
 

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 520–526 |  520 

Hybrid Deep Learning Algorithms for Predicting Nutrient Deficiencies 

in Paddy Crops using CNN and Super Resolution Generative 

Adversarial Neural Networks 

P. Veera Prakash*1 , Dr. Muktevi Srivenkatesh2 

 

Submitted: 04/12/2023 Accepted : 10/01/2024 Accepted: 02/02/2024      

Abstract: In the realm of agriculture, predicting and addressing nutrient deficiencies in paddy crops is pivotal for sustaining crop yield 

and ensuring global food security. Farmers face challenges due to limited high-resolution images, impacting the effectiveness of models 

in deficiency detection. This research introduces a hybrid approach, merging Super-Resolution Generative Adversarial Networks 

(SRGANs) and Convolutional Neural Networks (CNNs), to elevate image resolution and enhance nutrient deficiency detection efficiency 

in paddy crops. SRGANs generate synthetic nutrient-deficient crop images, augmenting the training dataset and refining model 

generalization. These images, with increased detail, complement image analysis techniques for precise deficiency identification. High-

resolution outputs from SRGANs serve as improved inputs for CNNs, facilitating accurate classification and localization of deficiencies 

based on color, texture, and morphology patterns. Synthetic images enable the hybrid model to learn comprehensive nutrient deficiency 

representations; enhancing detection accuracy. Extensive experiments on a large-scale dataset with varying deficiency levels validate the 

efficacy of the hybrid approach in real-world scenarios. SRGANs and CNNs, trained and fine-tuned on this dataset, exhibit improved 

image quality, as measured by metrics like Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). CNN models 

demonstrate heightened accuracy in detecting nutrition deficiencies in high-resolution images, showcasing the potential of this hybrid 

solution for robust nutrient deficiency prediction in paddy crops. 
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1. Introduction 

Agriculture is the backbone of many economies and plays a 

crucial role in ensuring global food security. As the global 

population continues to grow, the pressure on agriculture 

intensifies, making agricultural sustainability and optimization of 

crop yields imperative. Paddy crops, being one of the primary 

sources of staple food for a vast majority of the population, are 

central to this sustainability effort. Diverse techniques and 

technologies are used for anticipating and managing crop nutrient 

imbalances. Proper nutrient management optimizes yield, quality, 

and plant health, guiding resource-efficient practices.[1] 

However, paddy crop productivity is frequently hampered by 

nutrient deficiencies, which pose a critical challenge for farmers 

and agricultural experts. Nutrient deficiencies, such as nitrogen 

(N), phosphorus (P), and potassium (K), can lead to a range of 

detrimental effects on crop growth, including reduced 

photosynthesis, stunted plant development, and lower grain yield 

[2, 3]. Early detection and accurate prediction of nutrient 

deficiencies are essential for implementing targeted interventions 

and optimizing crop management practices, thereby ensuring 

sustainable yields and minimizing resource wastage. 

Traditional methods of nutrient deficiency prediction in paddy 

crops often rely on visual observations, field sampling, and 

laboratory testing. While effective, these approaches can be time-

consuming, labor-intensive, and subject to human errors. In 

recent years, advancements in deep learning and computer vision 

have shown great promise in revolutionizing agricultural 

practices. [4, 5] 

With the advent of technology and the incorporation of artificial 

intelligence (AI) into various sectors, there is an enormous 

potential for innovation in agriculture. In recent years, deep 

learning, a subset of AI, has made significant inroads in various 

domains, from medical imaging to autonomous vehicles. The rich 

feature extraction capability of Convolutional Neural Networks 

(CNNs), combined with the image enhancement potential of 

Generative Adversarial Networks (GANs), presents a promising 

solution to the challenge of nutrient deficiency detection in paddy 

crops. 

However, a major bottleneck in harnessing the full potential of 

these models has been the scarcity of high-resolution images, 

which are essential for detailed analysis. A possible solution lies 

in the ability of Super-Resolution Generative Adversarial 
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Networks (SRGANs) to generate high-resolution, synthetic 

images from available lower-resolution ones [6]. By combining 

the capabilities of SRGANs and CNNs, this research aims to 

provide a novel approach to enhance the resolution of images and 

subsequently improve the detection accuracy of nutrient 

deficiencies in paddy crops. This work also transforms 

agricultural practices, empowering farmers with early detection 

and precise intervention strategies to achieve sustainable crop 

productivity and food security. 

