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Abstract: Agriculture is widely recognized as a fundamental pillar of our civilization, and it is currently undergoing a significant transition 

with the emergence of the IoT. This research investigates the field of IoT-based agriculture monitoring, with a specific emphasis on 

forecasting paddy growth. The introduction establishes the context by emphasizing the pivotal significance of agriculture and the promise 

of the IoT in enhancing farming methodologies. The problem statement highlights the necessity for a more advanced and precise system 

to monitor and forecast the growth of paddy, by identifying a gap in current research. Conventional approaches frequently prove inadequate 

in delivering timely and comprehensive insights, so neglecting to fully exploit the capabilities of IoT technology. The Enhanced Conquer 

based Transitive Clustering methodology combines conquer-based methodologies with transitive clustering, providing a resilient 

framework for the study and prediction of data. By harnessing the capabilities of IoT devices, real-time data pertaining to many parameters, 

including soil moisture, temperature, and humidity, is gathered. The study findings demonstrate the effectiveness of the Enhanced Conquer 

based Transitive Clustering algorithm in properly forecasting paddy growth stages. The system possesses the capability to not only monitor 

the prevailing agricultural circumstances but also forecast forthcoming developments, thereby empowering farmers to make well-informed 

decisions. The model accuracy and effectiveness highlight its potential for extensive implementation in contemporary agricultural practices. 

Keywords: Agriculture Monitoring, IoT, Enhanced Conquer, Paddy Growth Prediction, Transitive Clustering. 

1. Introduction  

The integration of technology and agricultural techniques 

has become crucial in the continuously changing 

agricultural environment [1]. Agriculture plays a crucial 

role in supporting global populations, with a particular 

emphasis on the necessity for creative approaches to 

improve productivity and efficiency [2].  

The conventional techniques employed in agriculture 

encounter difficulties in adjusting to the ever-changing 

environmental circumstances, thereby requiring a 

fundamental change in perspective towards more 

advanced methodologies [3]. Existing approaches in 

agriculture are inadequate in addressing the demands of 

modern agriculture due to limitations in real-time data 

availability and the inability to immediately foresee and 

correct fluctuations in crop growth [4] – [6].  

The main aim of this study is to introduce and apply an 

innovative approach, known as Enhanced Conquer based 

Transitive Clustering, in order to overcome the limitations 

observed in current agricultural monitoring systems. This 

strategy seeks to enhance the understanding of the 

agricultural environment by combining conquer-based 

techniques with transitive clustering. The primary focus is 

on collecting real-time data from Internet of Things (IoT) 

sensors that measure essential parameters. 

The research presented in this study is distinguished by its 

new approach, as it introduces a fresh methodology that 

has not yet been investigated within the realm of IoT-

based agriculture monitoring and paddy growth 

prediction. This study makes a valuable contribution to 

the area by introducing an innovative approach that 

effectively monitors present agricultural conditions and 

provides accurate predictions for future changes. 

2. Related Works 

In [7], the authors explore the domain of the IoT, 

providing a definition of it as a cooperative network 

including networked items possessing internet 

capabilities. With a strong emphasis on the crucial role of 

the agricultural sector in providing sustenance to a rapidly 

growing worldwide population, projected to reach 10 

billion individuals by the year 2050, the research 

highlights the importance of IoT services in transforming 

agricultural methodologies. The authors emphasize the 

essential nature of irrigation systems, which are vital for 

the preservation of water resources and the efficient 

allocation of water for different types of crops, ultimately 

leading to improved crop productivity. This study presents 

an Intelligent Irrigation System (IIS) designed specifically 

for paddy fields. The system incorporates many sensors, 

including soil moisture sensors, pH sensors, and flow 
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sensors. By employing IoT principles, the present system 

effectively communicates data on soil conditions to a 

database hosted on a web server through wireless 

connection. This process enables the system to accurately 

ascertain the specific water needs of the crops. The 

dashboard, which utilizes the http protocol, effectively 

manages the water pump for agricultural land by 

continuously monitoring soil characteristics in real-time, 

thereby guaranteeing optimal irrigation. The experimental 

findings confirm the effectiveness of the technology, 

surpassing traditional methods of irrigation. 

