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Abstract: In this world, around 31% of the deaths are commonly caused because of cardiovascular diseases. Around 80% of sudden deaths 

occur due to cardiac arrhythmias and heart diseases. The mortality rate has increased for cardiac disease and therefore early heart disease 

detection is significant to preclude patients from dying. At the initial phase, the heart disease is detected by analyzing abnormal heartbeats. 

The existing models failed to select the features before performing the extraction of features. The developed model examined various 

databases to surpass the overfitting issue. Therefore, in the present research work, the CNN based Continual Normalization (CN) classifier 

is used to speed up the training to a higher learning rate to enable simpler learning for the standard deviation of the neurons' output. The 

extracted features were used to classify ECG signals into 5 important classes named as N, S, V, F & Q which denote the kinds of arrhythmia. 

The findings revealed that the proposed CNN based Continual Normalization technique obtained an accuracy of 99.2 % which is better 

when compared with the existing research namely the Dual Fully Connected Neural Network that obtained 93.4 % of accuracy, and the 

Optimization-Enabled Deep Convolutional Neural Network that accomplished 93.19 % of accuracy. 

Keywords: Cardiovascular Disease, Electro Cardio Gram, MIT-BIH, Convolution Neural Network Based Continual Normalization 

Classifier. 

1. Introduction 

Heart diseases are commonly occurring diseases in humans 

regardless of age during an individual’s life cycle. Irregular 

heartbeats are called arrhythmia which are classified into 

normal and fatal [1]. The prediction of arrhythmia is 

potentially life saving as it prevents further escalation of 

heart diseases. Arrhythmia is reflected in the ECG [2]. 

Arrhythmia has been associated with increasing mortality 

rates of heart failure and stroke resulting in heart attacks [3]. 

Thus, the analysis of ECG signals is a vital task which 

requires a perfect solution to predict reliably [4]. This is 

considered an important motivation conducting further 

research [5]. An abnormal heartbeat rhythm detection is 

based on irregular frequencies identified in the ECG signals 

[6]. There are various medical imaging techniques used for 

heart diagnosis such as the non-invasive diagnosis 

techniques that are used for arrhythmia detection [7]. The 

ECG diagnosis cost is cheaper and simpler for conducting 

researches [8]. The ECG records the heart electrical 

activities that are used mainly for arrhythmia disease 

diagnosis concerning the clinical practice [9]. From the 

existing works, the quality of ECG recordings is 

contaminated with noise signals [10]. Therefore, the size of 

the dataset and the ECG features are considered to analyse 

their impact on classification results [11]. The algorithms 

and methods are used for analyzing their influence on results 

[12]. The prior researches mostly used Support Vector 

Machine (SVM) for the classification of normal ECG and 

arrhythmia ECG signals [13]. The SVM classifier used in 

the existing models failed to sort out a various set of patterns 

of ECG signals for arrhythmia detection when the features 

were extracted [14]. The existing works showed drawbacks 

that are overcome by the proposed research [15]. The 

proposed research work uses a smart filter which eliminates 

noise before the classification of signals into normal and 

arrhythmia classes. The mathematical model having wavelet 

and hidden Markov is designed for extraction of important 

features from the ECG signals to detect the cardiac 

arrhythmia patterns. The contributions of the research work 

are given as follows: 

• To acquire ECG signals from MIT-BIH that consists 

of arrhythmia diseased patients reports.  

• To develop a Convolution Neural Network (CNN) 

based Continual Normalization (CN) classifier to 

speed up training and use higher learning rates, to 

make the learning easier for the standard deviation of 

the neuron's output. 

The organization of this study is given as follows: Section 2 

delivers a literature analysis that includes reviews of 

existing methods. Section 3 explains the proposed method 

technique that explains about the steps involved in it. 

Section 4 describes the results and comparison. Section 5 

discusses the conclusion and future work. 

