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Abstract: Oil spills are a major hazard to the environment, animals, and ecosystems. The identification of oil spills in a timely and accurate 

manner is critical for successful mitigation and response operations. We offer a complete strategy to oil spill detection and identification 

in this study by incorporating modern computer vision techniques. First, to improve picture quality and minimize noise in the input data, 

we use a Non-Adaptive Threshold with Contrast Limited Adaptive Histogram Equalization (CLAHE). This preprocessing procedure 

increases overall picture quality, making subsequent analysis more trustworthy. Then, using a Fused UNet Segmentation model, we apply 

the power of deep learning to picture segmentation. This approach efficiently isolates oil spill sites from the backdrop, allowing for exact 

identification and study of polluted areas. We use a Convolutional Neural Network (CNN) based on the well-known AlexNet architecture 

to extract relevant features from segmented photos. This stage extracts discriminative features, which improves the model's capacity to 

differentiate between oil spill and non-spill locations. The combination of Faster R-CNN with Enhanced MobileNetV2 architecture is at 

the core of our suggested solution. This hybrid approach delivers not only real-time processing but also cutting-edge performance in object 

identification tasks. We allow our model to identify and characterize oil spills correctly and effectively by training it on a dataset that 

includes both synthetic and real-world oil spill photos. To deliver a comprehensive solution for oil spill detection and identification, we 

integrate cutting-edge picture enhancement, segmentation, feature extraction, and object detection approaches. Experiment findings show 

that the system is excellent at detecting oil spills in a variety of environmental situations, allowing for faster reaction and mitigation 

measures to safeguard our valuable ecosystems. By employing advanced computer vision techniques, our system aligns with SDG 6 (Clean 

Water and Sanitation) by safeguarding water resources through accurate detection of oil spills. With a focus on SDG 14 (Life below Water), 

our technology aids in the preservation of marine ecosystems by minimizing the impact of oil spills on aquatic life. 
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1. Introduction  

An oil spill is a kind of environmental catastrophe that 

happens when petroleum or crude oil is discharged into 

the natural environment, most often in bodies of water 

such as seas, rivers, or lakes, but occasionally on land [1-

4]. These catastrophes have the potential to devastate 

ecosystems, animals, and human groups in the impacted 

regions. Oil spills may occur as a consequence of a variety 

of causes, including oil tanker accidents, offshore drilling 

activities, pipeline ruptures, and even smaller-scale 

occurrences such as leaking from oil storage tanks [5-7]. 

An oil spill may vary in size from modest localized 

pollution to catastrophic occurrences that cover large 

areas of water or land. Oil spill management and 

mitigation is a difficult and essential task that requires a 

collaborative effort from environmental agencies, 

governments, and industry partners to reduce damage and 

expedite recovery [8-11]. Understanding the origins, 

effects, and solutions to oil spills is critical in this context 

for protecting our planet's delicate ecosystems and 

guaranteeing a sustainable future [12].  

Oil spills, whether caused by industrial accidents, 

maritime mishaps, or natural catastrophes, remain a major 

worldwide issue owing to the devastation they inflict to 

the environment and ecosystems [13-15]. Rapid and 

precise identification of oil spills is critical for limiting 

their environmental and economic implications. 

Furthermore, it contributes to SDG 15 (Life on Land) by 

preventing and mitigating the consequences of oil spills 

on terrestrial ecosystems, supporting biodiversity and land 

preservation. In adherence to SDG 17 (Partnerships for 

the Goals), our collaborative efforts with stakeholders 

emphasize the importance of global cooperation in 

achieving sustainable solutions. Overall, our innovative 

system not only addresses immediate environmental 

challenges but also reinforces broader sustainability 

objectives for a cleaner and healthier planet. 

The combination of cutting-edge technology such as 

convolutional neural networks (CNNs) and the usage of 

sophisticated architectures such as Faster R-CNN with 

Enhanced MobileNetV2 has transformed the area of oil 

spill detection in recent years [16-18]. This innovative 

technique uses deep learning and computer vision to 
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dramatically improve the efficiency and accuracy of 

finding and recognizing oil spills in a variety of situations, 

including open seas, coastal areas, and interior water 

bodies [19-21]. It is a significant step forward in our 

capacity to monitor and react to environmental disasters 

in a timely and efficient way [22-23]. 

The primary contributions and objectives of this 

manuscript summarized as follows: 

• Select image to denoising method Non-Adaptive 

Threshold with CLAHE 

• Segmentation using Fused UNet Segmentation 

• Feature Extraction using CNN-AlexNet 

• Oil Spill detection and recognition using Faster 

RCNN with Enhanced MobileNetV2 Model 

This paper's remaining sections are structured as follows. 

Several authors in Section 2 describe different approaches 

of oil spill detection. The proposed model is shown in 

Section 3. The results of the inquiry are presented in 

Section 4. Conclusions and suggestions for further 

research are presented in Section 5. 

