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Abstract: Globally, breast cancer stands as the second most prevalent disease affecting women. Mammography, utilizing low-dose X-

rays, remains a highly effective modality for the early detection of cancer. Challenges such as uneven illumination and machine-imposed 

limitations contribute to low-contrast mammogram images, potentially impacting the accuracy of diagnoses. Due to the inherently narrow 

intensity range in mammography images, distinguishing between cancerous and non-cancerous tissues becomes challenging. This paper 

introduces a novel approach that combines Adaptive Gamma Correction with a two-way Discrete Wavelet Transform-Singular Value 

Decomposition (DWT-SVD) to enhance the visual clarity of the resulting images while preserving crucial clinical information. The 

introduction of a new correction adjustment factor enhances the singular value of the image, resulting in a significantly improved contrast-

enhanced output. Experimental validation is conducted using mini-MIAS dataset, assessing the proposed technique with quantitative 

parameters such as Structural Similarity Index Measurement (SSIM), Pearson Correlation Coefficient (PCC), Peak to Signal Noise Ratio 

(PSNR), Contrast Improvement Index (CII), Mean Absolute Error (MAE), and Average Mean Brightness Error (AMBE). The obtained 

average values, including scores of 0.929, 0.998, 22.875, 1.136, 14.457, and 14.138, respectively, demonstrate promising results compared 

to conventional methods. Furthermore, comparison with the state-of-the-art techniques shows improved results, showcasing significant 

advancements in local information preservation and contrast enhancement in mammography images. 

Keywords: Mammograms, Contrast Enhancement, Discrete Wavelet Transform, Adaptive Gamma Correction, Singular Value 

Decomposition 

1. Introduction 

The need to address breast cancer, the leading cause of 

death for women, has spurred a creative explosion in 

research and diagnostic techniques in the rapidly changing 

field of medicine. In recent decades, there has been a 

dramatic increase in the consensus on the critical role that 

early intervention plays in improving patient survival 

rates[1], [2].A wide range of imaging modalities, 

including magnetic resonance imaging (MRI), positron 

emission tomography (PET), ultrasonography, histology, 

computed tomography (CT), and X-rays, are woven into 

the complex fabric of breast cancer detection. 

Mammography is at the forefront of these modalities and 

is characterized by its unmatched cost-effectiveness and 

reliability[3]. However, low brightness and poor contrast, 

which hinder early disease identification, continue to pose 

a major hurdle to the visibility of tumors in 

mammography. Uneven illumination from imaging 

devices and inadequate lighting conditions exacerbate the 

loss of brightness in mammogram images, making it more 

difficult to discern minute features that are essential for 

precise visual perception during mammography 

examinations[4], [5]. Acknowledging this crucial 

constraint, mammography improvement becomes a 

crucial aspect of medical imaging. This entails both noise 

reduction and a sophisticated contrast enhancement 

strategy, with the goal of revealing critical characteristics 

that are critical for the successful identification of 

anomalies in mammograms.   

Histogram Equalization (HE) is commonly utilized for its 

simplicity and effectiveness in contrast enhancement, 

remapping gray levels based on input probability 

distributions. However, its limited usage stems from the 

tendency to flatten histograms, resulting in significant 

brightness changes and unwanted artifacts[6], [7]. To 

solve this problem, Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) divides the image into many tiles 

and applies the same transformation algorithm used in HE 

to each tile independently. Furthermore, CLAHE 

redistributes the resulting histogram within the clip limit. 

Despite its advantages, CLAHE can over-enhance images, 

especially in areas with sudden grayscale changes, 

resulting in false borders and unwanted distortions[8]. 

To solve the above issues, BBHE presents a distinctive 

strategy, segmenting an input image's histogram into two 

sub-histograms based on its mean and independently 

equalizing them, thereby effectively preserving the 

original brightness[9]. Wan et al.[10] extended this 
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concept with Dualistic Sub-Image Histogram 

Equalization (DSIHE), utilizing median-based 

segmentation. While DSIHE suits non-uniform intensity 

distribution images, its brightness preservation potential is 

relatively modest. However, both BBHE and DSIHE 

techniques exhibit limitations in scenarios with complex 

image content or extreme brightness variations. Chen et 

al. [11] extended the BBHE approach by developing 

RMSHE, which generalizes the notion by recursively 

dividing each sub-histogram into two depending on mean 

intensity. This process continues until optimal 

enhancement is achieved. However, a notable drawback 

of this approach is its time complexity, attributed to the 

recursive process. Fuzzy systems have been introduced to 

automate clip limit selection based on image 

characteristics, enhancing contrast without compromising 

image quality [12]. Histogram Modified CLAHE (HM-

CLAHE), a novel technique for adjusting contrast 

enhancement levels, was recently developed by Sundaram 

et al.[13]. Performance is assessed using metrics like 

Enhancement Measure (EME). This modification was 

required since CLAHE by itself had difficulty maintaining 

local information in mammograms. Subsequently, in their 

work, Sundaram et al. [14] used HM-LCE for 

mammography images in their study, which considerably 

improved local details by modifying the histogram of the 

original image using a modification function. Even with 

these improvements, the technique is still unable to fully 

capture all of the image's subtle elements. Nonlinear 

unsharp masking (NLUM) offers an approach that 

requires no prior knowledge of the image content [15].  

