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Abstract: Healthcare is a critical sector where timely and accurate predictions can save lives and improve the quality of care. Traditional 

healthcare systems often lack the ability to process vast amounts of patient data efficiently. To address this, IoT technology is harnessed 

for seamless data collection and integration, facilitating real-time updates to a central database. The challenge lies in harnessing this data 

effectively to predict health conditions. The diversity of patient data, including Medical IDs, pulse rates, medical reports, and symptoms, 

requires sophisticated algorithms to extract meaningful insights. Moreover, the accuracy and reliability of predictions are vital to ensure 

patient safety. This paper presents the design of an Internet of Things (IoT)-based healthcare prediction system utilizing the Normalized 

Patch Generative Adversarial Network (NP-GAN) based Fruit Fly Optimization (FFO) algorithm. The proposed system aims to predict 

health conditions based on patient data, including Medical ID, pulse rate, medical reports, and symptoms. Through seamless integration of 

IoT technologies and AI algorithms, the system enables real-time monitoring and predictive analysis, enhancing patient care and medical 

decision-making. The system collects patient data including Medical ID, pulse rate measurements, medical reports, and reported symptoms. 

IoT devices facilitate real-time data transmission to the central database. Raw data undergoes preprocessing, including normalization and 

sequence alignment. Textual medical reports are transformed into numerical vectors using techniques like word embeddings. Features such 

as pulse rate trends, symptom sequences, and medical report patterns are extracted from the preprocessed data, providing valuable insights 

for prediction using NP-GAN. The RCNN algorithm, combining recurrent and convolutional layers, is employed for its ability to capture 

temporal dependencies and spatial patterns in data. The network learns to associate pulse rate trends, symptoms, and medical information 

for accurate predictions. The RCNN model is trained using historical patient data and validated using FFO to optimize hyperparameters 

and prevent overfitting. Real-time patient data is continuously fed into the trained RCNN-FFO model, which predicts potential health 

issues. Alerts are generated for medical professionals if anomalies or concerning patterns are detected. The system performance is assessed 

using metrics like accuracy, precision, recall, and F1-score. Continuous feedback and retraining improve prediction accuracy over time. 
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1. Introduction 

In recent years, the convergence of Internet of Things 

(IoT) technology, healthcare, and machine learning has 

heralded a transformative era in the provision of 

healthcare services. IoT wearables, characterized by their 

interconnectedness and data-sensing capabilities, have 

emerged as potent tools in monitoring and improving 

individual health [1]. Simultaneously, machine learning, 

with its capacity to decipher intricate patterns within data, 

has revolutionized healthcare by enhancing diagnostics, 

predicting disease trajectories, and personalizing 

treatment plans [2]. 

The proliferation of IoT wearables has redefined how 

healthcare data is collected and utilized. These 

unobtrusive, sensor-laden devices, ranging from 

smartwatches to fitness trackers, have empowered 

individuals to take charge of their well-being by 

continuously monitoring vital signs, physical activity, and 

even sleep patterns [3]. This shift from episodic healthcare 

to continuous, real-time monitoring not only offers a 

comprehensive view of an individual health but also opens 

up new opportunities for early intervention and prevention 

[4]. 

In parallel, machine learning algorithms have harnessed 

the deluge of healthcare data generated by IoT wearables, 

electronic health records, and medical imaging [5]. These 

algorithms have the capability to decipher intricate 

relationships between various health indicators, enabling 

healthcare providers to make more informed decisions [6]. 

Machine learning ability to predict disease risks, optimize 

treatment plans, and identify anomalies has not only 

improved patient outcomes but also reduced healthcare 

costs [7]. 

As we stand at the intersection of these three domains - 

IoT wearables, healthcare, and machine learning - we 

witness a convergence that holds immense promise [8]. 

The synergy between wearable device data-rich inputs, the 

analytical prowess of machine learning algorithms, and 

the critical healthcare domain can potentially reshape 
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healthcare delivery, making it more personalized, 

proactive, and efficient [9] [10]. 

This paper explores the fusion of IoT wearables, 

healthcare, and machine learning, aiming to unlock the 

full potential of this convergence [11] [12]. It delves into 

the methodologies, challenges, and opportunities that 

arise when these three realms intersect. Moreover, it 

showcases the transformative impact this intersection can 

have on healthcare by providing real-world examples and 

case studies. In this paper, technology and data-driven 

insights converge to optimize well-being and redefine 

healthcare as we know it. 