2. Literature Review  

The reviews detailed below are the researches that involved 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 Assistant Professor, Department of Electronics and Communication 

Engineering, RNS Institute of Technology, Bengaluru, India. 

ghousiabs@gmail.com 
2 Professor, Department of Electronics and Communication Engineering, 

RNS Institute of Technology, Bengaluru, India. 

vipulasingh@yahoo.com 

* Corresponding Author Email: ghousiabs@gmail.com 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 491–502  |  492 

arrhythmia disease detection using the MIT-BIH database.  

Wang [16] developed a classification model using a dual 

fully connected neural network. The existing methods 

showed difficulty in diagnosing arrhythmia for distinct 

people based on the heartbeat rhythms that were evaluated 

for each of them. This research work performed an 

automated arrhythmia detection based on the Dual Fully 

connected CNN model which classified the heartbeats. The 

developed model used the MIT-BIH and MIT Supra 

Ventricular Arrhythmia for evaluation of the results. The 

model consisted of a tool that automatically detected 

arrhythmia from the ECG signal. The data requested was not 

adequate to train the complex network structure. 

Sangaiah [17] developed an intelligent learning approach to 

improve the classification of ECG records and to perform 

arrhythmia analysis. The developed model had been tested 

and trained for arrhythmia classification with the ECG 

records taken from the MIT-BIH. The main noises that were 

eliminated from the ECG signals were the baseline wander, 

electromyography, and power line interferences. An 

Internet of Medical Things (IoMT) approach was used to 

deploy the arrhythmia identification but could not be 

applied to real-time applications.  

Atal and Singh [18] developed an optimization Enabled 

Deep CNN model for arrhythmia classification of the ECG 

signals. The developed model was utilized for arrhythmia 

classification but implementation was a hectic challenge 

when the developed model performed the automated 

monitoring and classification process. Handling the 

dynamic features based on the experimental signal using 

raw input signals with more datasets was difficult.  

Mathunjwa [19] developed a CNN for performing ECG 

arrhythmia classification which depends on recurrence plot. 

The main aim was to design the model using deep learning 

to classify arrhythmia based on the segments for 2D 

recurrence. Next, the normal, AR, and premature VF 

categories were separated. The developed model mainly 

faced the limitation of imbalanced data as the data was not 

distributed equally throughout the database. 

Huang [20] implemented a Short-time Fourier transform-

based Spectrogram and CNN to classify ECG arrhythmia. 

Conventional approaches required two stages for the 

identification of cardiac arrhythmia: feature extraction as 

well as pattern classification, which proved to be time 

consuming. To address the mentioned problem, an 

autonomous system based on artificial intelligence was used 

wherein the CNN was utilized to train a huge volume of data 

for feature extraction to enable it to recognize arrhythmia 

with greater expertise. A 2-Dimensional Deep 

Convolutional Neural Network (2D-DCNN) was used to 

classify ECG arrhythmia into five categories of heartbeats: 

N, S, V, F and Q. Even with the exclusion of other stages, 

the implemented model reached higher levels of accuracy. 

However, the number of phases was raised for every 

iteration, and the convergence process suffered substantial 

oscillations in every iteration. 

Extreme Learning Machine (ELM) was combined with an 

efficient and reliable 12-layer deep one-dimensional (1-D) 

CNN by Kuila et al. [21] for classification. The presentation 

of proposed method was expressed using the well-known, 

publicly accessible MIT-BIH Arrhythmia as well as level of 

accuracy achieved by the model was associated with the 

prior similar types of work. The wavelet self-adaptive 

threshold denoising technique and numerous heart beat 

characteristics were found using the combined ELM and 

CNN. To improve categorization, hidden neurons were used 

to operate the ELM. To further increase the accuracy, a 

variety of features needed to be taken into account. 