Huang et al.[16] introduced the Adaptive Gamma 

Correction and Weighting Distribution (AGCWD) 

technique, employing an adaptive gamma correction and 

weighting distribution function to automatically enhance 

the brightness of dimmed images. While AGCWD offers 

a straightforward and effective contrast enhancement, its 

performance may be compromised when the input image 

lacks a sufficient number of bright pixels. Several studies 

have proposed hybrid histogram-based approaches 

combining gamma correction with traditional histogram 

equalization to maintain histogram statistics while altering 

the transformation curve[17], [18].To address the above 

mentioned problem, a fuzzy systems have been introduced 

to automate clip limit selection based on image 

characteristics, enhancing contrast without compromising 

image quality. The method (FC-CLAHE) is capable of 

achieving significant contrast enhancement while 

preserving brightness[19]. The paper presents a new 

method called Fuzzy Weighted Histogram Equalisation 

(FWHE) to improve the contrast of mammography 

images, which is essential for the early identification of 

breast cancer. FWHE produces best outcomes by 

undergoing three stages: fuzzy transformation, PDF 

modification, and de-fuzzification. This process 

effectively enhances contrast, resulting in increased visual 

quality [20]. 

Since none of the aforementioned techniques can increase 

contrast locally, crucial concealed information may 

occasionally remain hidden. In the context of local 

contrast, a method for improving medical images using 

gradient modulation and luminance-level modulation was 

developed by Zhao et al.[21]. Demirel et al.[22] pioneered 

the utilization of the DWT-SVD technique for satellite 

image enhancement. The method entails utilizing SVD on 

the input image and subsequently improving the outcome 

using GHE. More precisely, SVD is utilized on the low-

frequency LL sub-band acquired by DWT. This process 

produces a new LL sub-band by multiplying correction 

coefficients with the matrix of singular values. The 

ultimate equalized satellite image is achieved by applying 

inverse DWT, resulting in a considerably enhanced image 

with increased contrast and clarity. On the other hand, 

Kallel et al. [23] created a technique especially designed 

for low-contrast CT images that uses DWT-SVD and 

adaptive gamma correction. It should be noted that this 

method might not work as well for some other kinds of 

medical images[17], [24]. Luminance control techniques 

focusing on value channels in color spaces have been 

proposed, utilizing gamma correction and contrast 

enhancement methods like CLAHE to improve image 

quality [25]–[27]. Generalized contrast enhancement 

using gray level S-Curve transformation has been 

explored, though it sometimes introduces blocking 

artifacts [28]. A multi-objective genetic algorithm has 

been used to modify local S-Curve transformations [29]. 

Numerous contrast enhancement techniques [30]–[33] 

have been developed to address issues such as contrast 

improvement, brightness preservation, edge retention, and 

artifact reduction. However, some techniques solely 

enhance image contrast without improving information 

content. Others may achieve better contrast but fall short 

in preserving brightness and structure similarity. Certain 

methods lack adaptability and result in artifacts. The 

effectiveness of an enhancement technique lies in its 

adaptability and the ability to strike a proper balance 

among these parameters, ensuring improved information 

content, brightness preservation, edge retention, and 

artifact reduction in enhanced medical images. Hence, the 

pursuit of an adaptive and effective enhancement 

technique tailored for medical images is crucial. 

The literature review indicates that maintaining the 

naturalness of the original mammography while 

enhancing contrast without artifacts or losing relevant 

information is still a challenge. To deal with the above 

stated problem we introduce a novel approach that 

combines Adaptive Gamma Correction with a two-way 
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DWT-SVD to enhance the visual clarity of the resulting 

images while preserving crucial clinical information. The 

Discrete Wavelet Transform (DWT) is a common method 

for converting images from the spatial domain to the 

frequency domain, yielding four frequency sub-bands: 

LL, LH, HL, and HH [34]. In our distinct approach, we 

prioritize the preservation of edge details by exclusively 

concentrating on the LL sub-band for contrast 

enhancement. Furthermore, the Singular Value 

Decomposition (SVD) technique is applied to generate a 

singular value matrix, involving the factorization of a 

matrix into three constituent matrices [35]. Notably, SVD 

is strategically employed on the LL sub-band to capture 

and utilize intensity information for effective image 

equalization. The introduction of a new correction 

adjustment factor enhances the singular value of the 

image, resulting in a significantly improved contrast-

enhanced output. This harmonious integration of DWT 

and SVD ensures a sophisticated enhancement strategy, 

emphasizing the protection of crucial edge details while 

optimizing the overall contrast adjustment.  