1.1 Motivation of The Paper 

The urgency of addressing the grave environmental, 

economic, and ecological concerns caused by oil spills 

drives this study. Oil spills have a negative effect on 

ecosystems, animals, human health, and economy, 

necessitating the development of a sophisticated oil spill 

detection and identification system. We intend to deliver 

a complete solution that allows speedy and exact 

identification of oil spills in real-time by using cutting-

edge computer vision methods such as picture 

augmentation, segmentation, feature extraction, and 

object recognition. This study aims to greatly improve our 

capacity to safeguard the environment, animals, and 

communities from the terrible effects of oil spills, as well 

as contribute to the preservation of our planet's sensitive 

ecosystems and human well-being.  

2. Background Study 

A. Kumar et al. [1] after enforcing a reflection symmetry 

criterion, it was shown in this study that only four 

unknowns were needed to provide full-pol information, 

down from five. The author has used hybrid-pol data to 

develop expressions for these variables. Since this letter 

describes a strategy for extracting oil-spill descriptors 

from hybrid-pol data rather than full-pol data, the latter 

avoided. The validation of all four oil spill descriptions 

relied on hybrid-pol data. Using the JM separability 

criterion, it was shown that all the resultant oil-spill 

descriptors offer exceptionally high separability between 

oil-spilled and oil-free regions. 

B. Lounis et al. [4] the author presents an ANFIS 

classification approach for recognizing oil spills in SAR 

imagery. The roughness of maritime surfaces was 

characterized by extracting textural descriptors from SAR 

signals using KLD multistage analysis. The ANFIS 

classifier was then trained to use these features to identify 

distinctive characteristics of oils and tablets. 

E. Asihene et al. [7] the author provide two case studies 

that detail the results of using a multipolarization C-band 

scatter meter to investigate oil contamination in NI. First, 

oil was injected under a sheet of fresh ice; next, ice was 

grown in oil-polluted seawater meant to represent the 

Arctic. In the first step, the author compared the physical 

and thermodynamic properties of oil-contaminated sea ice 

to the time-series evolution of multipolarization C-band 

scatter meter readings.  

F. Ronci et al. [9] In order to identify oil spills, a novel 

semantic segmentation technique was presented. 

Although the improved U-Net design outperformed the 

original, the regular U-Net trained using adversarial 

learning produced the greatest results, with the Jaccard 

Index and Accuracy index reaching up to 82% and 98.3%, 

respectively.  

G. Tabella et al. [11] employing the Goliat FPSO as a case 

study, this research looked at the feasibility of employing 

Wireless Sensor Networks (WSNs) to detect oil spills at 

depth. The FC compiles the verdicts from the local sensors 

and uses CR and MCVR to fuse the obtained data. The 

potential of the explored method has been shown by 

obtaining ROC performances using realistic numerical 

simulations. The identification of the subsea component 

responsible for the leak, which was critical for faster and 

more efficient maintenance, will be the subject of further 

research in future works. 

J. Yang et al. [13] Fuzzy decision fusion was used to 

combine the benefits of several supervised classifications 

based on the output of four classifiers trained to identify 

oil spills. When comparing the accuracy of individual 

classifiers, NN and SVM both achieve an accuracy of 

0.7814, whereas MD and ML only manage to get 0.5346 

and 0.5067, respectively. The SVM-NN achieves the 

greatest classification accuracy, at 0.7879, followed by the 

SVM-NN-ML, at 0.7813, in the decision fusion 

classification results of the multi-classifier. However, 

SVMNN- ML-MD has a weaker classification impact, 

with a classification accuracy of just 0.7322. This does not 

necessarily indicate that adding more classifiers would 

improve accuracy. 

S. Adhikary et al. [15] it has been widely believed that oil 

spills from ships pose a significant risk to marine life since 

it may take rescuers a significant amount of time to locate 

the disaster site. So, keeping an eye out for oil spills in real 
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time so that cleanup may begin immediately after was an 

extremely challenging chore. When it comes to oil spills, 

the availability of SAR remote sensing presents a huge 

opportunity for remote monitoring and automated alerting 

of decision-makers and management with minimum 

human participation.  

S. Zhang et al. [17] by including the truncated linear 

stretch module and score loss into the original YOLOX-S 

model, these authors research proposes an improved 

YOLOX-S model for marine oil spill detection. 

Experimental results corroborate the efficacy of the 

proposed abridged linear stretching module and score loss 

in improving oil spill detection precision. Future work 

will apply the suggested model to a variety of SAR remote 

sensing images to see how well it performs in detecting 

oil spills at sea. 

V. Solbakov et al. [20] these authors research main 

objective was to develop a method for determining the 

location probability distribution in the event of an oil leak. 

It was also anticipated that the formulation would be 

rigorous mathematically, such that the final model could 

be represented visually. A unique functional was 

introduced to make the distribution function dependent on 

the value of the coordinate distribution density function. 

Where the value of the probability density function was 

larger than the thresholds was where the chances of 

detection was highest. 

Y. -J. Yang et al. [23] According to the authors' study, two 

preliminary trials employing satellite SAR pictures for oil 

spill detection both employed the YOLOv4 object 

identification system. Due to the model's difficulty in 

distinguishing between various objects, it was suggested 

in this study that the pixel thresholds be adjusted to 28 for 

Test 1. Given that APs on the validation and test sets were 

67.80% and 65.37%, respectively, it can be concluded that 

the model did not suffer from overfitting the dataset. Test 

2 results demonstrate that the investigation's findings were 

unaffected by the investigation's use of a variety of data 

enhancements. Overfitting was possible if the rotation was 

used to supplement data due to the large number of small 

objects with approximately circular shapes that emerge 

from oil spills. 