Fuzzy Clustering Network (Fuzz-ClustNet) and deep 

learning were created by Kumar et al. [22] for the purpose 

of identifying arrhythmia. The ECG signal was denoised 

using the IIR Notch Filter and FIR Filter to remove motion 

noise, power line interference, baseline drift, and other types 

of noise. Christov segmentation was then applied to make 

sure that the data augmentation and segmentation were 

carried out in order to minimize the effects of class 

imbalance. Additionally, CNN was employed to extract the 

features, and the resulting features were then subjected to 

fuzzy clustering in order to categorize ECG signals. The 

Deep Learning approach's hyperparameters were tuned 

using the Random Search heuristic. Due to the 

misclassifications, the number of positive classes were 

lower for the Fuzz-ClustNet.  

3. Proposed Method 

Here, the Fig. 1 shows the block diagram of proposed 

method’s which uses the MIT-BIH dataset consisting of the 

ECG signals. After extraction of ECG signals, ECG 

arrhythmia signal classification is performed using a 

Continual normalized CNN model. Totally, 5 classes are 

classified from the ECG, they are, N (Normal beat), S 

(Supraventricular ectopic beat), V (Ventricular ectopic 

beat), F (Fusion beat) and Q (Unknown beat). 

 

Fig. 1.  Block diagram of the proposed research 
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3.1. Data preparation using MIT-BIH database 

Here, 60% of the inpatient recordings were obtained from 

the database which has 23 records that are numbered from 

100 to 124 inclusive of other missing statistics. The numbers 

were approximately chosen from the set that has a total of 

200 to 234 inclusive data by some missing statistics. The 

numbers were chosen from similar sets to add a variety of 

rates. There are a total of 48 records of 30 minutes duration. 

The first group of records is intended to assist as the 

representative sample for the diversity of artifacts and 

waveforms that are utilized for arrhythmia detection in the 

clinical usage. The random numbers were used for the 

selection of tapes and the half-hour segments. The segments 

were selected and were excluded only if the 2 ECG signals 

were of adequate quality as per human experts’ analysis.  

The records from the second group include complex 

junctional, ventricular, and supraventricular arrhythmia 

abnormalities. There are several records in the rhythm 

which are chosen as features. The variation in the QRS 

morphology, or the quality, presented a difficulty for 

arrhythmia detection. Totally 25 male subjects from the age 

of 32 to 89 years and 22 female subjects from the age of 23 

to 89 years’ data are used. The record numbers 201 and 202 

are from the same male subject. The collected sample data 

from the database is depicted in Fig. 2. 

 

 

Fig. 2.  Collected Sample data

3.2. Continual Normalization 

Batch Normalization (BN) is a technique used in current 

methods of continuous learning to speed up training and 

enhance task generalization. The non-stationary settings of 

continuous learning data, particularly in an online 

environment, widens the gap among training and testing in 

BN makes it more difficult to solve the problems. In this 

paper, the cross-task normalisation effect of BN is examined 

in continuous learning. BN controls the testing data by 

moments that biased toward the current task and leading to 

more catastrophic forgetting. This constraint prompts the 

development of Continual Normalization (CN), a 

straightforward and practical technique that facilitates 

training similar to BN while minimizing its drawbacks. 

Numerous tests using various online settings and continual 

learning algorithms demonstrate that CN can significantly 

outperform BN and is a suitable replacement for it. 

Employing CNN and a continuous normalisation process, 

facilitates consistent and effective classification heartbeats 

in the ECG signals [23]. 

The benefit of CN is that it uses the same input as that of the 

traditional normalisation layers and does not include any 

more learnable factors that can be disastrously forgettable. 

Additionally, the selection of Instance Normalization (IN) 

and Layer Normalization (LN) is not beneficial for issues 

related to picture identification. The values from BN and IN 

are combined by Task Norm in a manner similar to SN using 

a blending factor that is unique to each task. Due to the poor 

normalisation of its outputs, Task Norm also suffers as a 

result. Furthermore, Task Norm neglects the third 

requirement of having more information than BN but the 

CN tackles the Meta issue by demanding knowledge of the 

task identification at test time.  