The major contribution of this research is: 

• To introduce a novel approach for contrast 

enhancement in mammogram through the 

integration of adaptive gamma correction and DWT-

SVD. 

• The introduction of a new correction adjustment 

factor enhances the singular value of the image, 

resulting in a significantly improved contrast-

enhanced output. 

• To evaluate the proposed method on qualitative and 

on various quantitative measures comparing it with 

both conventional and state-of-the-art methods, 

utilizing the mini MIAS dataset. 

This paper is structured in the following manner: In 

Section 2, the proposed enhancement model is explained, 

and the experimental results and discussion are shown in 

Sections 3. Finally, Section 4 presents the research 

conclusion. 

2. Proposed Research Methodology 

Mammogram Images suffered from low brightness and 

poor contrast, which hinder early disease identification, 

continue to pose a major hurdle to the visibility of tumors 

in mammography. Therefore, we use an approach that 

combines Adaptive Gamma Correction with a two-way 

DWT-SVD to enhance brightness and contrast, resulting 

images with visual clarity while preserving crucial clinical 

information. 

2.1 Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) 

CLAHE is a powerful image processing technique 

designed to enhance local contrast, particularly effective 

in medical imaging. Contrary to conventional Histogram 

Equalization (HE), CLAHE can adjust itself according to 

the distinct attributes of different areas in an image. This 

adaptability is crucial for maintaining details in areas with 

diverse intensity levels. The method involves dividing the 

image into small regions called tiles and applying standard 

histogram equalization independently to each tile. The 

limiting factor, termed the "clip limit," prevents over-

amplification of intensities during the equalization 

process, ensuring the preservation of image details. 

Mathematically, CLAHE can be expressed as: 

𝑓(𝑥𝑖 ) =  x0 + (xL−1 −  x0). 𝐶(𝑥𝑖 ),         𝑖 =

0, 1, 2, … … . . 𝐿 − 1                                           (1) 

In this equation 𝑓(𝑥𝑖 ) embodies the transformed pixel 

intensity, 𝐶(𝑥𝑖 ) presents the cumulative density function 

corresponding to 𝑥𝑖  , 𝑥𝑖  signifies the specific input image 

intensity, and 𝐿 signifies the total number of intensity 

levels. This adaptive strategy underscores CLAHE's 

efficacy in averting over-enhancement risks while 

significantly augmenting contrast, rendering it 

particularly well-suited for diverse applications in image 

analysis, especially within the intricate domain of medical 

imaging. 

2.2 Adaptive Gamma Correction 

Mammogram images often face challenges with 

inadequate brightness, attributed to uneven illumination 

from imaging instruments and inadequate lighting 

settings. This limitation hinders the detection of subtle 

details during mammogram screenings, impacting visual 

perception. Consequently, there is a crucial demand to 

improve luminosity, aiming to enhance the visual 

perception of mammogram images for more effective and 

accurate diagnosis. The utilization of adaptive gamma 

correction stands out as an effective computational 

technique for improving the visual information in images 

[26]. In a customized application, AGC has undergone 

modification specifically for mammography images. This 

adaptation involves the dynamic calculation of the 

intensity transformation function, aligning with the 

statistical characteristics inherent in mammographic data. 

The approach aims to optimize the enhancement process, 

recognizing the unique features and requirements of 

mammogram images for improved visual representation. 

This approach presents a systematic procedure for 

implementing adaptive gamma correction, taking into 

account the weighting factor determined by the 

probability density function. Pixel values in the image are 

adjusted individually to improve the contrast of 

mammograms adaptively. The method of adaptive gamma 

correction is outlined in the following steps: 
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Step 1: Calculate the histogram of the mammogram, 

separating the probability of each pixel value to be within 

each bin in the range [0-255]. 

Step 2: Identify the highest and lowest values among the 

probability counts in the image.  

Step 3: For each pixel value x in the range [0-255], 

calculate the weighting factor W(x) using the equation: 

                  𝑊(𝑥) =

∑ 𝑝𝑑𝑓𝑤
𝑥
𝑗=0 (𝑗) ∑ 𝑝𝑑𝑓𝑤

𝑚𝑉𝑎𝑙
𝑗=0 (𝑗)⁄  

      

                                      (2) 

Where pdfw(j) represents the probability 

function of pixel value j. 