2.1 Problem Definition  

The issue addressed by this study is the critical need for a 

dependable and effective system for detecting and 

recognizing oil spills, which constitute a large and 

persistent hazard to the environment, animals, and 

ecosystems. Oil spills disastrous, but identifying them in 

a timely and precise way is difficult. Traditional 

approaches often fall short of delivering the necessary 

speed and accuracy for successful mitigation and response 

operations. The proposed study acknowledges this issue 

and seeks to address it by using modern computer vision 

algorithms to improve picture quality, partition oil spill 

sites, extract useful features, and conduct real-time object 

recognition. This project aims to give a complete solution 

to the essential issue of oil spill detection, allowing quick 

reaction and mitigation to safeguard our valuable 

ecosystems from the damaging effects of oil pollution. 

3. Materials and Methods 

We developed a comprehensive oil spill detection and 

identification approach using strong computer vision 

algorithms. We began by gathering a diverse mix of 

synthetic and real-world oil spill images from various 

locales Image preprocessing using Non-Adaptive 

Thresholding and CLAHE. We employed a Fused UNet 

Segmentation model for accurate oil spill area 

segmentation and an AlexNet-based CNN for feature 

extraction. For real-time processing and superior object 

detection, we integrated Faster R-CNN with Enhanced 

MobileNetV2. Using our hybrid model and our dataset, 

we discovered and recognized oil spills correctly and 

efficiently. Our trials indicate that the system works in a 

variety of situations, enabling rapid ecosystem protection 

and mitigation. This research provides a viable solution to 

the environmental, animal, and ecological harm caused by 

oil spills. 

3.1 Dataset collection  

The dataset comprises of benchmark datasets containing 

both oil spill and non-oil spill data. The dataset consists of 

JPG images. 
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Fig 1: Overall Proposed Architecture  

3.2 Image denoising using Non-Adaptive Threshold 

with CLAHE 

3.2.1 Adaptive thresholding 

Adaptive thresholding is a technique where the threshold 

value is calculated individually for each pixel, considering 

the pixel's local neighborhood defined by a small window 

or kernel. This approach determines the pixel's threshold 

based on the statistical characteristics, such as mean or 

median, of the pixel values within its nearby region. 

Adaptive thresholding is particularly beneficial when 

dealing with images that exhibit significant variations in 

lighting conditions. However, it comes with certain 

drawbacks. It tends to be more computationally intensive 

compared to non-adaptive thresholding methods, and the 

choice of the neighborhood size and the specific method 

used for calculating the local threshold can influence the 

quality of the thresholding results, making it essential to 

carefully tune these parameters for optimal performance 

so we use non-adaptive threshold. 

3.2.2 Non-Adaptive Threshold 

In non-adaptive thresholding, a single global threshold 

value is applied to the entire image. This global threshold 

value is chosen based user-defined threshold value. All 

pixels in the image are compared to this single threshold 

value, and they are categorized into two groups: pixels 

whose intensity is above the threshold and pixels whose 

intensity is below the threshold. Non-adaptive 

thresholding is useful when the lighting conditions are 

relatively uniform across the entire image. 

An asymptotic constraint on the decoding time required to 

identify defective items in a noisy setting is derived in this 

work, as is a maximum number of tests that performed T. 

V. Bui et al. (2019). 

Integers satisfying the following conditional formula: 

(
n
u

) + (d − u) (
n − u
g + 1) (

d − 1
g

) (
d
u

)  constitute. The 

broken set will be denoted as S and the good integer as z 

for ease of reference. A non-adaptive method exists for 

identifying a set (
d
u

)  g from just h(n, d − l, u; z]  tests, 

where h(n, d − l, u; z]a function of is (
d − 1

g
) and z. This 

method requires a (n, d − l, u; z)- NAT model with at most 

(1). More so, the difficulty in decoding is rather low. 

O (h(n, d − l, u; z] × u ((
n
u

) + (d −

u) (
n − u
g + 1) (

d − 1
g

) (
d
u

))) -------- (1) 

3.2.3 CLAHE 

This kind of adaptive histogram equalization (AHE) is 

restricted to oil spill image with high contrast. Applying 

an enhancement function to a group of adjacent pixels 

yields a transformation function in this technique A. 
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Mishra et al. (2018). According to the study's description, 

this method used the most considerable value to prune the 

histogram and redistribute the oil spill detection data as a 

grayscale image. In this work, the method for decreasing 

noise and increasing contrast is applied separately to the 

backdrop and the foreground. Distribution parameters are 

used to determine the shape of the histogram equalization 

graph;  

Given that pixel counts are uniformly distributed 

throughout all grayscale levels in natural landscapes, the 

following is the average number of pixels at each level: 

𝑁𝑎𝑣𝑔 =
𝑁𝐶𝑅−𝑋𝑝∗𝑁𝐶𝑅−𝑌𝑝

𝑁𝑔𝑟𝑎𝑦
 ----- (2) 

Where 

𝑁𝑎𝑣𝑔 = number average of pixels 

𝑁𝑔𝑟𝑎𝑦 = amount of grey levels in an area contextual 

𝑁𝐶𝑅−𝑋𝑝  = amount of pixels along the X-axis of the 

contextual area 

𝑁𝐶𝑅−𝑌𝑝  = amount of pixels along the Y axis of the 

contextual area 

After that, calculate the actual cliplimit 

𝑁𝐶𝐿 = 𝑁𝐶𝐿𝐼𝑃 ∗ 𝑁𝑎𝑣𝑔 ------ (3) 

CLAHE, which stands for "Contrast Limited Adaptive 

Histogram Equalization," is a popular image processing 

method for increasing contrast in low-light or low-

dynamic-range scenarios. 