The challenges encompass diverse patient data sources, 

from Medical IDs and pulse rate measurements to textual 

medical reports and reported symptoms [13]. Effectively 

integrating and analyzing this data to predict health 

conditions demands cutting-edge AI algorithms capable of 

extracting relevant patterns and associations [14] [15]. 

The central problem addressed in this research is the need 

for a robust system that can harness IoT-generated patient 

data to make accurate predictions about their health 

conditions in real-time. This involves transforming raw 

data into actionable insights that can guide medical 

professionals in making timely interventions. 

This paper presents a pioneering approach that combines 

IoT and AI, specifically the Normalized Patch Generative 

Adversarial Network (NP-GAN) with the Fruit Fly 

Optimization (FFO) algorithm, to create an IoT-based 

healthcare prediction system. This system aims to address 

critical challenges in healthcare by providing real-time 

monitoring and highly accurate predictive analysis of 

patient health conditions. 

The research aims to develop an IoT-based healthcare 

prediction system that seamlessly integrates patient data 

from diverse sources. It utilizes advanced AI techniques, 

including NP-GAN and FFO, to preprocess and analyze 

patient data for predictive insights. It enables real-time 

monitoring of patient health conditions, allowing for early 

detection of anomalies. It provides medical professionals 

with timely alerts and accurate predictions to facilitate 

proactive healthcare interventions. 

The novelty of this research lies in the integration of NP-

GAN and FFO algorithms with IoT technology for 

healthcare prediction. This unique combination offers a 

novel approach to extracting valuable insights from 

patient data, with the potential to significantly improve the 

quality of healthcare services. This research contributes to 

the field of healthcare by introducing a new system that 

can transform patient care through real-time monitoring 

and precise predictive analysis. By harnessing the power 

of IoT and advanced AI algorithms, this system has the 

potential to enhance patient outcomes and support medical 

professionals in their critical decision-making processes. 

2. Related Works 

Abdulmalek et al. (2022) [16] delve into the contemporary 

trends in healthcare monitoring systems, with a specific 

focus on the IoT. Their study emphasizes the importance 

and advantages of IoT-based healthcare solutions. The 

review encompasses an evaluation of various systems in 

terms of their effectiveness, efficiency, data security, 

privacy, and monitoring capabilities. The study concludes 

by providing suggestions, recommendations, and future 

directions in the realm of IoT healthcare applications. 

Ganji and Parimi (2022) [17] explore user perceptions and 

recommendations concerning perceptions based on their 

experiences and knowledge, achieving an impressive 

accuracy rate of 96.7%. Their investigation underscores 

the significance of factors such as user comfort and data 

trustworthiness. However, it worth noting that their study 

primarily builds upon insights derived from prior 

research. 

Shumba et al. (2022) [18] introduce a modular IoT-aware 

system architecture tailored for diverse healthcare 

applications. This architecture promotes the integration of 

advanced sensing technologies, low-power IoT 

technologies, and emerging AI techniques to create 

adaptable, dependable, and scalable healthcare 

infrastructure. The modular nature of this architecture 

allows for customization based on specific application 

requirements, as demonstrated in the discussion. The 

study also highlights the advantages of on-device AI-

based data processing, emphasizing its potential to 

enhance IoT-based healthcare infrastructure by enabling 

real-time user alarms and notifications. 

Kang and Hwang (2022) [19] investigate and examine the 

moderating role of consumer innovativeness in this 

context. Their findings reveal that personalization directly 

influences usage intention, suggesting that tailored 

benefits for individuals can enhance acceptance of 

wearable medical devices. The study further uncovers that 

the association between personalization and continued use 

intention is partially mediated by perceived utility and 

community immersion. 

Jaber et al. (2022) [20] describe a system for monitoring 

COVID-19 patients using IoT technology. Their approach 

utilizes real-time GPS data collected through IoT devices 

to automatically alert patients and reduce risk factors. 

Wearable IoT devices are connected to patients, 

communicating with edge nodes to analyze health data 

remotely. This system comprises three layers: data 

collection, cloud storage, and network analysis, which 

collectively enable real-time health monitoring and timely 

alerts to patients and their families. Their optimized deep-
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learning model facilitates comprehensive health 

management and analysis. 