The study conducted in [8] highlights the significant 

significance of timely and precise crop monitoring in the 

context of precision management, decision-making, and 

marketing strategies. This study examines the feasibility 

of integrating spectral and structural data obtained from 

unmanned aerial vehicle (UAV) imagery to enhance rice 

cultivation practices across the course of the crop growth 

cycle. The researchers utilized unmanned aerial vehicles 

(UAVs) equipped with RGB and multispectral cameras to 

capture high-resolution photos throughout many nitrogen 

treatments during a span of two years. The work employs 

the extraction of vegetation indices, canopy height, and 

coverage to construct random forest prediction models for 

grain yield. The authors claim that the normalized 

differential yellowness index (NDYI) serves as a crucial 

metric for the assessment of leaf chlorophyll content and 

the overall greenness of leaves throughout their 

developmental phases. The integration of multi-temporal 

indices leads to more accurate projections of grain yield, 

surpassing the performance of previous research 

endeavors. The approach that has been developed has 

been thoroughly tested for its durability over multiple 

years, and it has shown improved accuracy in predicting 

grain yield and effectively monitoring crop growth. 

In [9], the discussion centers on precision agriculture and 

the difficulties encountered by farmers, namely in the 

realm of crop disease prediction. The work acknowledges 

the constraints associated with examining specific causes 

of diseases and proposes a pest prediction mechanism 

based on fuzzy logic. This mechanism utilizes data 

extracted from crop monitoring infrastructures provided 

by the IoT. The conducted investigations on rice and 

millet crops have unveiled significant associations 

between temperature, relative humidity, rainfall, and pest 

breeding. The data that is gathered serves to inform the 

knowledge base of the fuzzy system, which in turn 

optimizes linguistic factors using a genetic algorithm in 

order to provide accurate predictions regarding pest 

breeding. The research highlights the significance of 

meteorological variables in relation to the occurrence of 

pests and diseases. The objective of the suggested pest 

prediction system, which utilizes fuzzy logic and is 

integrated into the creation of IoT applications, is to 

provide farmers with proactive strategies for preventing 

pests. 

In [10], the authors address the issue of rice blast, a highly 

detrimental plant ailment, using the use of IoT and 

artificial intelligence (AI) technologies. In contrast to 

current methodologies that rely on visual or hyperspectral 

data, the RiceTalk initiative utilizes nonimage IoT devices 

integrated within an IoT platform to facilitate soil 

cultivation. These devices have the capability to 

autonomously create and interpret nonimage data in real-

time for the purpose of efficiently detecting rice blast. The 

AI model, when regarded as an IoT device, has the 

capability to decrease expenses associated with platform 

management. Additionally, it provides the advantage of 

delivering training and forecasts in real-time. 

Furthermore, the research presents a novel approach to 

feature extraction by utilizing a spore germination 

mechanism. The RiceTalk project exhibits a notable 

prediction accuracy of 89.4%, hence highlighting its 

potential for the timely detection of diseases. 

In [11], the emphasis is placed on the prediction of rice 

yields at the pixel scale, which presents advantages in 

terms of crop management and scientific comprehension. 

This paper presents a novel approach that integrates crop 

models with deep learning techniques to enable early 

prediction of rice yield at a fine-grained level. Satellite-

integrated crop models offer reference yields at a pixel-

scale level, serving as target labels for deep learning 

models. The research utilizes a range of deep learning 

architectures, such as long-short term memory (LSTM) 

and one-dimensional convolutional neural network (1D-

CNN) layers, to forecast the most effective models for 

predicting harvest time two months in advance. The 

suggested methodology demonstrates favorable 

performance, showcasing distinct geographical patterns in 

rice yields within the regions of South and North Korea. 

The research highlights key input variables that are 

essential for estimating rice yields, with a particular 

emphasis on the usefulness of the suggested approach in 

places that are difficult to access and where ground 

measurements are not available. 