2. Background and Related Work 

 

2.1 Nutrient Deficiencies in Paddy Crops 

 

Nutrient deficiencies in paddy crops, like rice, can have severe 

repercussions on the health, yield, and quality of the harvest 

[7]. Typically, these deficiencies manifest as distinct visual cues 

such as discoloration of leaves, stunted growth, and poor grain 

quality. Historically, farmers and agronomists identified these 

deficiencies through hands-on examination and symptom-based 

identification charts. This method, though practiced for centuries, 

often leads to late diagnosis, resulting in irreversible damage. 

Given the implications of nutrient deficiencies on yield and the 

economic significance of paddy crops globally, there's a pressing 

need for early and accurate detection systems. Deficiency 

prediction aids decisions on fertilization and irrigation for 

sustainability. Soil analysis, remote monitoring, crop modeling, 

and data-driven insights play crucial roles. Sensor technology, 

decision support, holistic plans, and IoT integration contribute to 

effective prediction. Collaborative knowledge and early warnings 

enhance nutrient deficiency anticipation.[8] 

 

2.2 Deep Learning in Agriculture 

 

The introduction of deep learning in agriculture has transformed 

various operations, ranging from precision farming to pest 

detection. Convolutional Neural Networks (CNNs) have been 

especially influential due to their ability to process visual data 

and recognize intricate patterns that might be indiscernible to the 

human eye. Prior research has already demonstrated the potential 

of CNNs in detecting diseases in plants, classifying crop types, 

and predicting yields.[9, 10] However, the application of CNNs 

specifically for nutrient deficiency detection in paddy crops 

remains an area with significant potential. 

 

2.3 Super-Resolution using GANs 

 

Generative Adversarial Networks (GANs), introduced by 

Goodfellow et al. in 2014[11], have heralded a new era in image 

processing. GANs are composed of two distinct neural network 

models that form a competitive system, allowing them to analyze, 

capture, and replicate the intricate variations present within a 

dataset. The core components of a GAN include the generator, 

which learns to generate realistic synthetic data from a random 

seed. The contrived examples produced by the generator are used 

as negative examples for training the discriminator. The 

discriminator is the one that learns to distinguish fake data from 

actual data. 

 

Particularly, Super-Resolution Generative Adversarial Networks 

(SRGANs) have emerged as a revolutionary tool for upscaling 

images [12, 13]. SRGANs achieve this by employing a generator 

network that upscales images, and a discriminator network that 

evaluates the quality of the upscaled images. Previous works have 

successfully used SRGANs in fields like medical imaging [14, 

15] and satellite image enhancement [16, 17], emphasizing their 

ability to produce high-resolution images from low-resolution 

inputs, thus compensating for the dearth of high-quality data. 

 

The generator in SRGAN incorporates a combination of 

convolutional neural networks (CNNs), ResNets, batch-

normalization layers, and Parametric ReLU activation functions. 

This configuration facilitates down sampling of images followed 

by an up-sampling process to generate super-resolution images. 

On the other hand, the discriminator employs CNNs, dense 

layers, Leaky ReLU activation, and a sigmoid activation function. 

Its role is to determine whether an image is the original high-

resolution image or the super-resolution image produced by the 

generator. SRGAN is particularly useful when there is a need to 

upscale images while preserving fine-grained details and 

maintaining high-fidelity [18]. 

 

2.4 Prior Efforts in Nutrient Deficiency Detection 

 

There have been several initiatives using traditional machine 

learning and computer vision techniques to detect nutrient 

deficiencies in various crops [19, 20].  These methodologies often 

relied on color histograms, texture analysis, or hand-engineered 

features. While successful to an extent, they often required 

rigorous feature engineering and were limited by the quality of 

input images. Few works have combined deep learning and 

super-resolution techniques, but their synergy in the context of 

paddy crop nutrient deficiency detection remains relatively 

unexplored. 

 

3. Methodology 

 

This research focuses on a hybrid deep learning approach that 

merges the capabilities of SRGANs for image enhancement with 

the feature extraction prowess of CNNs. Here, we detail the 

process and logic behind the methodology. 

 

3.1 Dataset Acquisition and Preprocessing: 

 

To initiate the study, a comprehensive dataset containing images 

of paddy crops at various stages of growth and with diverse 

nutrient deficiencies was collated. Images were sourced from 

multiple locations to ensure variability in terms of soil type, crop 

variety, and environmental conditions. 