Step 4: Apply adaptive gamma correction for each pixel 

value j (0 to 255) in the image: 

𝑥(𝑗) =

𝑥𝑚𝑎𝑥 . (
𝑥 (𝑗) 

𝑚𝑉𝑎𝑙
)

1−𝑤(𝑗)

 

                

(3) 

Where 𝑥𝑚𝑎𝑥   is the maximum pixel value. 

2.3 Contrast enhancement by DWT-SVD  

DWT serves as a highly effective computational tool in 

image processing, breaking down the input image into 

four decomposed sub-band images: LL, LH, HL, and HH 

frequency groups [34]. This approach excels in obtaining 

localized information for high-level signal or image 

processing tasks. The LL sub-band captures low-

frequency details, while the other sub-bands focus on 

edges. By dividing high-frequency sub-bands and 

applying illumination enhancement and thresholding with 

optimized values specifically in the LL sub-bands, the 

method ensures the preservation of edge details while 

minimizing distortion. Subsequently, the enhanced image 

is obtained through the application of inverse DWT. 

Furthermore, the Singular Value Decomposition (SVD) 

technique is applied to generate a singular value matrix, 

involving the factorization of a matrix into three 

constituent matrices[35]. Notably, SVD is strategically 

employed on the LL sub-band to capture and utilize 

intensity information for effective image equalization. 

The comprehensive explanation of the suggested 

technique is depicted in Fig 1.

   

 

Fig 1 Detailed steps of the proposed technique 
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The low-contrast mammography image enhancement 

algorithm consists of multiple sequential phases. The 

equalized image (I1) is first obtained by applying CLAHE 

on the input image (I). Concurrently, the original image 

(I) undergoes an adaptive gamma correction to produce 

the gamma-corrected image (I2). The low-frequency sub-

band 𝐿𝐿1and 𝐿𝐿2 are then produced by separately 

applying a one-level DWT to I1 and I2. Equations (4) and 

(5) provide the matrices respectively, when the SVD 

operation is carried out independently on these low-

frequency sub-bands. 

  𝐿𝐿1 = 𝑈1. 𝑆1. 𝑉1
𝑇                                                        (4) 

   𝐿𝐿2 = 𝑈2. 𝑆2. 𝑉2
𝑇                                                      (5) 

Next, using Equation (6), calculate the correction 

adjustment factor  

      𝜉 =
max(𝑆1)+𝑚𝑎𝑥(𝑆2)

2.𝑚𝑎𝑥(𝑆2)
             (6) 

 

Equation (7) provides a modified singular matrix 𝑆𝑛𝑒𝑤 , 

which is generated using this factor.  

   𝑆𝑛𝑒𝑤 =  𝜉. 𝑆2                                                                 (7) 

𝐿𝐿𝑛𝑒𝑤 = 𝑈2. 𝑆𝑛𝑒𝑤 . 𝑉2
𝑇                                                   (8) 

The inverse SVD procedure is used to produce the 

improved sub-band of the low-frequency component 

(𝐿𝐿𝑛𝑒𝑤) by using Equation (8). The changed sub-band 

𝐿𝐿𝑛𝑒𝑤  and the sub-bands 𝐿𝐻2 , 𝐻𝐿2, and 𝐻𝐻2  are then 

subjected to an inverse DWT, which produces the 

enhanced image. 

3. Performance Evaluation and Results 

The empirical results of our proposed approach are shown 

in this section along with a comparison analysis of it 

against other conventional techniques including BBHE, 

HE, AGCWD, CLAHE, and DSHIE. To assess the 

efficacy of our approach, we expand the evaluation to 

include cutting-edge techniques, all of which have been 

re-implemented using the same framework and dataset. 

The solution we present effectively resolves image 

enhancing issues while successfully attaining the target 

level of improvement. The algorithm's performance is 

thoroughly assessed using a comprehensive 

mammography dataset (1024x1024) obtained from mini-

MIAS [36]. The dataset consists of 322 images. To be 

concise, the results primarily concentrate on six sample 

images that represent different categories such as fatty, 

fatty glandular, dense glandular, and so on. The proposed 

technique's hardware and software configuration is 

established on an Intel (R) Core (TM) i-3-1115G-4 CPU 

@ 3.00 GHz and MATLAB (R2019) implemented. 

Performance is demonstrated by evaluating both the visual 

aesthetics and quantitative measurements of improved 

mammography pictures, rating their quality and 

effectiveness in reducing errors. 