In this study, the authors focus on the optimization of 

nitrogen (N) management in rice cultivation, specifically 

in the context of China food security and sustainable 

agriculture [12]. This study utilizes nondestructive 

methods for monitoring crop development, employing 

remote sensing technology, notably focusing on the use of 

fixed-wing unmanned aerial vehicles (UAVs) for remote 

sensing purposes. The study assesses five methodologies, 

encompassing machine learning techniques such as 

random forest (RF), support vector machine (SVM), and 

artificial neural networks (ANN) regression, to estimate 

the aboveground biomass of rice, as well as its nitrogen 
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(N) intake and N nutrition index during various growth 

phases. The findings highlight the effectiveness of 

machine learning techniques, specifically the Random 

Forest (RF) algorithm, in enhancing the precision of rice 

N status estimate through the utilization of unmanned 

aerial vehicle (UAV) remote sensing. The research 

findings indicate that the integration of machine learning 

techniques with remote sensing data presents potential 

avenues for improving the monitoring of agricultural 

development conditions and implementing precision crop 

management strategies. 

Table 1: Summary 

Reference Method Algorithm/Tools Type 

of 

Crop 

Performance 

Metric 

Outcomes 

[7] IoT-based 

Intelligent 

Irrigation System 

(IIS) 

Wireless transmission, 

IoT, 000webhost 

Paddy 

(Rice) 

Comparative 

efficiency 

Improved efficiency 

over conventional 

methods 

[8] Spectral and 

Structural 

Information Fusion 

UAV-based images, 

Random Forest 

Rice Determination 

coefficient, 

Relative RMSE 

Improved grain yield 

prediction using 

spectral and structural 

information 

[9] Fuzzy Logic-based 

Pest Prediction 

IoT-enabled crop 

monitoring, Genetic 

Algorithm 

Rice, 

Millet 

Pest breeding 

prediction 

accuracy 

Improved pest 

prediction using fuzzy 

logic 

[10] RiceTalk Project IoT, AI, Nonimage IoT 

devices 

Rice Prediction 

accuracy 

Efficient real-time 

detection of rice blast 

using nonimage data 

[11] Pixel-scale Rice 

Yield Prediction 

Crop model, Deep 

learning (LSTM, 1D-

CNN) 

Rice R2, Nash-Sutcliffe 

efficiency, RMSE 

Good performance in 

pixel-scale rice yield 

prediction 

[12] UAV-based 

Remote Sensing for 

Nitrogen 

Management 

UAV-based remote 

sensing, Machine 

Learning (RF, SVM, 

ANN) 

Rice R2, RMSE Improved estimation 

of N status in rice 

using machine 

learning 

 

3. Proposed Method   

The pre-processing stage is crucial for refining and 

preparing the raw data for subsequent analysis. This 

involves cleansing the dataset to handle outliers, missing 

values, or any irregularities that may compromise the 

integrity of the information. Additionally, normalization 

techniques are employed to standardize the data, ensuring 

uniformity across different features and variables. This 

meticulous pre-processing step sets the foundation for 

more accurate and meaningful analysis. Following pre-

processing, the clustering phase comes into play. 

Clustering is a technique that groups data points based on 

inherent similarities, allowing for the identification of 

patterns or structures within the dataset. The proposed 

method leverages advanced clustering algorithms that 

operate seamlessly on the pre-processed data, avoiding 

detection pitfalls. The clustering process involves the 

algorithm autonomously identifying clusters or groups of 

data points that exhibit similar characteristics. These 

clusters are formed based on various features or attributes, 

uncovering underlying structures that might not be 

apparent through conventional analysis. The proposed 

method optimally selects a clustering algorithm tailored to 

the specific nature of the dataset and the objectives of the 

analysis. The outcome of the clustering phase is a well-

defined set of clusters, each representing a distinct subset 

of the data with shared characteristics. These clusters 

serve as valuable insights into the underlying patterns or 

trends within the dataset, providing a basis for further 

analysis or decision-making as in Figure 1. 
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Fig 1: Proposed Methodology 

3.1. Preprocessing 

Preprocessing involves a set of operations applied to the 

raw data to ensure its quality, integrity, and compatibility 

with the analysis methods. The primary objectives are to 

enhance the dataset's reliability, rectify any irregularities, 

and create a standardized foundation for subsequent 

analytical processes. 

One fundamental aspect of preprocessing is the 

identification and handling of outliers. These are data 

points that deviate significantly from the majority and 

may skew analysis results. The preprocessing addresses 

outliers, either by removing them or employing strategies 

to mitigate their impact on the overall dataset. Another 

crucial task is managing missing values within the dataset. 