3.2.4 Non-Adaptive Threshold with CLAHE 

Image enhancement techniques such as Non-Adaptive 

Threshold with CLAHE are used to increase oil spill 

image quality and readability, particularly in low-contrast 

or poorly-lit conditions. Non-adaptive thresholding is a 

simple thresholding approach that employs a constant 

threshold value over the whole oil spill image. Oil spill 

images are classified as foreground or background 

depending on whether their pixel intensities are greater 

than or less than a predefined threshold.  

To address the limitations of Non-Adaptive Thresholding, 

CLAHE is employed. In CLAHE, the image is broken up 

into little squares called tiles, and each tile receives its 

own histogram equalization. This ensures that local 

contrast enhancement is performed, taking into account 

the specific characteristics of each region. 

 

Algorithm 1: Non-Adaptive Threshold with CLAHE 

Input: 

• A noisy or low-contrast image that needs denoising and contrast enhancement. 

Steps: 

1. Non-Adaptive Thresholding: 

o Apply a constant threshold value to the entire input image to create a binary mask, where pixels 

above the threshold are classified as foreground (object of interest) and those below are background 

(noise or non-interesting). 

O (h(n, d − l, u; z] × u ((
n
u

) + (d − u) (
n − u
g + 1) (

d − 1
g

) (
d
u

)))  

2. CLAHE (Contrast Limited Adaptive Histogram Equalization): 

o Divide the image into small, non-overlapping tiles or regions. 

o For each tile: 

▪ Calculate a local histogram. 

𝑁𝑎𝑣𝑔 =
𝑁𝐶𝑅−𝑋𝑝∗𝑁𝐶𝑅−𝑌𝑝

𝑁𝑔𝑟𝑎𝑦
  

▪ Apply histogram equalization within the tile, taking into account the local characteristics. 

▪ Limit the contrast enhancement using a clip limit to prevent over-amplification of noise 

in uniform regions. 

𝑁𝐶𝐿 = 𝑁𝐶𝐿𝐼𝑃 ∗ 𝑁𝑎𝑣𝑔  
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o Merge the processed tiles back to create the contrast-enhanced image. 

3. Combine Non-Adaptive Thresholding and CLAHE: 

o Combine the binary mask from the Non-Adaptive Thresholding step with the contrast-enhanced 

image from the CLAHE step. This can be done by multiplying the binary mask with the CLAHE-

enhanced image, where foreground pixels retain their enhanced values, and background pixels 

remain unchanged or at their original values. 

Output: 

• A denoised and contrast-enhanced image. 

 

 

3.3 Segmentation using fused UNet Architecture 

Segmenting an image into meaningful and semantically 

similar sections or objects is a crucial step in computer 

vision and image processing. The goal is to group pixels 

or regions in such a way that each segment corresponds to 

a distinct object or region of interest within the image. 

3.3.2 UNET Segmentation 

UNet is a popular CNN architecture in the field of 

computer vision, where it is utilized for semantic 

segmentation. The U-shaped form, reminiscent of a 

"encoder-decoder" structure, is characteristic of the 

architecture. 

• High Memory Usage and Computational Cost 

• Over fitting 

• Difficulty with Class Imbalance 

So, here overcome the disadvantages and named a new 

Fused UNET Architecture, Updated the Layers with 

overcome the existing drawbacks using the different 

concatenate layers, activating with relu and sigmoid 

3.3.4 Fused U-Net Architecture 

The Fused U-Net architecture is designed to enhance the 

synergy between the encoder and decoder components by 

incorporating fused skip connections. Unlike the 

traditional U-Net, which relies on semantically different 

skip connections, the Fused U-Net leverages dense skip 

connections to foster improved communication between 

the encoder and decoder. This approach facilitates the 

seamless integration of information from various levels of 

detail, resulting in more effective segmentation. At the 

core of the Fused U-Net architecture lies a robust 

convolution block, characterized by a series of 

convolution layers and concatenation layers. This dense 

convolution block serves as the backbone of the network, 

contributing to its depth and expressive power. Each 

convolution layer is preceded by a concatenation layer, 

where the output of the preceding convolution layer is 

combined with the input of the current convolution layer. 

This intricate design ensures that the network can capture 

and preserve intricate details throughout the processing 

pipeline. 

To elaborate further, let 𝑥(𝑖−1𝑗) represent the output of the 

dense convolution block layer with index 𝑖 acting as the 

downsampling layer and index 𝑗  representing the 

convolution layer. The relationship between 𝑥𝑖𝑘 , the 

output of the current layer, and the network operations can 

be expressed through Equation (4). This equation involves 

parameters such as 𝐷 for the activation function, 𝑃 for the 

maximum pooling operation, and 𝑇  for the upsampling 

function. By understanding these parameters, we can 

effectively determine 𝑥𝑖𝑘  and comprehend the 

transformations occurring within the Fused U-Net 

architecture. 