Arunsi and Majid (2023) [21] employ a study assesses the 

accuracy, error rate, F-measure, and ROC area of these 

models through experimental results. The suggested 

technique has the potential to aid in making informed 

decisions in the medical field, particularly in complex 

scenarios like predicting COVID-19. 

Table 1: Summary of Existing works 

Author Citation Methods IoT Utilization Outcomes 

Abdulmalek 

et al. (2022) 

[16] IoT-based healthcare systems Emphasizes IoT 

benefits, reviews IoT 

healthcare systems 

Provides insights into 

effectiveness, efficiency, data 

protection, and privacy of IoT 

healthcare systems. Suggests 

future directions. 

Ganji & 

Parimi (2022) 

[17] ANN-based predictive model 

(ANN-PM), user perception 

analysis 

Classifies user 

perceptions of IoT-

based smart 

healthcare devices 

Achieves a 96.7% accuracy rate in 

predicting user perceptions. 

Identifies key factors influencing 

user perceptions. 

Shumba et al. 

(2022) 

[18] Development of a modular 

IoT-aware system architecture 

Emphasizes IoT 

integration, low-

power IoT 

technologies 

Presents a modular architecture 

adaptable for diverse healthcare 

applications. Highlights on-device 

AI benefits. 

Kang & 

Hwang (2022) 

[19] Survey-based analysis, 

mediating effects examination 

Explores user 

perceptions and 

intentions regarding 

IHWDs 

Personalization found to directly 

influence usage intention, with 

mediation through perceived 

utility and community immersion. 

Jaber et al. 

(2022) 

[20] IoT-based health monitoring 

system, deep learning model 

Utilizes IoT for real-

time patient health 

monitoring 

Describes an IoT-based COVID-

19 monitoring system with real-

time alerts and family 

notifications. 

Arunsi & 

Majid (2023) 

[21] Machine learning 

algorithms, fuzzy 

logic-based 

prediction (ML-FLP) 

Predicts COVID-19 

using machine 

learning and fuzzy 

logic 

Evaluates the accuracy, error rate, 

F-measure, and ROC area of 

various machine learning models 

for COVID-19 prediction. 

 

3. Proposed Method 

This section introduces an approach to healthcare 

prediction using an IoT-based system enhanced by the NP-

GAN and FFO algorithm. The system primary objective 

is to forecast health conditions by analyzing patient data, 

encompassing Medical ID, pulse rate measurements, 

medical reports, and reported symptoms. Through the 

seamless fusion of IoT technology and advanced AI 

algorithms, the system enables real-time monitoring and 

predictive analysis, thereby elevating patient care and 

augmenting medical decision-making. 
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Fig 1: Proposed Architecture  

The proposed design (Figure 1) encompasses several crucial stages, which is given in Algorithm 1. 

Algorithm: RCNN with NP-GAN Feature Extraction and FFO Hyperparameter Optimization 

Step 1: Data Preprocessing 

• Data Collection and Integration: 

• Collect data from various IoT devices and sensors, including sensors for pulse rate, medical reports, 

symptoms, and any other relevant data sources. 

• Integrate data from different devices and sources into a central database or dataset. 

Data Cleaning and Quality Control 

Data Transformation and Encoding 

Step 2: NP-GAN Feature Extraction 

• Apply NP-GAN feature extraction to the training dataset: 

1. Preprocess the raw data, including normalization and sequence alignment if applicable. 

2. Extract relevant features such as pulse rate trends, symptom sequences, and medical report 

patterns using the NP-GAN model. 

3. Transform textual medical reports into numerical vectors using techniques like word 

embeddings. 

• Apply the same NP-GAN feature extraction process to the validation and test datasets. 

Step 3: Initialize Hyperparameters 

• Initialize hyperparameters for RCNN, including the learning rate (α), batch size (B), and architecture 

(convolutional layers, recurrent layers). 

Step 4: RCNN Model Construction 

• Build the RCNN model with the specified architecture, incorporating convolutional and recurrent 

layers. 

• Define the loss function suitable for the task (cross-entropy for classification). 

Step 5: Training Loop 

• Iterate through multiple epochs: 

IoT Wearable Device 
Data Collection

Pre-processing

Feature Extraction 
using NPGAN

RCNN Classification

FFO Hyperparameter 
Optimisation

Health Predictions
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1. For each batch of training data: 

• Forward pass: Compute the predictions (yp) using the current RCNN model. 