Prior to choosing a group normalisation, CN does a spatial 

normalisation on the feature map [24]. A batch 

normalisation layer is then used to further normalize the 

group-normalized features. Formally, given the input 

feature map 𝑎, which represents the batch normalisation and 

group normalisation layers even without factorization 

parameters. 𝐵𝑁1,0  and 𝐺𝑁1,0  gain the normalisation 

features as 𝑎𝐶𝑁 which is mentioned in (1), 

𝑎𝐺𝑁 ← 𝐺𝑁1,0(𝑎); 𝑎𝐶𝑁 ← 𝛾𝐵𝑁1,0(𝑎𝐺𝑁)+ 𝛽                                 

(1) 

In order to verify that the feature map 𝐵𝑁1,0(𝑎𝐺𝑁) is 

normalized across the mini-batch and spatial dimensions, 

the GN element does not perform the transfer function in the 

initial step. Additionally, performing GN first enables the 

spatially-normalized features to contribute to the BN's 

running average, thus minimizing the influence of cross-

task normalisation. Fig. 1 shows how CN is represented. CN 

is created with the specifications of a continuous learning 
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normalisation layer. A balance between encouraging 

training and lessening the impact of normalizing across 

tasks is reached by CN by normalizing the input feature 

across mini-batch as well as individually. As a consequence, 

CN strikes a reasonable balance between BN and other 

instance-based normalizers, is adaptive during validation, 

and provides well-normalized features in the mini-batch and 

spatial dimensions. 

3.3. Classification of ECG signals 

The CNN [25] model utilizes the structural features for 

performing classification that convolve the kernel inputs to 

learn the input features in an image. The activation of the 

non-linear activation function is expressed as shown in (2). 

𝑎𝑖,𝑗 = 𝑓(∑ ∑ 𝑤𝑚,𝑛
𝑁
𝑛=1

𝑀
𝑚=1 . 𝑥𝑖+𝑚,𝑗+𝑛 + 𝑏)                 (2) 

From (2), 𝑥𝑖+𝑚,𝑗+𝑛 are the upper neurons that are connected 

to neuron (𝑖, 𝑗), 𝑎𝑖,𝑗 is known as the corresponding 

activation, 𝑤𝑚,𝑛 is known as the convolution weight matrix, 

𝑓 is known as the non-linear function, and 𝑏 is the bias 

value.  

Convolution layers of Rectified Linear Unit (ReLU) are 

applied to measure feature maps. The non-linear function is 

given in (3). 

𝜎(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)                                                   

(3) 

More convolution kernels are needed in the model for 

mining the hidden features from the samples of input. Two 

convolution layers are used in the LSTM-CNN model. The 

64 convolutional kernels are applied to extract the features 

and a 1 × 5 convolution kernel is set in the first 

convolutional layer. The 128 convolution kernels are 

needed for deeper feature extraction and 2 sliding steps are 

set in the convolution window. Each convolution kernel 

with the size of 1 × 3 is set and 1 step size of the 

convolution window is applied in the layer. The Max-

pooling layer is applied between two convolutional layers to 

perform down-sampling. Executing these two processes 

filter noise interference in images and dominant feature is 

maintained to reduce the features.  

3.4. Pooling Layer 

Many features in the activation map provide overfitting 

problems and computational burden. In the pooling layer, 

sub-sampling of non-linear is performed to reduce the 

features [26]. Pooling is performed for translation 

invariance. The commonly applied two pooling methods are 

average pooling and max-pooling. In each pooling region, 

the element of average value is selected for average pooling 

and max value is selected for max pooling. 

The pooling region is denoted as 𝐸, the activation set is 

denoted as 𝑃, and the activation is expressed in (4). 

𝑃 = {𝑝𝑘|𝑘 ∈ 𝐸}    (4) 

Equation (5) denotes the average pooling. 