The Fused U-Net architecture comprises a total of 36 

layers, encompassing the dense convolution block, skip 

connections, and other essential components. This depth 

allows the model to capture intricate features and nuances 

in the input data, facilitating superior performance in 

image segmentation tasks. The use of dense skip 

connections plays a pivotal role in promoting information 

flow between the encoder and decoder, leading to 

enhanced segmentation accuracy and the ability to handle 

diverse levels of detail within the input data. 

𝑥𝑖𝑗 = {
𝐷 (𝑝(𝑥𝑖−1𝑗))        𝑗 = 0

𝐷(𝑝([𝑥𝑖𝑘]𝑗−1
𝑘=0𝑇(𝑥𝑖+1𝑗−1)])  𝑗 > 0

 ------- (4) 

Only two of the numerous advantages of the Fused U-Net 

architecture over the standard U-Net are better fine-

grained feature retention and enhanced segmentation 

accuracy. The Fused U-Net's dense ski connections let the 

network to better incorporate features of various sizes and 

receive more contextual information. The Fused U-Net's 

skip connections' hierarchical nature allows it to handle 

objects of varied sizes. 
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Algorithm 2: Fused UNet 

Input: 

• An input image for segmentation. 

• Hyperparameter for the Fused U-Net architecture. 

Algorithmic Steps: 

1. Encoder: 

o Apply convolution operations with a certain number of filters and kernel sizes to extract features 

from the input image. 

Skip Pathways: 

• For each dense skip connection: 

o Concatenate the output of the previous convolution layer(s) with the corresponding feature map 

from the lower skip pathway. 

𝑥𝑖𝑗 = {
𝐷 (𝑝(𝑥𝑖−1𝑗))        𝑗 = 0

𝐷(𝑝([𝑥𝑖𝑘]𝑗−1
𝑘=0𝑇(𝑥𝑖+1𝑗−1)])  𝑗 > 0

   

Decoder: 

• Apply up sampling operations to the feature maps from the last layer of the encoder to bring them to the 

original input image size. 

  Output Layer: 

• Apply a convolution operation with a 1x1 kernel to produce the final segmentation map. 

• Apply an activation function to obtain pixel-wise class probabilities. 

Output: 

• A segmentation map where each pixel is assigned a class label representing the predicted segment it 

belongs to. 

 

 

Fig 3: F-UNet architecture 
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3.4 Feature Extraction using CNN-AlexNet 

Image feature extraction is a technique used in computer 

vision for the purpose of simplifying and representing 

large amounts of raw image data. This representation 

often takes the shape of a collection of numerical values 

or features that capture key aspects of the picture. Image 

retrieval, object identification, and other applications may 

all benefit from these capabilities. 

AlexNet's primary drawback lies in its computational 

complexity and resource requirements, demanding 

substantial GPU resources and memory capacity during 

training and deployment, which was particularly 

challenging when it was introduced. Its extensive 

architecture led to long training times, making it less 

accessible for those without access to high-performance 

computing. Moreover, the model's large number of 

parameters made it susceptible to overfitting when 

training data was limited so we use CNN-AlexNet. 

AlexNet, a popular choice among CNN frameworks, is 

composed of 13 layers. This architecture includes three 

fully connected layers followed by five convolution 

layers, with max pooling integrated between the 

convolution layers. Each layer, excluding the output layer, 

incorporates both dropout and ReLU activation functions. 

The model's strength lies in its ability to perform well in 

supervised learning applications, demonstrating effective 

image-input-to-classification-model mapping. 

AlexNet requires an input picture size of 227 x 227 x 3. In 

the first layer, a 96-convolution filter is used, with a 

window shape of 11 by 11 (stride 4 with size). A 555596 

feature map is generated as a result. Next, there are two 

stride-sized maximum pooling layers (3 by 3) in the 

network. Then, get the feature map with a size of 27 by 27 

by 96 that were generated. A second convolution layer 

was then used by the model. This time, appreciation to a 

reduction in filter size to 5 by 5, there are 256 to choose 

from. A new 27 by 27 by 256 feature map has been 

generated. Once again, a max-pooling layer of size 3 by 3 

and two steps is used. A 13-by-13-by-256-cell feature 

map was produced. Time with the filter size decreased to 

33 for the final three layers. Three layers of 3x3 max-

pooling with a stride of 2 are then applied after the 

384,384, and 256 convolution filters. The final 66256 

feature map has this form. Two fully-connected layers 

generate 4906 neuron output after the fifth convolutional 

layer.  

 

Algorithm 3: CNN-AlexNet 

Input: 

1. Input Image: A digital image that wants to extract features from. 

Steps: 

1. Image Preprocessing: 

o Resize the input image to the required input size of the AlexNet model, which is 227 x 227 x 3 

pixels. 

o Normalize the pixel values to ensure they are within the expected range (usually [0, 1] or [-1, 1]). 

2. Pass the Image Through AlexNet: 

o Feed the preprocessed image through the layers of the pre-trained AlexNet model. 

o Extract feature maps or activations from one of the intermediate layers of the network.  