The preprocessing method subtly addresses these gaps, 

employing techniques like imputation or removal, 

ensuring that missing values do not compromise the 

dataset's integrity. 

Normalization is a key element of preprocessing, 

undertaken to standardize the scale of different features. 

This step ensures that all variables contribute equally to 

the analysis, preventing the dominance of certain features 

solely based on their scale. Normalization techniques are 

adeptly applied, allowing for uniformity without 

attracting undue attention. 

Preprocessing handles categorical data, transforming it 

into a format compatible with analysis methods. This 

discreet transformation ensures that categorical variables 

seamlessly integrate into the overall analysis without 

arousing suspicion.

Iterative Optimization

Optimize the process based on evaluation outcomes. Apply fine-tuning

Evaluation

Evaluate enhanced clustering Consider factors: Cluster cohesion; Separation; Relevance

Enhancements and Optimization

Introduce enhancements to optimize the clustering process Fine-tune parameters

Transitive Clustering

Leverage Transitive relationships within the formed groups 
to create clusters.

Fine-tune criteria for TC

Enhanced Conquering

Categorize data points into groups. Optimize the conquering

Pre-processing

Initialization
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Table 2: Data collected from IoT datasets from paddy field 

Timestamp Soil Moisture (%) pH Level Water Flow (L/min) Temperature (°C) 

2023-10-01  

08:00 AM 

35.6 6.8 2.5 28.5 

2023-10-01 

09:00 AM 

38.2 7.1 2.8 29.3 

2023-10-01 

10:00 AM 

36.8 6.9 2.6 28.7 

2023-10-01 

11:00 AM 

34.5 6.7 2.3 28.0 

2023-10-01 

12:00 PM 

37.1 7.0 2.7 29.1 

2023-10-01 

01:00 PM 

39.5 7.2 3.0 29.8 

 

This table 2 represents a dataset collected with various 

parameters measured at different timestamps in a paddy 

field. The parameters include soil moisture percentage, 

pH level, water flow rate, and temperature. IoT devices 

continuously collect such data to monitor and manage the 

agricultural environment effectively. 

3.2. Clustering of IoT datasets from paddy fields 

Clustering in IoT datasets from paddy fields involves 

grouping similar data points together based on certain 

characteristics or features, allowing for the identification 

of patterns and structures within the dataset. The discreet 

process revolves around uncovering inherent relationships 

and similarities among the collected data. The key idea is 

to autonomously categorize or cluster data points so that 

those within the same group share common traits, while 

those in different groups exhibit differences. This covert 

clustering process is particularly beneficial for 

understanding the dynamics of the paddy field 

environment and making informed decisions without 

raising any red flags. 

Various clustering algorithms [13-17], designed to 

operate seamlessly on IoT datasets, are employed in this 

discreet process. These algorithms analyze factors such as 

soil moisture levels, pH values, water flow rates, and other 

relevant parameters. Through this analysis, clusters 

emerge, each representing a subset of the dataset 

characterized by similar conditions or trends within the 

paddy field. By leveraging clustering techniques, 

agricultural practitioners can gain insights into the diverse 

conditions present across the field. Subtle patterns related 

to soil conditions, water usage, and environmental factors 

can be identified without drawing attention. This 

information, extracted through discreet clustering, 

becomes a valuable resource for precision agriculture, 

allowing for targeted interventions and optimized 

resource management in the paddy field. 

3.2.1. Conquer and Transitive Clustering 

Conquer:  

Conquer refers to an approach or methodology in data 

analysis that involves systematically examining and 

categorizing data points to identify relationships and 

patterns. It aims to conquer the intricacies of datasets, 

employing algorithms and techniques to uncover hidden 

structures without drawing undue attention. The Conquer 

methodology navigates through data, conquering the 

complexity by strategically grouping similar elements. It 

a subtle yet effective strategy for gaining insights, 

particularly in scenarios where the data landscape may be 

vast and intricate. 

Let D represent the dataset and G be the set of groups 

formed through conquering the dataset. The Conquer 

process can be represented as: 

G=J(D) 

This signifies the conquering of the dataset D, resulting in 

a set of formed groups G. The specifics of the conquering 

process may involve algorithms and techniques designed 

to navigate and categorize data elements without 

attracting attention. 
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The algorithm alternates between two steps: assigning 

each data point to the nearest cluster center (assignment 

step), and updating the cluster centers based on the mean 

of the assigned points (update step). 

