis: 

Exploring each model's theoretical underpinnings, the basic 

CNN provides a fundamental understanding of image 

classification. AlexNet, a pioneer in deep learning, 

introduced concepts like rectified linear units (ReLU) and 

dropout. ResNet-50's residual learning tackles vanishing 

gradient problems in deep networks. MobileNet focuses on 

efficiency, crucial for deployment on resource-constrained 

devices. 

Table 2. DL Model Accuracy Comparison 

Model 
Train 

Acc 

Test 

Acc 
Precision Recall 

Basic 

CNN 
98.25 96.72 96.72 96.72 

AlexNet 95.25 92.72 92.72 97.72 

ResNet50 98.25 96.22 96.22 96.22 

MobileNet 97.96 97.96 95.05 95.05 
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Fig 3. DL Model Accuracy Comparison 

Understanding the layers of each model provides insights 

into their architectures. The basic CNN comprises 

convolutional and max-pooling layers, while AlexNet 

introduces batch normalization and dropout. ResNet-50 

showcases residual connections, and MobileNet emphasizes 

depthwise separable convolutions. Each model's accuracy 

metrics demonstrate their efficacy in classifying plant 

diseases, providing a comprehensive overview of their 

performance. 

5. Result and Discussion  

5.1. Plant Classification Accuracy 

In this section, we delve into the accuracy of each model in 

predicting plant types based on a sample of 100 images per 

plant, which were not part of the original training dataset. 

The percentage accuracy for each model is detailed below: 

Table 3.  Plant-Disease To Model Comparison 

Plant CNN AlexNet 
ResNet-

50 
MobileNet 

Apple 68% 73% 88% 92% 

Blueberry 78% 85% 72% 82% 

Cherry 88% 85% 82% 89% 

Corn 

(maize) 
68% 77% 72% 83% 

Grape 88% 87% 92% 93% 

Orange 88% 87% 92% 93% 

Peach 69% 77% 82% 83% 

Bell 

Pepper 
69% 77% 82% 83% 

Potato 89% 84% 82% 83% 

Raspberry 69% 75% 94% 97% 

Soybean 79% 75% 64% 87% 

Squash 79% 85% 84% 97% 

Strawberry 88% 79% 89% 67% 

Tomato 91% 85% 89% 84% 

 

 

These accuracy metrics provide valuable insights into the 

performance of each model across various plant types. 

Notably, MobileNet, designed for embedded systems, 

demonstrates robust performance across the board. 

However, it is essential to acknowledge that certain plants 

pose challenges for MobileNet compared to other models. 

In addition to accuracy, latency was assessed for each 

model, considering different image batch sizes. The models 

exhibited varying responsiveness, with MobileNet 

showcasing efficient processing, particularly with larger 

batch sizes. This is a crucial aspect for real-world 

deployment, ensuring timely and effective plant 

classification. 

It's crucial to consider these findings when selecting a model 

for deployment, emphasizing the need for a balanced trade-

off between accuracy, latency, and model compatibility with 

specific plant types. The observed challenges with 

MobileNet highlight the importance of continuous 

refinement and adaptation to specific use cases. 

5.2 Classification Latency Measurement 

Table 4. Model Latency Comparison (Time in Seconds) 

Model 1FPS 10FPS 50FPS 100FPS 

Basic 

CNN 

0.23 0.8 1.33 2.21 

AlexNet 0.5 1.1 2.3 4.32 

ResNet-

50 

0.22 0.76 1.23 2.08 

Mobile

Net 

0.1 0.6 0.95 1.98 

 

 

Fig 4. Model Latency Comparison (Time in Seconds) 

In addition to assessing accuracy, the latency of each model 

was thoroughly examined across various batch sizes, 

measured in frames per second (FPS). The evaluation 

spanned 1, 10, 50, and 100 images, providing insights into 

the real-time applicability of the models in practical 

scenarios. The testing approach involved using FFMPEG to 
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accept a stream at different frame rates, ranging from 1 FPS 

to 100 FPS, allowing us to understand the overall load each 

model could sustain. 

The computed latency results, represented in seconds, are 

detailed in the table below: 

The latency analysis provides crucial insights into the real-

time performance of each model, and several observations 

can be made: 

5.2.1  Basic CNN Efficiency 

The simple architecture of Basic CNN exhibits efficient 

processing, positioning it just below the more complex 

ResNet-50 in terms of latency. This suggests that for 

applications where computational resources are limited, 

Basic CNN might be a favorable choice without 

significantly compromising performance. 

5.2.2  AlexNet Trade-Off 

AlexNet, while offering competitive accuracy, 

demonstrates higher latency across all frame rates. This 

trade-off between accuracy and latency should be carefully 

considered when selecting a model based on specific 

application requirements. 

5.2.3 ResNet-50 Performance 

ResNet-50 strikes a balance between accuracy and latency, 

making it a versatile choice for scenarios where moderate 

processing times are acceptable, and higher accuracy is 

crucial. 

5.2.4 MobileNet Optimization 

As expected, MobileNet, designed for embedded devices, 

showcases exceptional optimization. It outperforms other 

models in terms of latency, emphasizing its suitability for 

real-time applications, particularly in resource-constrained 

environments. 