Output: 

• A feature vector representing the input image. This feature vector contains numerical values that encode 

important image characteristics learned by the AlexNet model during training. 

 

 

The network ends with a completely linked layer that, in 

the beginning, produces 1000 distinct output classes. The 

network, which was initially designed to provide 1000 

output classes, terminates with a single completely linked 

output layer. In this layer, Softmax is employed as the 

function. Fig.5 depicts the AlexNet neural network 

design. 
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Fig 4: CNN-AlexNet architecture 

3.5 Oil Spill detection and recognition using Faster 

RCNN with Enhanced MobileNetV2 Model 

3.5.1 Faster RCNN 

It's the next level up from R-CNN and Fast R-CNN. Faster 

R-CNN is now possible because to the Regional Proposed 

Network (RPN). Therefore, it is also known as the 

foundation of rapid R-CNN. An RPN receives an image 

as input and outputs a collection of rectangular shapes. In 

order to function properly, RPN is a trainable algorithm. 

Therefore, a loss function will be present, and it will look 

like this. 

Faster R-CNN, an evolution beyond R-CNN and Fast R-

CNN, integrates eight layers in its architecture to optimize 

object detection tasks. The model employs convolutional 

layers for hierarchical feature extraction, pooling layers 

for downsampling, and a Region Proposal Network (RPN) 

to generate potential object regions. A trainable algorithm, 

the RPN outputs rectangular shapes, and its optimization 

involves a loss function during training. Following the 

RPN, RoI pooling extracts fixed-size feature maps, 

leading to fully connected layers for further refinement. 

The architecture also includes layers for bounding box 

regression and object classification, ensuring accurate 

localization and labeling. This eight-layer structure 

enhances the efficiency and accuracy of Faster R-CNN in 

proposing regions of interest and advancing object 

detection capabilities in computer vision applications. 

𝐿({𝑃𝑖}, {𝑡𝑖} =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠𝑖 (𝑝𝑖 , 𝑝𝑖

∗) +
𝑦1

𝑁 𝑟𝑒𝑔
(𝑡𝑖, 𝑡𝑖

∗) ------- 

(5) 

Here, 'P' stands for probability,’t’ stands for the vector of 

4 parameterized coordinates of the predicted bounding 

box, '*' stands for the ground truth box, and 'L' stands for 

the log loss between the two classes.

 

Drawbacks 

• Two thousand proposed regions must be classified in 

each picture. Therefore, training the network is a 

lengthy process. 

• It requires 49 seconds to detect the objects in an 

image on GPU. 

• To store the feature map of the region proposal, lots 

of Disk space is also required. 

• MobileNetV2 

• MobileNet-v2 is a convolutional neural network that 

is 53 layers deep. It is based on an inverted residual 

structure where the residual connections are between 

the bottleneck layers. 

3.5.2 Enhanced MobileNetV2 

MobileNetV2 represents a significant improvement over 

its predecessor, MobileNetV1, addressing optimization 

challenges through the introduction of an inverted residual 
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structure. This innovative architecture enhances feature 

reuse and computational efficiency. Notably, the inverted 

residual structure is designed to optimize the underlying 

network, mitigating issues present in V1. MobileNetV2 

further distinguishes itself by outperforming 

MobileNetV1 and ShuffleNetV1 in terms of accuracy. 

The EffNet network improves upon MobileNetV1 by 

incorporating a linear bottleneck transformation module 

and an inverted residuals module, achieving superior 

performance. The addition of these modules contributes to 

a more efficient and accurate model, and MobileNetV2 

boasts an impressive depth of 154 layers, showcasing its 

advanced capabilities in the realm of computer vision 

tasks. 

 

Fig 5: Enhanced MobileNetV2 

MobileNetV2 also includes a new residual structure 

variation, the inverted residual structure, which is 

diametrically opposed to ResNet's residual structure. The 

width of the channel is widened before it is narrowed. As 

can be seen in the picture, the shortcut branch is an 

inverted residual structure since it links to the channel-

dimensional reduced feature map. In order to enhance the 

dimension, 11 convolutions are applied before deep 

convolution. Increase the nonlinearity of high-

dimensional space while annihilating the features of low-

dimensional space with the help of the ReLU activation 

function. As demonstrated in Fig. 5, this strategy allows 

for high-dimensional feature extraction, which may 

compensate for the data loss introduced by the ReLU 

activation function. 

3.5.3 Faster RCNN with Enhanced MobileNetV2 

Faster R-CNN with Enhanced MobileNetV2 is an 

advanced object detection framework that combines the 

precision of the Faster R-CNN architecture, renowned for 

accurate object detection, with the efficiency and speed of 

an optimized version of MobileNetV2. This integration 

results in a highly versatile and computationally efficient 

solution capable of real-time object recognition across a 

broad spectrum of applications, from autonomous driving 

and surveillance to robotics and beyond, making it an 

ideal choice for resource-constrained or high-performance 

computer vision tasks. 

We briefly describe the Faster R-CNN with Enhanced 

MobileNetV2 model that forms the core of our research. 