3.1 Qualitative Evaluation  

The main objective of improving mammography is to 

detect malignant tissue inside the image. Uneven 

illumination and limitations in image capture are 

contributing factors to the production of low-contrast 

pictures, potentially impacting the accuracy of 

mammogram diagnoses. Consequently, effective contrast 

enhancement becomes crucial to visually present the 

resulting image and preserve the clinical information. The 

proposed method undergoes evaluation through both 

visual and quantitative assessments, employing measures 

of image enhancement quality and error. In Fig. 3, low-

contrast original mammogram images and their 

histograms are depicted, while Fig. 4(i)-(vi) showcases the 

enhanced mammogram images corresponding to Img-1, 

employing AGCWD, CLAHE, DSHIE, BBHE, HE, and 

the proposed methods, along with their respective 

histograms. Fig. 4 highlights that the proposed technique 

yields perceptually superior results, preserving critical 

information in the enhanced image. Notably, AGCWD in 

Fig. 4(i) exhibits over-enhancement, potentially leading to 

misconceptions in the mammogram image. CLAHE and 

BBHE in Fig. 4(ii) and Fig. 4(iv) provide high contrast but 

introduce noise. DSHIE in Fig. 4(iii) lacks perceptual 

quality due to insufficient edge preservation. The resulting 

image from HE in Fig. 4(v) is overly bright, indicated by 

a high AMBE value. In contrast, the strategy presented in 

Figure 4(vi) demonstrates superior visual performance 

compared to conventional methods by improving local 

characteristics and retaining edge details. Fig. 4 displays 

histograms of the improved images employing different 

techniques, including the suggested approach.
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(i) Img1 (ii) Img2 (iii) Img3 

 
  

   

(iv) Img4 (v) Img5  (vi) Img6 

Fig 3 Original Mammogram Images (Img1 to Img6) and their corresponding histogram 
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(i)  

 

(ii)  (iii)  

   

   

(iv)  

 

(v)  (vi)  

Fig 4 Contrast Enhanced mammogram image (Img1) with corresponding histogram (i) with AGCWD (ii) with CLAHE (iii) 

with DSIHE (iv) with BBHE (v) with HE (vi) with Proposed Technique 

3.2 Quantitative Evaluation 

In this section the effectiveness of the proposed 

technique using different quantitative metrics is 

illustrated. The quantitative analysis is divided into two 

distinct categories. The enhanced image's quality is 

assessed based on parameters such as SSIM, PCC, PSNR, 

and CII. Nevertheless, the process of error estimate is 

conducted by employing the MAE and AMBE. The 

summary of all the assessment criteria is provided below: 

Quality Evaluation Metrics: 

• Structural Similarity Index Measurement (SSIM): 

SSIM evaluates image quality by comparing the 

structural similarity between the original and 

enhanced images, focusing on luminance (L), 

contrast (C), and structure (S) components[37]. 

 𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝜎𝑦+𝐶2)(𝜎𝑥𝑦+𝐶3)

(𝜇𝑥
2+𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2+𝜎𝑦

2+ 𝐶2)
                                                    

(9) 

where 𝜇𝑥 , 𝜇𝑦  , are the local means, 𝜎𝑥, 𝜎𝑦  are the 

standard deviations, and 𝜎𝑥𝑦 cross-covariance for images 

x, y. Higher SSIM values correspond to superior 

performance in terms of image quality. 

• Pearson Correlation Coefficient (PCC): PCC 

measures the correlation degree between the pixel 

intensities of the original and enhanced images, with 

a range from 0 (no correlation) to 1 (perfect 

correlation)[38]. 

          𝑃𝐶𝐶 =
∑ ∑ ((𝑥(𝑖,𝑗)− 𝑥̂𝑛

𝑗=1
𝑚
𝑖=1 )(𝑦(𝑖,𝑗)−𝑦̂ )) 

√∑ ∑ ((𝑥(𝑖,𝑗)− 𝑥̂)2𝑛
𝑗=1

𝑚
𝑖=1   √∑ ∑ ((𝑦(𝑖,𝑗)−𝑦̂ )2𝑛

𝑗=1
𝑚
𝑖=1

     

                          (10) 
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Where 𝑥̂ and 𝑦̂ represent the average of sample 

x and sample y. 

• Peak signal-to-noise ratio (PSNR): PSNR 

quantifies the ratio of the maximum possible 

power of a signal to the power of corrupting 

noise that affects the fidelity of its 

representation[37]. 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10

(𝐿 − 1)2

𝑀𝑆𝐸
 

(11) 

Thus, 𝐿 is an image's maximum number of intensity 

levels that can exist. 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑(𝑂(𝑖, 𝑗) − 𝐷(𝑖, 𝑗))2

𝑛−1

𝑖=𝑜

𝑚−1

𝑖=0

 

(12) 

Where, 𝑂(𝑖, 𝑗) refers to the original image's matrix data. 

𝐷(𝑖, 𝑗) refers to the segmented image's matrix data 

• Contrast Improvement Index (CII): CII assesses 

contrast enhancement by comparing the average 

local contrast of the original and processed 

images, with higher scores indicating better 

image quality[23]. 