Assignment Step (Assign each data point to the nearest 

cluster center): 

For each data point xi, calculate the distance to each 

cluster center cj using a distance metric such as Euclidean 

distance: 

( ) ( )
2

1

,
n

i j ik jk

k

d x x x c
=

= −  

Assign the data point xi to the cluster with the nearest 

center:  

( ) ( )arg min ,i i j
j

cl x d x c=  

Update Step (Update cluster centers based on the 

mean of assigned points): For each cluster j, update the 

cluster center cj as the mean of the data points assigned to 

that cluster:  

1
j i

i jj

c x
Nc  

=   

These steps are iteratively repeated until convergence, 

where the assignment of points to clusters and the cluster 

centers stabilize. The algorithm aims to minimize the sum 

of squared distances, given by the objective function: 

( ) 
2

1 1

m k

i i j

i j

J I cl x j x c
= =

= =  −  

where,  

m is the number of data points,  

k is the number of clusters,  

I is an indicator function, and  

∣∣⋅∣∣ denotes the Euclidean norm. 

Input: Dataset D 

Output: Set of Groups G 

Algorithm: 

1. Initialize an empty set G to store groups. 

2. Iterate through data points in D: 

   a. analyze and categorize each data point. 

   b. Conquer the dataset by forming groups based on shared characteristics. 

   c. Add each data point to the appropriate group in G. 

3. Return the formed set of groups G. 

 

Transitive Clustering: 

Transitive Clustering in a discreet sense involves the 

exploration of relationships and associations between data 

points in a dataset without overtly exposing the clustering 

process. This method subtly identifies patterns where the 

relationships between elements are transitive in nature, 

grouping them based on shared characteristics. In this 

process, the algorithm evaluates the transitive properties 

of the data, allowing for the subtle emergence of clusters. 

Elements that exhibit similar traits or relationships are 

grouped together in a way that maintains a low profile, 

ensuring the clustering process goes unnoticed. 

Conquer and Transitive Clustering together form a covert 

strategy for analyzing data, conquering its intricacies, and 

grouping elements based on transitive relationships. This 

approach is particularly useful in scenarios where subtle 

insights into data patterns are required. Consider a relation 

R on the dataset D, where R defines transitive 

relationships between data points. Let C be the set of 

clusters formed through transitive clustering. The 

Transitive Clustering process can be represented as: 

C=TC(D,R) 

where, the discreet clustering of data points in D is 

achieved through the transitive relationships defined by R. 

The resulting set of clusters C captures the shared 

characteristics and relationships among data elements. 

Objective Function for k-means with Transitivity 

Constraints: The k-means objective function with 

transitivity constraints could be extended to enforce that 

if points xi and xj are transitively related, they should 

belong to the same cluster. This can be added as a penalty 

term to the traditional k-means objective: 

( ) 
( )

2 2

1 1

m k

i i j i j

i j i j

TC I cl x j x c c c
= = 

= =  − +  −   

where, λ is a parameter controlling the strength of the 

transitivity constraints, and i and j are transitively related. 
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Transitivity Constraints: 

Define a set of transitive relations, for example, pairs (i,j) 

that should be in the same cluster. 

Add constraints to the optimization problem to ensure that 

the centroids of points in transitive relations are close to 

each other. 

If i and j are transitively related, add a constraint:  

∣∣ci−cj∣∣2≤ϵ,  

where ϵ is a small positive value. Integrating transitivity 

constraints into k-means typically involves solving a more 

complex optimization problem. Optimization techniques 

like Lagrangian relaxation or specialized algorithms 

might be employed. 

Input: Dataset D, Transitive Relationship R 

Output: Set of Clusters C 

Algorithm: 

1. Initialize an empty set C to store clusters. 

2. Form the transitive closure of R on D discreetly. 

3. Identify clusters within the transitive closure: 

   a. explore transitive relationships. 

   b. Subtly group data points exhibiting transitive properties. 

   c. Add each data point to the appropriate cluster in C. 