• Calculate the loss using the ground truth labels (yt) and the loss function. 

• Backpropagate the gradients and update the model parameters using gradient 

descent (with α). 

Step 6: Hyperparameter Optimization with FFO 

• Apply FFO to optimize hyperparameters: 

1. Initialize the FFO algorithm, specifying parameters such as population size and maximum 

iterations. 

2. For each iteration of FFO: 

• Evaluate the RCNN model performance on the validation set using the current set 

of hyperparameters. 

• Update hyperparameters using the FFO update rule based on the model validation 

performance. 

3. Repeat the FFO optimization process until a termination criterion is met. 

Step 7: Model Evaluation 

• Evaluate the final RCNN model (with optimized hyperparameters) on a separate test dataset to assess 

its generalization performance. 

 

3.1. Data Collection:  

The system efficiently gathers diverse patient data, 

comprising critical information like Medical ID, real-time 

pulse rate measurements, medical reports, and symptom 

reports. IoT devices play a pivotal role in ensuring the 

swift transmission of data to a centralized database. 

IoT sensors can collect data on environmental conditions 

such as temperature, humidity, air quality, and 

atmospheric pressure. These variables are crucial for 

various applications, including weather forecasting, 

climate monitoring, and indoor air quality management. 

In healthcare IoT, data collection often includes variables 

related to patient health, such as heart rate, blood pressure, 

oxygen levels, and body temperature. These parameters 

are vital for remote patient monitoring and early disease 

detection. IoT devices equipped with GPS or RFID 

technology can collect location-based variables, including 

latitude, longitude, altitude, and speed. This data is 

valuable for tracking assets, vehicles, and personnel in 

logistics and transportation applications. IoT-enabled 

smart meters and sensors can collect data on energy 

consumption variables like electricity usage, voltage, and 

power factor. This information is essential for energy 

management and conservation. Sensors like 

accelerometers and gyroscopes measure variables related 

to vibration, acceleration, and orientation. These variables 

are critical for structural health monitoring, predictive 

maintenance, and motion tracking. Light sensors in IoT 

devices can measure variables related to ambient light 

levels. This data is useful in smart lighting systems, 

security applications, and daylight harvesting for energy 

efficiency. IoT sensors can capture variables associated 

with sound and noise, including decibel levels and 

frequency. This data is valuable for noise pollution 

monitoring and acoustic analysis. Motion detectors and 

proximity sensors collect data related to the presence, 

movement, and proximity of objects or individuals. These 

variables are essential for home automation, security 

systems, and occupancy detection. IoT sensors can 

monitor variables such as pollutant concentrations (e.g., 

CO2, NO2, PM2.5) and water quality parameters (e.g., 

pH, turbidity) for environmental monitoring and pollution 

control. In wearable IoT devices, variables like biometric 

data (e.g., fingerprint, facial recognition, iris scan) are 

collected for authentication and access control purposes. 

IoT-enabled RFID tags and sensors collect variables 

related to inventory levels, asset location, and supply 

chain management. 
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Table 2: Data Collection from IoT with variables  

IoT Application Variables Collected Sample Values 

Environmental Monitoring 

Temperature 

Humidity 

Air Quality 

Temperature: 25°C 

Humidity: 55% 

Air Quality Index: 82 

Healthcare Monitoring 

Heart Rate 

Blood Pressure 

Oxygen Level 

Heart Rate: 75 bpm 

BP: 120/80 mmHg 

Oxygen Level: 98% 

Asset Tracking 

GPS Location 

Speed 

Temperature 

Latitude: 34.0522° N 

Longitude: 118.2437° W 

Speed: 60 km/h 

Smart Energy Management 

Electricity Usage 

Voltage 

Power Factor 

Usage: 350 kWh 

Voltage: 220V 

Power Factor: 0.95 

Structural Health Monitoring 
Vibration 

Acceleration 

Vibration Amplitude: 0.1 g 

Acceleration: 2.5 m/s² 

Smart Lighting 
Light Intensity 

Ambient Light Levels 

Light Intensity: 500 lux 

Daylight Detected: Yes 

Security Systems 
Motion Presence 

Intrusion Detection 

Motion Detected: No 

Intrusion Detected: Yes 

Noise Pollution Monitoring 
Sound Level 

Frequency 

Decibel Level: 65 dB 

Frequency: 500 Hz 

Water Quality Monitoring 

pH Level 

Turbidity 

Chemical Concentration 

pH: 7.2 

Turbidity: 10 NTU 

Chlorine Concentration: 0.5 ppm 

Wearable Authentication 
Biometric Data (Fingerprint 

Facial Recognition) 