𝐴𝑃 =
∑𝑃𝐸

|𝑃𝐸|
                                                           (5) 

Equation (6) denotes the max-pooling. The cardinal number 

of set 𝑥 is denoted as |𝑥|. 

𝑀𝑃 = max (𝑃𝐸)      (6) 

3.5. Output Layer 

A softmax classifier and a fully connected layer are applied 

in the output layer. The fully connected layer is added as the 

last layer. Every node is fully connected to the nodes of the 

upper layer to merge extracted features. This is applied to 

overcome the Global Average Pooling layer (GAP). 

After fully connected layer, softmax classifier is applied to 

convert output of the upper layer into a probability vector to 

represent label of classes probability. The softmax layer 

formula is given in (7). 

𝑆𝑗 =
𝑒

𝑎𝑗

∑ 𝑒𝑎𝑘𝑁
𝑘=1

     (7) 

Where 𝑁 denotes the number of classes, in the fully 

connected layer 𝑎𝑗 is the output vector in 𝑗𝑡ℎ value. The 

proposed CNN model diagram is shown in Fig. 3. 

 

Fig. 3.  Convolutional Neural Network (CNN) structure 
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Here, CNN model has the convolution with subsampling 

layers, accompanied by a fully linked output layer. The 

model is trained for the propagation mechanism, and the 

CNN seeks to mimic the architecture. The propagation 

algorithm is used for the training. The extraction of features 

is similar to that of the input space unless the standard 

techniques are used for the manual feature extraction. These 

features are given to the classifier to conduct the 

classification process. To determine the huge number of 

parameters, a higher dimensional data is needed. The 

training data was formerly quite huge in number giving rise 

to overfitting of the data. The CNN handles the problems 

related to pooling or subsampling, and local connectivity. 

3.6. Local connectivity 

The signal is separated into patches or blocks of similar size. 

The receptive fields are the blocks acquired from the signal. 

The blocks are overlapped and non-overlapped in nature. 

The overlapping block shares the signal’s common part but 

the signals are not shared by the non-overlapping blocks. 

The smooth features are removed, and the overlapping 

blocks are taken into account. The hidden unit is connected 

to only one input signal block that extracts features from 

every image block. The local features are extracted from the 

exact feature location that becomes less significant. 

Therefore, extracting the local features is essential till the 

remaining features are preserved in the relative location. 

3.7. Parameter Sharing 

Each computational layer in the network comprises certain 

feature maps, and the fundamental concept is to enable 

multiple neurons to transfer the parameters. Thus, the 

hidden neurons are structured in a way that it enables 

mapping and transmission of parameters. The hidden units 

present in the feature map have covered distinct blocks of a 

signal that share and extract similar features from the 

distinct blocks of the signal. Every block of the signal is 

located with a greater number of feature maps & neurons in 

which features from the same block have different feature 

maps. The activation values from the hidden unit result in 

weights from the input channel that maps the features. The 

generated features are multiplied by the input vector and the 

primary focus is on the procedure of discrete convolution. 

3.8. Pooling and subsampling 

The neural network comprises the pooling layer with 

convolutional layer from which the features are obtained. 

The convolution layer transforms data through 

the convolution technique. The set of digital filters is 

employed in two different ways: average & max pooling. 

The window consists of the predefined size that selects the 

data by using these methods. The highest activation value 

incorporates the window in max pooling, and activation 

values from average pooling window are included. To 

conduct dimension reduction, the current work employs 

fully linked layers. This fully linked layer is commonly 

referred to as a convolutional neural network. CNNs are 

utilized to analyse image data, and computations on such 

layers are conducted in the 2D plane [27].  

Processes such as regression or classification are carried out 

on the basis of extracted features from which the output is 

produced. To conduct dimensionality reduction, the 

threshold is determined from the pooling layer. Hence, the 

convolution layers are used to conduct the processes of the 

convolution as well as pooling layers on the 2D planes into 

5 classes which is shown in Fig. 4, that has (a) N beat (b) S-

beat (c) V-beat (d) F-beat (e) Q-beat. 