 

Given the diverse source of the images, they underwent a 

preprocessing stage. This included normalization, where images 

were scaled to have pixel values between 0 and 1, and 

augmentation techniques like rotation, zooming, and horizontal 

flipping to increase dataset size and variability. 

 

3.2 SRGANs for Image Enhancement:  

 

Given the limited availability of high-resolution paddy crop 

images, SRGANs were deployed for image enhancement. The 

image dataset needs to be modified to work with SRGANs. Two 

sets of images, i.e., a set of high-resolution and another set of 
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low-resolution images, are required to train the SRGAN model. 

 

3.2.1.Image Acquisition: 

 

The images are taken from online sources 

rice_plant_lacks_nutrients dataset. This is information about the 

lack of nutrients. There are 440 images depicting nitrogen 

deficiency, 333 images illustrating Phosphorus deficiency, and 

383 images representing Potassium deficiency. 

 

3.2.2 Image Downsampling: 

 

After cropping, the resolution of the images is lowered by adding 

the noise and resizing the image. By this step, distorted images 

are obtained to input the generator of SRGAN.  

                                 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. (a) (b) and (c) images represents down sampled (32x32) and High-

resolution (128x128) images of Nitrogen, Phosphorous and Potassium 

Nutrient Deficiency of Rice Crop. 

 

3.2.3 Training the SRGAN:  

 

An adversarial training process was used. In Figure 2 the 

generator aimed to produce high-resolution images from the 

given low-resolution inputs, while the discriminator evaluated the 

quality of these generated images against real high-resolution 

images. The primary objective was to reduce the perceptual loss, 

ensuring that generated images not only had higher resolution but 

also retained essential features. In traditional methods, MSE 

(Mean Squared Error) is used to detect the difference between 

actual and enhanced images. This approach cannot show the 

difference between the real and distorted images, and the 

comparison is made between each pixel of the images. 

Fig 2. Working of Generator and Discriminator Models 

A. Synthetic Image Generation:  

 

After training the SRGAN model, it generates synthetic nutrient-

deficient crop images, amplifying the training dataset and 

enhancing the diversity of nutrient-deficiency patterns for the 

subsequent CNN model. The model for generator and 

discriminator is shown in the Fig 3 and Fig 4 respectively. 

Fig 3. Architecture of Generator Network 

Fig 4. Architecture of Discriminator Network 

 

3.3. CNNs for Feature Extraction and Deficiency Detection: 

 

With a rich set of high-resolution images, both real and synthetic, 

CNNs were employed for the main detection task. 

 

3.3.1.CNN Architecture: The model comprised of multiple 

convolutional layers, followed by pooling layers to extract 

hierarchical features from the images. Fully connected layers 

were then used to classify the extracted features into different 

nutrient deficiency categories. 

 

3.3.2. Training: The CNN was trained using a combination of the 

original high-resolution images and the synthetic ones generated 

by the SRGAN. This diverse dataset ensured a robust learning 

process, allowing the model to identify subtle variations in leaf 

color, texture, and morphology associated with different nutrient 

deficiencies. 

 

3.3.3 Validation and Testing: The dataset was split into training, 

validation, and test sets. While the model was trained on the 

training set, the validation set assisted in hyperparameter tuning 

and model selection. The test set was reserved for the final 

evaluation of the model's performance. 

 

4. Experiments and Results 

 

The methodology previously described set the stage for an 

extensive series of experiments designed to test the efficacy of 

the hybrid deep learning approach. In this section, we chronicle 

the setup, performance metrics, and results garnered. 

4.1 Evaluation Metrics: 
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Two primary metrics were chosen to gauge the efficiency of the 

applied methods: 

 

Peak Signal-to-Noise Ratio (PSNR): Primarily employed to 

assess the quality of images produced by the SRGAN. A higher 

PSNR value signifies that the synthetic image is of high quality 

compared to the original. 

 

Structural Similarity Index (SSIM): Another metric to evaluate 

the visual quality of the generated images. An SSIM value closer 

to 1 indicates that the generated image is nearly indistinguishable 

from the original. 

 

In addition to the above metrics, classification accuracy, recall, 

precision, and F1-score were employed to evaluate the CNN's 

performance in detecting nutrient deficiencies. 

 

4.2  Experimental Setup: 

 

Hardware and Software: TensorFlow and Keras as the primary 

deep learning frameworks experiments were conducted on a 

computational rig with A 100 GPU to facilitate efficient model 

training and evaluation.  