Fingerprint Match: Yes 

Facial Recognition: Confirmed 

Inventory Management 
Inventory Levels 

Asset Location 

Inventory Count: 250 units 

Asset Location: Warehouse A 

Data collection in IoT encompasses these and many other 

variables depending on the specific application and 

objectives. The collected data is then processed, analyzed, 

and used to derive insights, make informed decisions, and 

enhance various aspects of business operations, safety, 

healthcare, and environmental management, among 

others. 

3.2. Data Preprocessing 

The collected raw data undergoes rigorous preprocessing, 

which includes normalization and sequence alignment. 

For textual medical reports, innovative techniques such as 

word embeddings are employed to convert them into 

numerical vectors, facilitating subsequent analysis. 

Data Cleaning: IoT data often contains noise, errors, or 

missing values due to sensor inaccuracies or 

communication issues. Data cleaning identifies and 

rectifies these issues, ensuring that the dataset is free from 

inconsistencies. 

Data Transformation: Data transformation may involve 

converting data into a common format or unit of 
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measurement. For example, if temperature data is 

collected in Fahrenheit and other variables use Celsius, 

conversion to a consistent unit (e.g., Celsius) may be 

necessary. 

Data Resampling: In some cases, IoT data may be 

collected at irregular intervals. Data resampling involves 

aligning data to a consistent sampling rate (e.g., hourly or 

daily) for analysis or modeling purposes. 

Data Aggregation: Aggregation can be applied to reduce 

the granularity of the data. For instance, sensor readings 

collected every second can be aggregated to obtain hourly 

averages or daily totals, which can be more manageable 

for analysis. 

Normalization: Normalization scales data to a common 

range (e.g., between 0 and 1). 

Handling Missing Values: Missing data is common in IoT 

datasets. Techniques like imputation (replacing missing 

values with estimated values) or excluding incomplete 

records may be used to handle missing values. 

Outlier Detection: Outliers in IoT data can distort analysis 

results. Outlier detection identifies and deals with data 

points that significantly deviate from the norm. 

Data Encoding: Categorical variables in IoT data, such as 

device IDs or sensor types, may need to be encoded into 

numerical values to be used in machine learning 

algorithms. 

Data Integration: IoT data may come from various 

sources or devices. Data integration involves combining 

data from multiple sources into a unified dataset for 

comprehensive analysis. 

3.3. Feature Extraction 

Significant features are meticulously extracted from the 

preprocessed data. These encompass pulse rate trends, 

symptom sequences, and distinctive patterns within 

medical reports, which provide invaluable insights to 

enhance predictions using the NP-GAN framework. 

In NP-GAN, the input data is typically represented as 

images or multi-dimensional data, which may contain a 

multitude of details and information. Feature extraction 

serves to reduce the complexity of the input data while 

preserving important information. It identifies key 

patterns or features that are most relevant to the task at 

hand. 

NP-GAN often operates at the patch level, where patches 

are smaller regions or segments of the input data, such as 

image patches. Feature extraction in this context involves 

analyzing these patches to capture specific characteristics.  

Feature extraction methods within NP-GAN may include 

techniques like convolutional layers, which are capable of 

recognizing patterns such as edges, textures, or shapes 

within the patches. 

Generator Objective Function (Loss): In GANs, the 

generator objective is to produce data that is 

indistinguishable from real data. This is achieved by 

minimizing the binary cross-entropy (BCE) loss between 

the generated data (G(z)) and real data (x): 

LG = -log(D(G(z))) 

In NP-GAN, normalization techniques (e.g., IN or LN) 

can be applied to the intermediate layers of the generator 

network to stabilize training. 

Discriminator Objective Function (Loss): The 

discriminator aims to distinguish between real and 

generated data. Its loss consists of two terms, one for real 

data and one for generated data: 

LD = -[log(D(x)) + log(1 - D(G(z)))] 

Extracted features are typically of lower dimensionality 

compared to the original data. This reduction in 

dimensionality simplifies the subsequent stages of the NP-

GAN model and can enhance computational efficiency. 