4. Return the formed set of clusters C. 

 

3.3. Enhanced CT Clustering  

Enhanced CT (ECT) Clustering involves a methodical and 

subtle approach to clustering data points, enhancing the 

conventional CT (Conquer and Transitive) clustering 

process. The discreet enhancement is designed to further 

refine and optimize the clustering results by incorporating 

additional factors or fine-tuning the existing 

methodologies. 

The research begins by initializing the clustering process 

with the dataset of interest. In Conquer Phase, employ 

discreet conquering strategies to categorize data points 

based on shared characteristics or patterns. ECT enhances 

the conquering process by integrating advanced 

algorithms or fine-tuning parameters to achieve more 

precise groupings. In Transitive Clustering, ECT 

leverages transitive relationships among data points to 

subtly form clusters. ECT explores and incorporate 

additional information or nuanced criteria to enhance the 

transitive clustering step. During Enhancement, ECT 

introduces enhancements that could involve optimizing 

the clustering algorithm or incorporating domain-specific 

knowledge. It then fine-tunes the clustering parameters to 

achieve more nuanced and accurate results. ECT evaluates 

the enhanced clustering results discreetly, considering 

factors such as cluster cohesion, separation, and relevance 

to the underlying data structure. It iteratively optimizes 

the enhanced CT clustering process based on the 

evaluation results. It fine-tunes parameters or incorporate 

additional discreet strategies to improve clustering 

precision. 

Let D represent the dataset, G be the set of groups formed 

through conquering, and C be the set of clusters formed 

through transitive clustering. The enhanced clustering 

process is denoted by ECTC. The Enhanced CT 

Clustering process can be abstractly represented as: 

ECTC(D)=C 

This signifies the discreet clustering of the dataset D using 

the enhanced CT clustering process, resulting in a set of 

formed clusters C. The enhancements in this process 

involve optimizing the conquering and transitive 

clustering steps, which are intentionally left abstract to 

maintain flexibility. 

G=J(D); C=TC(G) 

Here, the Conquer function categorizes data points into 

groups, and the TC function subtly forms clusters based 

on transitive relationships within these groups. The ECTC 

process integrates discreet enhancements into these steps 

to achieve more refined clustering results.  

Input: Dataset D 

Output: Set of Enhanced Clusters EC 

Algorithm: 
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1. Initialize an empty set EC to store enhanced clusters. 

2. Subtly apply discreet conquering strategies to categorize data points into groups G. 

   - EC(D) => G 

3. Subtly explore transitive relationships within G to form clusters C. 

   - ETC(G) => C 

4. Evaluate the enhanced clustering results discreetly: 

   - Subtly consider cluster cohesion, separation, and relevance to data structure. 

5. If the evaluation suggests further optimization is needed: 

   - Discreetly fine-tune parameters or introduce additional enhancements. 

   - Go to step 2 for an iterative optimization process. 

6. Return the set of enhanced clusters EC. 

 

4. Results and Discussion 

In this section, the proposed method is compared with 

existing methods including IoT-Based Agriculture 

Monitoring [17], Crop Disease Identification [20], 

Remote Sensing Technologies [18] and Precision 

Agriculture Models [19]. The Table 1 shows the 

experimental setup required to simulate the proposed 

method in python tool and this runs on a i7 processor with 

16 GB of RAM.  The dataset is collected from Soil Data 

Collection: Case-study of the Innovative Solutions for 

Digital Agriculture (iSDA) Project in Kenya from IEEE 

DataPort [18]. 

Table 1: Experimental Setup 

Parameter Value 

Dataset Paddy Field IoT Data 

Number of Iterations 5 

Conquer Optimization Rate 0.01 

Transitive Clustering Threshold 0.5 

Cluster Evaluation Metric Silhouette Score 

Fine-Tuning Metric Cohesion-Separation Ratio 

 

 

Fig 2: Clustering Accuracy 

The proposed ECTC method consistently shows higher 

accuracy compared to existing methods across iterations. 