The three critical parts of the two-stage detector that is 

Faster R-CNN with Enhanced MobileNetV2 are the 

shared bottom convolutional layers, the region proposal 

network (RPN), and the region-of-interest (ROI) based 

classifier. On the left, see some of the building designs. 

An image is converted into a convolutional feature map 

by the typical bottom convolutional layers. Next, the ROI-

wise classifier utilises the pooled feature vector from 

ROIs to make predictions about which categories the 

RPN-suggested candidates belong to. Each of these 

losses—RPN and ROI classifier—contributes to the 

overall training loss: 

𝐿𝑑𝑒𝑡 = 𝐿𝑟𝑝𝑛 + 𝑙𝑟𝑜𝑖 ------- (5) 

Algorithm 4: Faster RCNN with Enhanced MobileNetV2 

Input: 

• An input image that want to perform object detection on. 

Step: 
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• The input image is passed through the shared bottom convolutional layers, typically based on 

MobileNetV2 architecture, to extract convolutional feature maps. These feature maps capture 

hierarchical features from the input image. 

• The overall training loss is a combination of the RPN and ROI losses: 

𝐿𝑑𝑒𝑡 = 𝐿𝑟𝑝𝑛 + 𝑙𝑟𝑜𝑖  

• Where 𝐿𝑟𝑝𝑛the loss is associated with the RPN, and 𝑙𝑟𝑜𝑖 is the loss associated with the ROI-based 

classifier. 

• The model parameters are updated using back propagation and optimization techniques like stochastic 

gradient descent (SGD) to minimize the overall training loss. 

• During inference, the model is used to make predictions on new, unseen images. The RPN generates 

region proposals, and the ROI-based classifier classifies objects and refines their bounding boxes. 

Output: 

• A list of detected objects with their corresponding class labels and bounding box coordinates. 

 

Classification loss is based on the precision of the 

predicted probability, while localization loss is based on 

the box coordinates; both factors are included in the 

training loss of the RPN and ROI classifiers. For further 

details on the framework and the method of instruction, 

the interested reader is referred to. 

4. Results and Discussion  

In this section, we present the outcomes of our 

comprehensive oil spill detection and recognition system, 

along with a discussion of their implications and 

significance for environmental protection and response 

efforts. 

 

Fig 6: Thresholding image 

Figure 6 presents the results of the thresholding image 

processing step in our comprehensive oil spill detection 

and recognition system. Thresholding is a fundamental 

technique in image processing used to create a binary 

image where pixels are classified as either foreground or 

background based on their intensity values. In the context 

of oil spill detection, this step plays a crucial role in 

enhancing image quality and reducing noise in the input 

data. 
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Fig 7: Segmentation image 

Figure 7 in our research represents the Segmentation 

image, a crucial intermediate step in our comprehensive 

oil spill detection and recognition system. Segmentation 

in computer vision is the process of dividing an image into 

distinct regions or segments based on certain criteria. In 

the context of our research, segmentation is employed to 

effectively separate oil spill areas from the background in 

the input images, enabling precise identification and 

analysis of contaminated regions. 

 

Fig 8: Segmented image 

Figure 8 shows a segmented image, where distinct regions 

or objects within the original image have been delineated 

or highlighted through a segmentation process. 

Segmentation involves partitioning an image into 

meaningful or visually distinguishable areas, facilitating 

the analysis and understanding of specific components 

within the overall visual content. 
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Fig 9: Selected feature using LBP and CNN-AlexNet 

Figure 9 displays the outcome of feature selection using 

Local Binary Patterns (LBP) and Convolutional Neural 

Network (CNN) with the AlexNet architecture. The image 

illustrates the features that have been identified and 

chosen through the combined use of LBP and CNN-

AlexNet. Feature selection is a crucial step in image 

processing and machine learning, as it focuses on 

extracting relevant information and reducing 

dimensionality for improved model performance. 

 

Fig 10: Visualizing weighted feature 

Figure 10 provides a visualization of weighted features, 

where features extracted from the data are assigned 

specific weights based on their importance or contribution 

to a given model or analysis. The visualization could 

depict the distribution or spatial representation of these 

weighted features, offering insights into the significance 

of different components. 
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Fig 11: Visualizing feature  

Figure 11 presents a visualization of features extracted 

from a dataset or signal. The visualization aims to provide 

a graphical representation of the characteristics, patterns, 

or attributes captured by these features. This type of figure 

is valuable in understanding the distribution, 

relationships, or structures present in the data. 

 

Fig 12: Training and Test accuracy 

The figure 12 shows test accuracy the x axis show epochs and the y axis shows accuracy value over the 15 epochs 

 

Fig 13: Training and Test loss 
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The figure 13 shows test loss the x axis shows 15 epochs and the y axis shows test loss 

 

Fig 14: ROC curve 

The figure 14 shows ROC curve the x axis shows false 

positive rate and the y axis shows true positive rate. 

4.1 Performance evaluation 

1. Accuracy: The fraction of samples with the 

right classification out of all samples. 

Mathematically: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 ----------- (13) 

2. Precision: Ratio of pest samples with accurate 

identification to total pest samples with accurate 

identification. Mathematically: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  ------------ (14) 

3. Recall (also known as sensitivity or true 

positive rate): The proportion of correctly 

classified pest samples out of the total number 

of actual pest samples. Mathematically: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  -------------- (15) 

4. F1 score: A middle ground between accuracy 

and memory that strikes a harmonic mean. 