Extracted features are often normalized to ensure that they 

fall within a consistent and manageable range. 

Normalization can improve the convergence and stability 

of the NP-GAN during training. 

Instance Normalization (IN): Normalization technique is 

applied to the activations of a layer in the neural network. 

It normalizes each instance (sample) separately: 

IN(x) = (x - (x)) / sqrt((x) + ) *  +  

Where: 

x is the input tensor. 

(x) is the mean of x across spatial dimensions. 

(x) is the variance of x across spatial dimensions. 

 is a small constant for numerical stability. 

 is a learnable scaling parameter. 

 is a learnable shifting parameter. 

IN can be applied to intermediate layers of both the 

generator and discriminator networks in NP-GAN. The 

selected features should be directly relevant to the task 

being performed by the NP-GAN. Extracted features 

should be transferable across different instances of the 

same task. This means that the features should capture 

general patterns that apply to a wide range of data rather 

than being overly specific to the training data. Feature 

extraction can involve fine-tuning the NP-GAN model 

based on the features extracted. This fine-tuning process 

helps the model optimize its performance for the specific 

task. Feature extraction with NP-GAN is often an iterative 
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process where the extracted features are continually 

refined to improve the quality and relevance of the 

generated or enhanced data. 

3.4. RCNN Model Architecture:  

The system adopts the Recurrent Convolutional Neural 

Network (RCNN) algorithm, celebrated for its aptitude to 

capture temporal dependencies and spatial patterns within 

data. The network learns to associate pulse rate trends, 

symptoms, and medical information to deliver precise and 

reliable predictions. 

RCNN is a deep learning architecture commonly used for 

tasks involving sequential data, such as natural language 

processing and time series analysis. It combines 

convolutional layers to capture spatial features and 

recurrent layers to capture temporal dependencies within 

the data. When training deep neural networks like RCNN, 

one common concern is overfitting. Overfitting occurs 

when a model becomes too specialized in learning the 

training data, capturing noise and minor variations that are 

specific to the training set but do not generalize well to 

unseen data. Overfit models typically have poor 

performance on new, unseen data. To address the issue of 

overfitting in the context of RCNN, FFO is used. FFO is 

a metaheuristic optimization algorithm inspired by the 

foraging behavior of fruit flies. FFO can be applied to 

optimize hyperparameters and parameters of machine 

learning models, including deep neural networks like 

RCNN. 

3.4.1. RCNN Architecture:  

RCNN is designed with both convolutional and recurrent 

layers. Convolutional layers extract spatial features from 

the input data, which is essential for tasks like image 

analysis. The recurrent layers capture temporal 

dependencies, allowing the model to consider the 

sequence of data points, such as the order of words in a 

sentence or the sequence of data in a time series. 

RCNN is trained using a dataset that includes both training 

and validation data. However, deep neural networks like 

RCNN have many hyperparameters (e.g., learning rate, 

batch size) that need to be carefully tuned to achieve good 

performance. Overfitting often occurs when a model 

becomes too complex or when hyperparameters are not 

properly tuned. FFO comes into play to optimize these 

hyperparameters. It explores different combinations of 

hyperparameters to find the ones that minimize overfitting 

and improve the model generalization to new data. 

In the training process of RCNN, a loss function is used to 

measure the error between the predicted values (yp) and 

the ground truth labels (yt). This loss function depends on 

classification. For example, in a classification task with 

cross-entropy loss: 

Loss = -∑(yt * log(yp) + (1 - yt) * log(1 - yp)) 

Where: 

yt represents the ground truth labels. 

yp represents the predicted values. 

FFO is a metaheuristic optimization algorithm used to 

search for the optimal hyperparameters of the RCNN. It 

minimizes the loss function by tuning hyperparameters 

such as the learning rate (α), batch size (B), or network 

architecture. 

Minimize Loss = f(α, B,...) 

FFO iteratively explores the hyperparameter space, 

evaluates the loss function performance, and updates the 

hyperparameters to find the optimal set. 

FFO uses a simple update rule inspired by the foraging 

behavior of fruit flies to adjust the hyperparameters: 

hpnew = hpold + Δ 

Where Δ is a small change in the hyperparameter (hp) 

values determined by FFO based on the performance of 

the current set of hyperparameters. 

FFO typically runs for a predefined number of iterations 

or until a termination criterion is met. For example, it may 

terminate when no significant improvement in the loss 

function is observed over several iterations. 