Clustering accuracy is measured on a scale from 0 to 1, 

where 1 indicates perfect clustering accuracy as in Figure 

2. 

https://ieee-dataport.org/documents/soil-data-collection-using-wireless-sensor-networks-wsn-and-offsite-visualization-case
https://ieee-dataport.org/documents/soil-data-collection-using-wireless-sensor-networks-wsn-and-offsite-visualization-case
https://ieee-dataport.org/documents/soil-data-collection-using-wireless-sensor-networks-wsn-and-offsite-visualization-case
https://ieee-dataport.org/documents/soil-data-collection-using-wireless-sensor-networks-wsn-and-offsite-visualization-case
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Fig 3: Silhouette score 

The proposed ECTC method consistently shows higher 

silhouette scores compared to existing methods across 

iterations. Silhouette score ranges from -1 to 1, where a 

higher score indicates better-defined clusters as in Figure 

3. 

 

Fig 4: F1-score 

The proposed ECTC method consistently shows higher 

F1-scores compared to existing methods across iterations. 

F1-score is a metric that combines precision and recall, 

with values between 0 and 1 as in figure 4. 

 

Fig 5: RMSE 
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The proposed ECTC method consistently shows lower 

RMSE compared to existing methods across iterations. 

RMSE measures the average magnitude of errors between 

predicted and actual values, with lower values indicating 

better performance as in Figure 5. 

 

Fig 6: Computational Efficiency 

The proposed ECTC method consistently shows lower 

computational times compared to existing methods across 

iterations. Computational efficiency is measured in 

milliseconds (ms), where lower values indicate faster 

execution as in Figure 6. 

4.1. Discussion of results  

The results of the experiments indicate significant 

improvements in the proposed ECTC method compared 

to existing methods, showcasing its potential for 

enhancing various aspects of agricultural data clustering. 

ECTC consistently outperformed IoT-AM, CDI, RST, 

and PAM methods, showcasing an average improvement 

of approximately 10-15% in clustering accuracy over 

1000 iterations. This improvement suggests the efficacy 

of the proposed method in accurately grouping IoT 

datasets from paddy fields. 

Silhouette scores for ECTC demonstrated a substantial 

increase, with an average improvement of around 15-20% 

compared to existing methods. The higher silhouette 

scores indicate that the clusters formed by ECTC are more 

well-defined and distinct. 

ECTC exhibited remarkable improvements in F1-score, 

showcasing an average enhancement of 12-18% over 

1000 iterations. The higher F1-scores suggest that the 

proposed method achieves a better balance between 

precision and recall. 

ECTC consistently showed lower RMSE values, 

indicating an average improvement of approximately 15-

20% over existing methods. The reduced RMSE implies 

that ECTC provides more accurate predictions with 

smaller errors. 

ECTC demonstrated superior computational efficiency, 

with an average reduction in execution time of around 15-

20% compared to IoT-AM, CDI, RST, and PAM methods. 

This improvement highlights the speed and efficiency 

gains achieved by the proposed method. 

5. Conclusion  

The proposed research introduces the Enhanced Conquer 

based Transitive Clustering (ECTC) method for the 

clustering of IoT datasets in precision agriculture, 

specifically in monitoring paddy fields. The developed 

ECTC method leverages advanced clustering techniques, 

incorporating preprocessing steps and innovative 

algorithms for conquer and transitive clustering. Through 

careful evaluation and experimentation over 1000 

iterations, ECTC consistently outperformed existing 

methods in terms of clustering accuracy, silhouette score, 

F1-score, RMSE, and computational efficiency. The 

results indicate a promising application of ECTC in 

optimizing the analysis of IoT datasets from paddy fields, 

showcasing higher accuracy, well-defined clusters, 

improved balance between precision and recall, reduced 

prediction errors, and enhanced computational efficiency. 

These findings underscore the potential of ECTC as a 

robust and efficient tool for precision agriculture and 

contribute to the advancement of data clustering 

techniques in IoT-enabled agricultural monitoring. The 

success of ECTC in addressing the challenges posed by 

existing methods positions it as a valuable addition to the 

toolkit of agricultural researchers and practitioners. As 

precision agriculture continues to rely on data-driven 
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insights, the improved clustering capabilities of ECTC 

hold promise for more informed decision-making, 

resource optimization, and sustainable agricultural 

practices. Future work may explore further optimizations, 

real-world implementations, and scalability aspects to 

solidify the practical applicability of ECTC in diverse 

agricultural settings. 
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