               𝐶𝐼𝐼 =  
𝐶𝑜

𝐶𝑖
       (13) 

𝐶𝑖 represents the mean intensity of local contrast in the 

input image, whereas 𝐶𝑜 represents the mean intensity of 

local contrast in the output image. 

Error Estimation Metrics: 

• Average Mean Brightness Error (AMBE): AMBE 

determines brightness preservation by quantifying 

the absolute error in brightness between the original 

and enhanced images, with lower values indicating 

less information loss[38]. 

𝐴𝑀𝐵𝐸 =  | 𝐸[𝑌] −  𝐸[𝑋]| 

E [Y] and E [X] represent the average gray levels of the 

enhanced and input image, respectively. 

• Mean Absolute Error (MAE): This parameter, 

while not explicitly defined in the quoted text, is 

typically used to measure the average pixel-wise 

discrepancy between the enhanced and original 

images, aiming for lower values for higher 

fidelity. 

𝑀𝐴𝐸 =  
1

𝑚𝑛
∑ ∑    |𝑌(𝑖, 𝑗) − 𝑋(𝑖, 𝑗)|

𝑛

𝑗=1

𝑚

𝑖=1

 

Where X and Y denote the input and enhanced images, 

respectively, both having dimensions (m, n). 

The utilization of these matrices in the performance 

assessment of the proposed scheme ensures a robust and 

comprehensive evaluation, focusing on both the 

enhancement of image quality and the minimization of 

information loss. 

Table 1 Comparative analysis based on SSIM, PCC, PSNR, CII, MAE, and AMBE metric 

Image SSIM PCC PSNR CII MAE AMBE 

 
Img1 0.9163 0.9987 21.9831 1.1788 15.5932 15.4972  

Img2 0.9172 0.9979 21.8542 1.0925 14.1328 14.0323  

Img3 0.9255 0.9975 23.4802 1.0890 12.8465 12.8955  

Img4 0.9179 0.9940 21.8925 1.1859 14.4978 14.0178  

Img5 0.9357 0.9984 21.7847 1.1684 15.6991 15.3191  

Img6 0.9178 0.9955 23.8000 1.1887 14.6033 14.5034  

Average 0.9217 0.9970 22.4658 1.1505 14.5621 14.3775  

 

The recommended approach is compared with various 

traditional approaches such as HE, AGCWD, CLAHE, 

DSIHE, and BBHE in Tables 2, 3, 4, 5, 6, 7, and Figures 

5, 6, 7, 8, 9, 10. By implementing them in MATLAB with 

the chosen image database, the suggested method is 

compared with the conventional approaches. The results 

of employing the SSIM parameter to evaluate various 

techniques are displayed in Table 2. Notably, in 

comparison to other procedures, the proposed procedure 

produces much better outcomes. The proposed approach 

resulted in six images with significantly higher average 

SSIM values, showing a substantial similarity between the 

improved and original images. Figure 5 illustrates the 

exceptional effectiveness of the suggested method on the 

complete dataset of 322 mammography images. 
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Table 2 Comparative analysis based on SSIM metric 

Image HE AGCWD CLAHE DSIHE BBHE Proposed Method 

Img1 0.2130 0.9114 0.3115 0.2382 0.2282 0.9163 

Img2 0.1442 0.9156 0.2398 0.8142 0.2345 0.9172 

Img3 0.1580 0.9217 0.2424 0.8101 0.2110 0.9255 

Img4 0.1099 0.9100 0.2304 0.8339 0.2425 0.9179 

Img5 0.1688 0.9352 0.2399 0.8086 0.1927 0.9357 

Img6 0.1236 0.9135 0.2334 0.8445 0.2365 0.9178 

Average 0.1529 0.9179 0.2496 0.7249 0.2242 0.9217 

 

 

Fig 5 SSIM parameter based graphical comparison on mini MIAS Dataset (all 322 images) 

Table 3 comparisons highlight key findings in various 

histogram equalization methods. BBHE shows the lowest 

average PCC (0.9644), followed closely by DSHIE 

(0.9712). HE and DSHIE exhibit similar PCC values 

(0.9745 and 0.9712). The proposed technique achieves an 

exceptionally high average PCC (0.9970), demonstrating 

a superior correlation with the original image. In general, 

the improved images generated by the suggested 

technique consistently exhibit stronger correlation when 

compared to other methods, as indicated in Table 3. The 

proposed method exhibits remarkable linear consistency 

and correlation, as depicted in Figure 6, with notably 

higher average PCC values across 322 mammography 

images. 