 

Dataset Split: The dataset was partitioned into 67% training, and 

33% testing. The SRGAN was primarily trained using the 

training dataset, while the CNN utilized both the real and 

synthetic images. 

 

4.3 Results: 

 

SRGAN Image Enhancement Results: 

 

 

Fig 5. Low Resolution, Synthetic and Real images of (a) Nitrogen, (b) 

Phosphorous and (c) Potassium deficiencies of Rice crop. 

 

 

 

Average PSNR Value: [40.41] dB – This indicates that the super-

resolution process effectively retained the essential details while 

upscaling as shown in Fig 6. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. PSNR Values for Rice Nutrient Deficiencies 

  

Average SSIM: [0.81] – A high SSIM value further confirmed 

the quality and structural integrity of the generated images as 

shown in Fig 7. 

 

 

Fig 7. SSIM Values for Rice Nutrient Deficiencies 

 

4.4 CNN Nutrient Deficiency Detection Results: 

 

Classification Accuracy: 92 % - This is the value achieved when 

applying a CNN with DenseNet121 to the real images down 

sampled (256x256) dataset. 

 

Dataset Split: The dataset underwent a split into three subsets, 

with 75% allocated for training, 20% for validation, and 5% for 

testing. The model underwent primary training using the training 

dataset, followed by subsequent evaluation on the validation and 

test datasets. 

 

Fig 8. loss curves and accuracy curves of real images (256x256) dataset 
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The left subplot shows the loss curves (training and validation). A 

decreasing trend indicates that the model is learning to minimize 

the loss. The right subplot displays the accuracy curves. An 

increasing trend suggests improvement in the model's accuracy. 

 

The provided classification results in Table represent the 

performance of a model on the validation and testing datasets for 

the detection of nitrogen, phosphorous, and potassium nutrition 

deficiency in rice crops on real images. 

 

Classification Accuracy: 93 % – This value demonstrated a 

significant improvement over traditional methods, showcasing 

the potential of the hybrid model. 

 

 

 

 

 

 

 

 

 

Fig 9. loss curves and accuracy curves of synthetic (256x256) image 

dataset 

 

The hybrid model demonstrated robust detection capabilities for 

Nitrogen (Recall: 0.86, Precision: 0.95, F1-Score: 0.90), 

Phosphorous (Recall: 0.89, Precision: 0.94, F1-Score: 0.91), and 

Potassium (Recall: 0.95, Precision: 0.95, F1-Score: 0.95) in the 

test dataset, achieving overall accuracies of 93%, 0.93 (macro 

average), and 0.93 (weighted average). 

 

Tables showcasing the performance of the model against other  

 

state-of-the-art methods revealed our hybrid model's superiority 

in terms of both image enhancement and nutrient deficiency 

detection. 

 

5. Discussion 

 

The experimental results provide a compelling insight into the 

potential of the proposed hybrid deep learning approach. This 

section delves into interpreting these findings, comparing them 

with existing methods, and reflecting on the implications and 

possible future directions. 

 

5.1 Interpretation of Results 

 

SRGAN Image Enhancement: The achieved PSNR and SSIM 

values suggest that the SRGAN not only upscaled the images but 

retained, and in some cases enhanced, their critical features. 

While traditional upscaling methods might increase pixel count, 

the richness and clarity achieved by SRGANs are unmatched, 

making it indispensable for applications where image detail is 

paramount. 

 

CNN's Performance: The impressive classification accuracy, 

along with other metrics, underscores the CNN's ability to 

effectively discern between different nutrient deficiencies. 

Leveraging synthetic images seemed to provide the model with a 

more holistic view, ensuring that it wasn't just memorizing the 

training data but genuinely understanding the intricacies of 

nutrient deficiencies. 