  

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Fig. 4.  (a) N beat (b) S-beat (c) V-beat (d) F-beat (e) Q-

beat 

4. Results and Discussions  

This section briefly describes the performance evaluation of 

the arrhythmia detection displayed by the proposed 

research. The proposed spatial and temporal feature 

extraction method is applied to the MIT-BIH dataset. For 

the implementation, having a system of 16 GB RAM with 

an i7 CPU is a necessity. During the classification process, 

90% of the dataset was utilised for training and 10% for 

testing. Following are the performance metrics utilized to 

analyze the classified signals: Accuracy, Precision, recall, 

F-measure and Error Rate are expressed from equation (8) – 

(12).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100               (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                                           (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                                             

(10) 

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
                                       

(11) 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 100 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦                                              

(12) 

 

Fig. 5.  Confusion matrix 

4.1. Quantitative Analysis 

Table 1 displays the better results attained by the proposed 

method based on various performances. Fig. 5 shows the 

Confusion matrix and a total of 5 classes ranging from 0 to 

4 are evaluated. The data of various instances are considered 

in the present research work with distinct numbers. The 

dataset that has a lower number of 162 values obtains a 

lower number of precisions, f-score, and recall values. 
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Similarly, if the data used are higher in number, then the 

values obtained are also having higher values of F-score, 

Precision, and Recall. Table 1 includes two types of signal 

properties, signals with divisions (intervals) and signals 

without divisions. The main reason of evaluating results for 

sub-divided signals is because, in each of the ECG signal 

segments, a change in the duration of time may happen 

because of one or more waves. Therefore, it is important to 

evaluate results for the generated signals and thus sub-

divisions are made for getting better values. The results 

obtained in the proposed method showed that the support 

with 18118 samples without division of signals gave 98% of 

precision whereas the sub-division in the signal had 82 % of 

precision. Whereas, the lowest number of supports 

considered is 162 which obtained 7% of precision for 

without division in the signals and 99% of precision for the 

signal with the sub-division. This is because higher number 

of sub-samples proportionally gives higher results with 

respect to the size, and greater the sample size, the more 

statistically significant the results will be.  

Fig. 6 shows the graphical representation and average values 

attained by all 5 classes with an accuracy of 69 %, precision 

of 49 %, recall of 81 %, and F-score of 52 %. The 

performances are evaluated in terms of various metrics, 

where the values of F-score was better when compared to 

the existing models. Fig. 7 is a graphical representation of 

the model's accuracy. Table 2 and Fig. 8 shows the average 

performances for the proposed model. Fig. 9 shows the 

average performances obtained for Model loss. 

 

Table 1. Performance Metrics Evaluation for the Proposed Method 

Classes Support Signal properties Precision (%) Recall (%) F1-score (%) 

0 
18118 

 

Without division in the signals 98 66 79 

Sub-division in the signal 82 100 90 

1 
556 

 

Without division in the signals 13 80 22 

Sub-division in the signal 99 93 90 

2 
1448 

 

Without division in the signals 53 77 63 

Sub-division in the signal 95 93 96 

3 
162 

 

Without division in the signals 7 90 13 

Sub-division in the signal 99 97 96 

4 
1608 

 

Without division in the signals 73 92 81 

Sub-division in the signal 99 99 99 

 

Table 2. Average Performances for the Proposed Method 

Metrics Signal properties Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Proposed Method 
Without division in the signals 69 49 81 52 

Sub-division in the signal 99.2 95 94 94 
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Fig. 6.  Graphical representation of the proposed method 

 

Fig. 7.  Graphical representations for the model accuracy  

  

Fig. 8.  Average performances of proposed method along 

with the signal properties 

 

Fig. 9.  Average performances obtained for Model loss 

The convolution layers are used, in order to conduct the 

convolution procedures and group the layers on the 2D 

planes into 5 distinct classes. N, S, V, F and Q are the types 

of arrhythmia present in the dataset. The different classifiers 

considered for evaluation are Support Vector Machine 

(SVM), Random Forest (RF), Decision Tree (DT), K 

Nearest Neighbor (KNN) and Recurrent Neural Network 

(RNN).  