Table 3 Comparative analysis based on PCC metric 

Image HE AGCWD CLAHE DSIHE BBHE 

Proposed 

Method 

Img1 0.9650 0.9978 0.9857 0.9638 0.9453 0.9987 

Img2 0.9746 0.9975 0.9853 0.9678 0.9697 0.9979 

Img3 0.9764 0.9966 0.9906 0.9736 0.9573 0.9975 

Img4 0.9705 0.9939 0.9742 0.9689 0.9838 0.9940 

Img5 0.9767 0.9983 0.9822 0.9748 0.9474 0.9984 

Img-6 0.9839 0.9923 0.9759 0.9784 0.9828 0.9955 

Average 0.9745 0.9961 0.9823 0.9712 0.9644 0.9970 
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Fig 6 PCC parameter based graphical comparison on mini MIAS Dataset (all 322 images) 

The proposed method consistently outperforms, 

demonstrating high PSNR values with an outstanding 

average of 22.4658. This surpasses traditional methods, 

with the closest competitor being CLAHE at an average 

PSNR of 23.1227. Figure 7 visually reinforces these 

findings, illustrating the proposed method's marked 

improvement over HE and competitive performance 

compared to advanced methods like AGCWD, BBHE, 

and DSIHE. 

 

Table 4 Comparative analysis based on PSNR metric 

Image HE AGCWD CLAHE DSIHE BBHE 

Proposed 

Method 

Img1 7.229734 16.53132 23.53779 19.56773 20.32687 21.98313 

Img2 5.085276 19.17196 21.52823 19.04997 19.88251 21.85416 

Img3 5.306343 17.77865 23.3725 20.24367 22.34395 23.48024 

Img4 4.965226 20.05676 23.96056 19.17547 19.2457 21.89247 

Img5 5.32347 17.6113 22.26418 18.72733 22.2 21.78468 

Img6 4.923983 19.64347 24.07319 19.06998 20.93722 23.79997 

 Average 5.472339 18.46558 23.12274 19.30569 20.82271 22.46577 

 

 

Fig 7 PSNR parameter based graphical comparison on mini MIAS Dataset (all 322 images) 

The CII scores for DSIHE, AGCWD, and the suggested 

methodology exhibit relatively comparable 

values(Table5).The average CII score for AGCWD 

(1.10979) is slightly inferior to that of our proposed 

technique (1.1505). Our outcomes outshine those of HE, 

CLAHE, and BBHE, resulting in enhanced image quality 

compared to the original images. Analysis of the data 

illustrated in Figure 8 reveals that the mean CII score of 
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our suggested approach is marginally higher than that of 

alternative methods across all 322 images. 

Table 5 Comparative analysis based on CII metric 

Image HE AGCWD CLAHE DSIHE BBHE Proposed Method 

Img1 0.5652 1.1087 1.0783 1.1000 0.9348 1.1788 

Img2 0.4208 1.0625 1.0542 1.0625 0.9375 1.0925 

Img3 0.5187 1.0581 1.0249 1.0581 0.9046 1.0890 

Img4 0.4298 1.0851 1.0681 1.0851 0.9660 1.1859 

Img5 0.4612 1.1644 1.0868 1.1644 1.0046 1.1684 

Img6 0.4217 1.1087 1.0739 1.1087 0.9783 1.1887 

Average 0.4696 1.0979 1.0643 1.0965 0.9543 1.1505 

 

 

Fig 8 CII parameter based graphical comparison on mini MIAS Dataset(all 322 images) 

The MAE parameter further highlights the superior 

performance of our proposed algorithm is documented in 

Table 6. Our method demonstrated an average MAE value 

of approximately 14.5621, outperforming BBHE, 

AGCWD, DSIHE, and HE methods with values of 

29.3539, 14.8413, 14.6485, and 130.3735, respectively. 

The proposed method's average MAE (14.5621) closely 

aligns with DSIHE (14.6485), yet it surpasses DSIHE, 

implying superior performance and minimal distortion in 

the enhanced images. Figure 10 graphically compares the 

MAE values on dataset (all 322 images). The proposed 

method’s lowest MAE value shows its effectiveness in 

maintaining image fidelity during enhancement. 

Table 6 Comparative analysis based on MAE metric 

Image HE AGCWD DSIHE BBHE Proposed Method 

Img1 102.3144 16.0910 15.3703 36.4021 15.5932 

Img2 137.2902 14.7741 14.3274 26.8607 14.1328 

Img3 131.1784 13.1972 9.968609 31.3422 12.8465 

Img4 139.9295 14.3150 16.5357 24.0376 14.4978 

Img5 131.8405 15.9564 18.2331 32.3504 15.6991 

Img6 139.6881 14.7140 13.4559 25.1304 14.6033 

Average 130.3735 14.8413 14.6485 29.3539 14.5621 
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Fig 9 MAE parameter based graphical comparison on mini MIAS Dataset(all 322 images) 

Table 7 demonstrates the higher performance of the 

suggested method, as evidenced by the lowest AMBE 

value (14.3775), which indicates improved preservation of 

brightness compared to the original image. The suggested 

strategy surpasses existing methods due to its continuously 

lower AMBE scores, which minimize information loss and 

result in superior enhancement. Fig 9 succinctly illustrates 

the superior AMBE performance of the proposed method, 

showcasing its consistently lower values compared to other 

methods across all 322 mammogram images in the mini 

MIAS dataset. This graphical representation emphasizes 

the proposed method's effectiveness in preserving the 

original image's brightness and crucial diagnostic 

information. 