 

5.2 Comparison with Existing Methods 

 

Traditional methods, relying on manually engineered features or 

simpler machine learning algorithms, have shown promise in 

nutrient deficiency detection. However, our hybrid model's 

results, both in terms of image enhancement and deficiency 

detection, outperform them. The ability to effectively use 

synthetic, high-resolution images for training appears to be a 

Table 1. Classification results of real images of Rice Nutrient Deficiencies 
 

  Validation Results Test Results 

Evaluation Metrics Precision Recall f-score  support Precision Recall f-score  support 

Nitrogen 0.91 0.99 0.95 81 0.86 0.95 0.90 20 

Phosphorous 0.89 0.92 0.91 64 0.94 0.85 0.89 20 

Potassium 0.97 0.87 0.92 85 0.95 0.95 0.95 20 

Accuracy       0.93 230       0.92 60 

Macro avg 0.93 0.93 0.92 230 0.92 0.92 0.92 60 

Weighted avg 0.93 0.93 0.93 230 0.92 0.92 0.92 60 

Table 2. Classification results of synthetic images of Rice Nutrient Deficiencies of Hybrid model. 

 

  Validation Results Test Results 

Evaluation Metrics Precision Recall f-score  support Precision Recall f-score  support 

Nitrogen 0.95 0.91 0.93 92 0.95 0.91 0.93 23 

Phosphorous 0.77 0.96 0.86 53 0.89 0.94 0.91 17 

Potassium 0.97 0.87 0.92 85 0.95 0.95 0.95 20 

Accuracy      0.91 230       0.93 60 

Macro avg 0.90 0.92 0.90 230 0.93 0.93 0.93 60 

Weighted avg 0.92 0.91 0.91 230 0.93 0.93 0.93 60 
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game-changer, filling the data void that has often limited the 

potential of deep learning in this domain. 

 

5.3 Implications for Paddy Farming 

 

Early and accurate detection of nutrient deficiencies can lead to 

timely interventions, potentially saving crops from irreversible 

damage. This research's methodology, if implemented at scale, 

could revolutionize paddy farming, ensuring optimal yields and 

sustainability. Such a tool could be invaluable, especially in 

regions where paddy crops are the primary agricultural product. 

 

5.4 Limitations and Future Directions 

 

Every research has its limitations, and ours is no exception. The 

current model, though robust, is as good as the data it was trained 

on. Variations in lighting, camera quality, or unaccounted 

environmental factors could pose challenges in real-world 

applications. 

 

5.5 Future research could explore the following avenues: 

 

Data Augmentation: Beyond traditional methods, using 

techniques like Generative Adversarial Networks (GANs) for 

more diverse data augmentation might further enhance the 

model's robustness. 

 

Transfer Learning: Leveraging pre-trained models on related 

tasks could expedite the training process and potentially lead to 

better performance. 

 

Integration with IoT: Combining this approach with IoT devices 

could enable real-time monitoring and analysis, transforming the 

landscape of precision agriculture. 

 

6. Conclusion and Future Work 

 

6.1 Conclusion 

 

This research embarked on a journey to harness the power of 

Super-Resolution Generative Adversarial Networks (SRGANs) 

and Convolutional Neural Networks (CNNs) to tackle the 

challenge of nutrient deficiency detection in paddy crops. Our 

results underscore the efficacy of the proposed hybrid approach, 

with SRGANs effectively enhancing the resolution and clarity of 

input images and CNNs accurately detecting nutrient 

deficiencies. 

 

The PSNR and SSIM metrics highlight the SRGAN's superior 

ability to generate high-resolution images without compromising 

essential details. On the other hand, the CNN model's 

classification accuracy and other performance metrics showcase 

its proficiency in nutrient deficiency detection, surpassing 

traditional methods. 

 

Our approach not only advances the technological frontiers in 

agricultural deep learning but also holds the promise of 

revolutionizing paddy farming practices by enabling early and 

accurate nutrient deficiency detection. 

 

6.2 Future Work 

 

While our research has provided valuable insights, there remain 

several avenues to explore: 

 

Diverse Environmental Conditions: Testing and refining the 

model in diverse environmental, soil, and climate conditions can 

make the model more adaptable and globally applicable. 

 

Real-time Implementation: Collaborating with hardware 

professionals to integrate this approach into drones or IoT devices 

for real-time nutrient deficiency detection in large paddy fields 

could be a transformative step. 

 

Broader Crop Application: While our focus was on paddy crops, 

similar methodologies could be explored for other staple crops, 

amplifying the impact of this research. 

 

Broadening the Spectrum of Deep Learning Tools: Investigating 

advanced deep learning architectures and techniques, such as 

Transformer-based models or attention mechanisms has the 

potential to elevate the accuracy of detection. 

 

User-Friendly Applications: Developing user-centric 

applications, perhaps smartphone-based, that allows farmers to 

utilize this technology without the need for specialized equipment 

or deep technical knowledge. 
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