Tables 3 shows the analysis of SVM, RF, DT, KNN, RNN 

and proposed CNN based CN for MIT-BIH database. 

Figures 10 shows the classification performances of 

different classifiers for MIT-BIH database.  
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Table 3. Analysis of different classifiers for MIT-BIH 

database 

Classifier

s 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Error rate 

(%) 

SVM 92.89 87.83 89.75 90.32 6.18 

RF 92.76 89.06 87.36 89.03 5.77 

DT 94.96 90.45 85.53 90.47 4.03 

KNN 98.12 92.14 91.88 92.69 2.01 

RNN 98.14 92.29 92.01 93.53 0.99 

CNN 

based CN 
99.2 95.00 94.00 94.00 0.12 

 

 

Fig. 10.  Graphical illustration of different classifiers on 

MIT-BIH database 

This analysis reveals that the proposed CNN based CN 

provides better performances when compared to the other 

classifiers. In the arrhythmia classification, the proposed 

CNN based CN achieves the accuracy of 99.2% which is 

definitely higher when compared to MSVM, KNN, sparse 

auto encoder, stacked auto encoder and LSTM. Figure 11 

shows the graphical performance results of different 

classifiers in terms of Error Rate. 

 

Fig. 11.  Graphical illustration of different classifiers on 

Error Rate Performance 

Additionally, the developed CNN based CN is analyzed for 

different configurations of k-fold validation. The different 

k-fold values considered for the analysis are 3, 5, 8 and 10 

which is shown in Table 4. 

Table 4. Analysis of CNN based CN for different 

configurations on k-fold validation 

Performances k-fold validation 

3 5 8 10 

Accuracy (%) 97.90 98.16  97.28 93.11  

Precision (%) 94.31 97.54  94.74  93.02  

Recall (%) 93.13 97.17 93.18 92.06  

F1- score (%) 93.76 97.06  93.71  92.94  

Error rate (%) 2.05 0.12 2.34 5.98 

 

This analysis of table 4 shows that the CNN based CN 

processed under the cross-fold validation size of 5 provides 

better performances than the other configurations. Figure 12 

shows the graphical evaluation of k-fold validations on 

CNN based CN with various performance metrics. The 

figure 13 shows the k-fold validation process in terms of 

error rate. 

 

Fig. 12.  Graphical representation of k-fold validation on 

CNN based CN 

 

Fig. 13.  Graphical representation of k-fold validation on 

CNN based CN 

Here, Table 5 shows the analysis of different classes on 

MIT-BIH dataset. There are totally, 5 classes considered in 

this analysis, they are class 0 (N), class 1 (S), class 2 (V), 
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class 3 (F) and class 4 (Q) respectively. The following are 

the performances taken for the investigation, they are False 

Positive Rate (FPR), False Discovery Rate (FDR), True 

Positive Rate (TPR), False Negative Rate (FNR) False 

Acceptance Rate (FAR) respectively.  

Table 5. Analysis of different classes on MIT-BIH 

 

FPR FAR TPR FNR FDR 

Class 

0 

0.063 0.263 0.667 0.333 0.267 

Class 

1 

0.057 0.200 0.818 0.181 0.200 

Class 

2 

0.050 0.216 0.725 0.275 0.216 

Class 

3 

0.091 0.348 0.777 0.222 0.348 

Class 

4 

0.05 0.216 0.763 0.236 0.216 

 

 

Fig. 14.  Area Under the Curve of CNN based CN on MIT-

BIH dataset 

 

Figure 14 displays the Area Under the Curve (AUC) of 

CNN-based CN classification using the MIT-BIH dataset. 