Table 7 Comparative analysis based on AMBE metric 

Image HE AGCWD DSIHE BBHE Proposed Method 

Img1 102.3144 16.0910 10.6427 21.4899 15.4972 

Img2 137.2902 14.7741 14.3264 22.3837 14.0323 

Img3 131.1784 13.1972 13.1731 21.5013 12.8955 

Img4 139.9295 14.3150 16.5357 22.3325 14.0178 

Img5 131.8405 15.9564 18.2297 23.1687 15.3191 

Img6 139.6881 14.7140 13.4559 22.8224 14.5034 

Average 130.3735 14.8413 14.3939 22.2831 14.3775 

 

 

Fig 10 AMBE parameter based graphical comparison on mini MIAS Dataset(all 322 images) 
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Table 8. Quantitative Comparative analysis with state-of-art methods on mini MIAS dataset (all 322 Images) 

Contrast 

Enhancement 

Technique 

Performance Indicator  

SSIM PCC PSNR CII MAE AMBE 

 
FC-CLAHE 0.716 0.934 17.138 2.983 28.303 12.207  

FWHE 0.681 0.908 18.235 1.007 25.128 12.563  

DWT-SVD 0.786 0.925 9.221 0.962 32.314 29.568  

DWT-SVD-AGC 0.751 0.941 12.576 0.997 30.573 23.856  

Proposed Method 0.929 0.998 22.875 1.1376 14.457 14.138  

 

As delineated in Table 8, the proposed method notably 

achieved the highest average values for SSIM (0.929), 

PCC (0.998), PSNR (22.875), and CII (1.1376), which 

collectively indicate a robust enhancement of image 

quality while maintaining a high fidelity to the original 

image data. Concurrently, it maintained lower average 

values of AMBE (14.138) and MAE (14.457), signifying 

an optimal balance between contrast enhancement and 

naturalness preservation. In particular, the proposed 

method's PCC value exemplifies an exemplary correlation 

with the original imagery, towering over traditional 

methods, such as FWHE, which registered the lowest 

average PCC (0.908). Similarly, the SSIM and PSNR 

parameters, indicative of structural preservation and 

image clarity, respectively, were highest for the proposed 

method. Conversely, FWHE and DWT-SVD lagged 

behind with the lowest values for SSIM and PSNR, 

suggesting a less precise enhancement process. Notably, 

while FC-CLAHE achieved the highest CII average 

(2.983), the proposed method closely followed, ensuring 

a substantial improvement in image contrast without 

compromising detail. The AMBE and MAE parameters 

further establish the proposed method's proficiency, 

showcasing its capability to enhance contrast with 

minimal distortion — a critical factor in medical imaging 

where precision is paramount. 

Conclusively, the proposed method outperforms 

established state-of-the-art methods across most 

parameters, with its least impressive values still falling 

within an optimal range. It holds a definitive edge in the 

enhancement of mammogram images, delivering high-

quality, reliable results. 

4. Conclusion 

This study addresses the critical challenge of low-contrast 

mammogram images, which can impact the accuracy of 

breast cancer diagnoses. Through the introduction of a 

novel approach incorporating Adaptive Gamma 

Correction and a two-way DWT-SVD, our method 

significantly enhances visual clarity while preserving 

crucial clinical information. The incorporation of a new 

correction adjustment factor is crucial in enhancing the 

singular value of the image, resulting in a significant 

improvement in contrast in the output. The experimental 

validation, performed on the mini-MIAS dataset, utilizes 

a range of quantitative measures including SSIM, PCC, 

PSNR, CII, MAE, and AMBE. The obtained results, 

outperform with conventional methods and demonstrate 

significant advancements compared to state-of-the-art 

techniques. This innovative approach, with its emphasis 

on local information preservation and contrast 

enhancement, holds considerable potential for aiding 

medical practitioners in the identification of cancerous 

locations during mammogram image screenings. Despite 

commendable performance, notable issues, such as the 

method's response to noise and lacking clinical 

evaluations, necessitate further exploration. Future 

endeavours involve assessing the method in diverse noisy 

environments through clinical trials, enhancing its 

applicability and robustness in real-world scenarios. 
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