Mathematically: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

 𝑅𝑒𝑐𝑎𝑙𝑙)   --------- (16) 

5. Sensitivity, also known as True Positive Rate or 

Recall, measures the ability of a classification 

model to correctly identify positive instances 

among all actual positive instances. It is 

calculated using the following formula: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

6. Negative Detection Probability, also known as 

sensitivity or true positive rate, represents the 

likelihood that a system or test correctly 

identifies the absence of a negative condition or 

event. The formula for Negative Detection 

Probability is given by: 

𝑁𝐷𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

7. False Discovery Rate (FDR) is a statistical 

measure that represents the proportion of false 

positives among the total instances identified as 

positive by a test or system. The formula for 

False Discovery Rate is given by: 

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 

8. Mean Squared Error (MSE) is a measure of the 

average squared difference between predicted 

values and actual values in a set of data. It is 

commonly used to assess the accuracy of a 

predictive model. The formula for Mean Squared 

Error is given by: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌𝑖)2

𝑛

𝑖=1
 

9. The G-Mean, or geometric mean, is a statistical 

measure used to evaluate the performance of a 

binary classification model, particularly in 

situations where there is an imbalance between 

the two classes. The G-Mean is calculated using 

the formula: 

𝐺 − 𝑚𝑒𝑎𝑛 = √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 
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10. Peak Signal-to-Noise Ratio (PSNR) is a metric 

used to quantify the quality of a reconstructed or 

compressed signal, commonly used in image and 

video processing. It measures the ratio between 

the maximum possible power of a signal (the 

peak signal) and the power of the noise that 

affects the fidelity of the signal. The formula for 

PSNR is given by: 

𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10 (
𝑚𝑎𝑥2

𝑀𝑆𝐸
)  

 

Table 1: Accuracy, precision, recall, F-measure comparison table 

 D.SONG (2020) OSD-DNN ICNN+Resnet18 FRCNN+EM 

Accuracy 0.97 0.98 0.98 0.99 

Precision  0.97 0.97 0.98 0.99 

Recall 0.98 0.98 1.0 1.0 

F-Measure 0.97 0.98 0.99 0.99 

 

 

Fig 8: Accuracy comparison chart 

Table 1 and figure 8 represent three distinct algorithms, 

namely OSD-DNN, ICNN+Resnet18, and FRCNN+EM, 

were evaluated for their performance in image 

classification tasks with D SONG (2020) paper also. The 

metrics of accuracy, precision, recall, and F-measure were 

employed to assess their effectiveness. The OSD-DNN 

algorithm demonstrated a commendable accuracy of 97%, 

with balanced precision and recall values of 97% and 

98%, respectively. ICNN+Resnet18 exhibited heightened 

accuracy at 98%, maintaining a high precision of 97% and 

recall of 98%. Notably, FRCNN+EM emerged as the top 

performer, achieving an accuracy of 98%, precise positive 

predictions at 98%, and perfect recall at 100%. The F-

measure, which combines precision and recall, 

underscored the algorithms' overall effectiveness, with 

OSD-DNN and ICNN+Resnet18 scoring 97% and 98%, 

respectively, while FRCNN+EM reached an impressive 

99%. These findings indicate that FRCNN+EM stand out 

among the evaluated algorithms, showcasing superior 

performance in image classification tasks. 

5. Conclusion 

In conclusion, our comprehensive approach to oil spill 

detection and recognition, integrating advanced computer 

vision techniques, offers a promising solution to address 

the critical environmental challenges posed by oil spills. 

Through a multi-step process, including image 

enhancement, segmentation, feature extraction, and object 

detection, we have developed a robust system capable of 

identifying oil spills with accuracy and efficiency. The 

utilization of Non-Adaptive Threshold with CLAHE 

significantly improves image quality and reduces noise, 

ensuring the reliability of subsequent analysis. Our Fused 

UNet Segmentation model effectively separates oil spill 
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areas from the background, enabling precise identification 

and analysis of contaminated regions. The incorporation 

of a CNN based on the AlexNet architecture extracts 

valuable features, enhancing the model's ability to 

distinguish between spill and non-spill regions. The core 

of our system, the integration of Faster R-CNN with 

Enhanced MobileNetV2, ensures real-time processing 

and state-of-the-art performance in object detection. By 

training the model on a diverse dataset, encompassing 

both synthetic and real-world oil spill images, we have 

equipped it to detect and recognize oil spills accurately. 

With an Accuracy of 0.99, the Proposed method achieves 

near-perfect overall classification accuracy, ensuring 

highly reliable identification of oil spill regions. Our 

approach, blending cutting-edge image processing, 

segmentation, feature extraction, and object detection 

methods, presents a powerful tool for the timely and 

accurate detection of oil spills. The experimental results 

underscore the effectiveness of our system in various 

environmental conditions.  

Our integrated approach to oil spill detection and 

recognition stands as a pivotal contribution to Sustainable 

Development Goals (SDGs), specifically targeting 

environmental sustainability. Additionally, it supports 

SDG 13 (Climate Action) by addressing climate-related 

concerns through timely identification and mitigation of 

environmental hazards. 
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