These findings underscore the importance of considering 

both accuracy and latency metrics when deploying models, 

ensuring alignment with the specific demands of the 

intended application. The observed efficiency of MobileNet 

in latency reinforces its role as an optimized solution for 

embedded systems. 

5.3 Resource Utilization Analysis 

The Resource Utilization Analysis was conducted 

independently of the Classification Latency Measurement 

Test to provide a comprehensive understanding of the 

models' impact on system resources. These tests were 

carried out in an open field farm on a sunny day with a 

temperature of approximately 33°C, humidity at 66%, and a 

5 km/h wind speed, as per data obtained from a weather app. 

This real-world scenario aimed to simulate conditions in 

which the models would operate 

Table 5. Model Resource Utilization Comparison 

Model CPU 

Utilization 

RAM 

Utilizatio

n 

Tem

p 

TDP 

Basic CNN 27% 33% 42°C 2.8W 

AlexNet 39% 41% 45°C 3.3W 

ResNet-50 37% 38% 44°C 3.96

W 

MobileNet 33% 27% 41°C 3.0 

 

In this analysis, the Basic CNN, being less complex, 

exhibited lower resource consumption. AlexNet, known for 

its accuracy, showed higher CPU and RAM utilization, 

emphasizing its computational demands. Notably, 

MobileNet demonstrated efficiency in resource utilization, 

making it well-suited for embedded systems. 

 

Fig 5. Resource Usage Comparison  

 

Temperature Considerations: The temperature readings 

provide insights into the heat generated by each model. 

Basic CNN exhibited the lowest temperature, indicating its 

efficiency in managing heat dissipation. Understanding 

these temperatures is crucial for preventing overheating in 

prolonged usage scenarios. 

CPU and RAM Utilization: AlexNet, with its deeper 

architecture, demonstrated higher CPU and RAM 

utilization. While it provides exceptional accuracy, users 

should consider the computational load it imposes on the 

system, especially in resource-constrained environments. 

Power Efficiency: The Total Design Power (TDP) values 

showcase the power efficiency of each model. Basic CNN 

stands out as the most power-efficient, making it a suitable 

candidate for applications where power consumption is a 

critical factor. 

Embedded System Suitability: MobileNet's lower 

resource utilization, especially in terms of CPU and RAM, 

aligns with its design for embedded systems. This makes it 
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a compelling choice for applications where computational 

resources are limited. 

Real-world Simulation: Conducting tests in a real-world 

environment, with factors like temperature, humidity, and 

wind speed, enhances the reliability of the analysis. It 

ensures that the models' behavior is assessed under 

conditions that closely mimic the operational context. 

Recommendations: 

Model Selection: The choice of model should be aligned 

with the specific requirements of the agricultural setting. 

Consideration should be given to the balance between 

accuracy and resource efficiency based on the available 

computational resources. 

Environmental Adaptability: Understanding how models 

perform in varying environmental conditions is crucial for 

their successful integration into agricultural practices. 

Factors like temperature and humidity can influence the 

models' performance and should be factored into 

deployment strategies. 

Dynamic Resource Allocation: For applications with 

dynamic resource availability, such as mobile or embedded 

systems, dynamically allocating resources based on the 

model's computational requirements can optimize overall 

system performance. 

6. Future Scope & Conclusion 

The exploration conducted in this study lays the 

groundwork for several promising future directions to 

enhance the impact of deep learning models in agriculture. 

Firstly, expanding the model comparison by incorporating 

advanced models like Google Net, VGG32, Efficient Net, 

and YOLOv5 Classification could provide a more 

comprehensive understanding of their performance. 

Secondly, the integration of a farmer-centric chatbot offers 

an opportunity to improve user interaction, providing real-

time insights and guidance. Additionally, incorporating 

real-time weather data using Weather APIs can enhance the 

models' predictive accuracy by considering environmental 

factors. The study suggests the potential for the system to 

evolve into a comprehensive solution, not just identifying 

diseases but also suggesting remedies and continuously 

updating based on new data. 

In conclusion, this study has presented a comprehensive 

analysis of various deep learning models for plant 

classification and disease detection in agriculture. The 

accuracy evaluations showcased the strengths and 

weaknesses of each model, providing valuable insights for 

practical deployment. Latency measurements and resource 

utilization analysis shed light on the real-time applicability 

and efficiency of these models. 

The exploration of different plant types, diseases, and the 

compatibility of models across diverse scenarios adds depth 

to the findings. The insights gained from the real-world 

simulation, coupled with user observations, contribute to a 

holistic understanding of the models' performance. 

Looking ahead, the identified future scope opens doors for 

exciting advancements, including the integration of 

advanced models, enhanced user interaction through 

chatbots, and the incorporation of environmental factors. 

These developments aim to make the system more robust, 

adaptable, and user-friendly, ultimately contributing to the 

improvement of agricultural practices and crop 

management. The fusion of technology with agriculture 

holds immense potential, and this study represents a 

stepping stone towards harnessing that potential for the 

benefit of farmers and the agricultural ecosystem  
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