FFO searches the hyperparameter space systematically, 

evaluating the performance of RCNN with different 

hyperparameter settings on the validation data. It aims to 

find the hyperparameters that strike the right balance 

between model complexity and generalization. The 

combination of RCNN and FFO involves an iterative 

process of training RCNN, applying FFO to optimize 

hyperparameters, and repeating until the model achieves 

the desired level of performance on unseen data without 

overfitting. 

4. Performance Evaluation 

The system performance is rigorously evaluated using a 

suite of metrics including accuracy, precision, recall, and 

F1-score. Continuous feedback and retraining processes 

are established to further enhance prediction accuracy 

over time. The RCNN model undergoes intensive training 

using historical patient data. To optimize hyperparameters 

and avert overfitting, the model is rigorously validated 

through the FFO algorithm. The system operates in real-

time, continuously feeding patient data into the trained 

RCNN-FFO model. It then leverages this data to predict 

potential health issues, promptly generating alerts for 

medical professionals should any anomalies or concerning 

patterns be detected. 
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Performance Metrics: 

Accuracy measures the ratio of correctly predicted 

instances to the total instances in the dataset, providing an 

overall measure of model correctness. 

Precision is the ratio of true positive predictions to the 

total positive predictions. It quantifies how many of the 

positive predictions were correct. 

Recall is the ratio of true positive predictions to the total 

actual positive instances. It quantifies the ability of the 

model to capture all positive instances. 

F1-Score is the harmonic mean of precision and recall, 

providing a balanced measure of a model performance in 

terms of both false positives and false negatives. 

Table 3: Experimental Setup 

Parameter Value 

Learning Rate (α) 0.001 

Batch Size (B) 64 

Number of Epochs 50 

Hyperparameter Optimization FFO 

FFO Population Size 20 

FFO Maximum Iterations 50 

Loss Function Cross-Entropy 

 

Fig 2: Accuracy 

When examining accuracy, our proposed method 

outperformed the existing methods across most datasets. 

On average, it achieved an accuracy increase of 

approximately 3.5% compared to the best-performing 

existing method. This improvement demonstrates the 

effectiveness of our proposed approach in accurately 

predicting health conditions from IoT data (Figure 2). 

 

Fig 3: Precision 

0

20

40

60

80

100

120

Device 1 Device 2 Device 3 Device 4 Device 5 Device 6 Device 7 Device 8 Device 9 Device
10

A
cc

u
ra

cy
 (

%
)

IoT Device

ANN-PM IHWD ML-FLP Proposed Method

0

20

40

60

80

100

120

Device 1 Device 2 Device 3 Device 4 Device 5 Device 6 Device 7 Device 8 Device 9 Device
10

P
re

ci
si

o
n

 (
%

)

IoT Device

ANN-PM IHWD ML-FLP Proposed Method



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 213–224 |  222 

Precision measures the ratio of true positive predictions to 

all positive predictions, emphasizing the model ability to 

minimize false positives. Our proposed method 

consistently demonstrated higher precision values across 

datasets. On average, it exhibited a 4.2% improvement in 

precision compared to the existing methods. This suggests 

that our method provides more reliable predictions, 

reducing the likelihood of unnecessary alarms or 

interventions (Figure 3). 

 

Fig 4: Recall 
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in recall, showing an average improvement of 

approximately 5.8% compared to the existing methods. 
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instances of potential health issues, minimizing false 

negatives, and enhancing patient care (Figure 4). 

 

Fig 5: F1-Measure 
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integration of IoT technologies and AI algorithms, our 

system has demonstrated the potential to revolutionize 

healthcare monitoring, predictive analysis, and medical 

decision-making. Our proposed methodology 

successfully achieved these objectives, and the results of 

our experiments highlight its significant advantages over 

existing methods. The performance evaluation of our 

system showcased consistent improvements across key 

metrics, including accuracy, precision, recall, and the F1-

measure. On average, our proposed method demonstrated 

a 3.5% improvement in accuracy, a 4.2% increase in 

precision, a 5.8% enhancement in recall, and a 4.8% rise 

in the F1-measure compared to the best-performing 

existing method. These percentage differences underscore 

the effectiveness and reliability of our approach in 

predicting health conditions accurately and minimizing 

both false positives and false negatives. 
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