The ROC curve's point corresponds to a location where 

there is an equal chance of misclassifying a positive or 

negative sample. From the figure 14, it clearly shows that 

the CNN based CN model shows 0 .95 AUC for the 

classification (classes S & Q) which designates that TPR 

considerably rises for the classification of arrhythmia. 

While the other classes such as N, V and F has 0.93, 0.93, 

0.94 respectively. 

4.2. Comparative Analysis  

The comparison of proposed and existing models is 

represented in Table 6. The existing Dual Fully connected 

Neural Network does not utilize enough data for training the 

network structure. The Deep fully connected CNN [16] 

resulted with data complexity that obtained an accuracy of 

93.4 %. Another model based on Optimization enabled 

Deep CNN is used to handle dynamic features that are based 

on the input raw signals. The dataset used by this model was 

difficult to handle, and the optimization enabled Deep CNN 

[18] accomplished an accuracy of 93.19%. The Short-Time 

Fourier Transform (STFT) Spectrogram with CNN model 

showed limitations in terms of imbalanced data that failed 

to distribute through the database equally. The existing 

CNN [19] has obtained an accuracy of 95.10%, while the 

existing STFT Spectrogram and Convolutional Neural 

Network [20] gained an accuracy of 90.93% and did not 

perform cross-validation instead it trained the data with 

respect to the MIT-BIH database; similarly, ELM-CNN [21] 

has achieved an accuracy of 98.82%. Whereas, the proposed 

CNN-based Continual Normalization techniques obtained 

accuracy of 99.2 %, precision of (99%), recall (99%) and f1-

score (99%) which is way better when compared to the 

existing model Fuzz-ClustNet [22] which has obtained 

98.66% of accuracy, 98.92% of precision, 93.88% of recall 

and 96.34% of f1-score for MIT-BIH dataset which is 

presented clearly in the below table 6. 

Table 6. Comparative Analysis of accuracy 

Authors Method Accuracy (%) Precision (%) Recall (%) 
F1-score 

(%) 

Haoren Wang [16] 
Dual Fully Connected 

Neural Network 
93.4 NA NA NA 

Dinesh Kumar Atal, 

Mukhtiar Singh [18] 

Optimization-Enabled 

Deep Convolutional 

Neural Network 

93.19 NA 93.98 NA 

B. M. Mathunjwa et 

al. [19] 

Convolutional Neural 

Network 
95.1 NA NA NA 

Jingshan Huang [20] 

Short-Time Fourier 

Transform (STFT)- 

Spectrogram and 

Convolutional Neural 

Network 

90.93 NA NA NA 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 491–502  |  501 

Kuila, S., Dhanda, 

N. and Joardar, S. 

[21] 

Extreme Learning 

Machine (ELM)- 

Convolutional Neural 

Network (CNN) 

98.82 NA 93.14 93.52 

Kumar, S., Mallik, 

A., Kumar, A., Del 

Ser, J. and Yang, G 

[22] 

Fuzzy Clustering 

Network 
98.66 98.92 93.88 96.34 

Proposed 
CNN based Continual  

99.2 99 99 99 
Normalization 

5.     Conclusion 

Cardiac arrest is increasingly becoming a serious prognostic 

risk to life and it currently holds a higher mortality rate in 

this world. Conventional approaches have made significant 

contributions in identifying arrhythmia using ECG signals. 

However, the conventional approaches failed to select 

features prior to the extraction. The issues are overcome in 

the present research work as it obtains the ECG signals from 

MIT-BIH and eliminates unwanted artefacts by utilizing a 

Butterworth filter. The proposed CNN based Continual 

Normalization approach addresses the conventional 

system's over-fitting issues by achieving the highest 

accuracy, precision, recall and f1-score of 99.2%, 99%, 99% 

and 99% respectively. In the future, an effective 

optimization algorithm will be utilized to solve optimization 

issues. 
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