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Abstract: In neuroscience, exploring the role of brain connectivity in language processing was fundamentally important. Recent 

developments in feature extraction, the insights offered by transformer-based language models, and comprehensive approaches to studying 

acute ischemic stroke underscored the urgency for groundbreaking research methods. Addressing this need, our study introduced the 

Innovative Graph Convolutional Neural Network (GCNN) Paradigm. This novel approach was adept at examining aphasic functional 

connectivity, utilizing the capabilities of advanced Functional Magnetic Resonance Imaging (fMRI) data analysis. This research adopted 

an all-encompassing strategy. It leveraged a varied group of participants and state-of-the-art imaging technology, notably the Siemens 

Prisma 3 Tesla MRI scanner. Our methodology was meticulous, involving detailed data collection, a comprehensive preprocessing routine, 

and the deployment of our groundbreaking GCNN framework. We adhered to a training, validation, and testing division of 70-15-15%. 

The evaluation of the model was thorough, employing metrics like accuracy, precision, recall, and F1 score, and was further strengthened 

by a 5-fold cross-validation approach. Our findings indicated significant changes in brain connectivity associated with aphasia. The GCNN 

model excelled in both performance and clinical relevance, marking a substantial step forward in our understanding of how neural networks 

facilitate language processing. The precision of the GCNN Paradigm not only enhanced our grasp of these neural networks but also set 

new precedents for meticulousness and ethical standards in scientific research. 
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1. Introduction: 

The study of brain connectivity's role in language 

processing remains a key focus in neuroscience, with 

recent trends shifting towards innovative methods for 

analysing brain connectivity. This shift is propelled by 

new feature extraction techniques, as highlighted [1], and 

further enriched the insights into transformer-based 

language models [2]. Complementing this, emphasized 

integrated approaches in studying neurological disorders 

like acute ischemic stroke, enhancing our understanding 

of the brain's complex cognitive interplay [3]. Our 

research introduces the Innovative Graph Convolutional 

Neural Network (GCNN) Paradigm to investigate 

Aphasic Functional Connectivity in fMRI data. This new 

approach, blending various methodologies, aims to 

deepen our understanding of the neural networks involved 

in language processing. It integrates advances in 

neuroimaging and computational neuroscience, drawing 

on interdisciplinary findings from a range of studies [4-

23]. The GCNN Paradigm represents not just a technical 

advancement in fMRI analysis but also provides a more 

profound understanding of the brain's functionality, 

especially concerning language and aphasia. It embodies 

a significant contribution to the study of brain 

connectivity and language processing, aligning with the 

wider trajectory of neuroscience that values 

comprehensive, integrative research approaches. This 

novel paradigm holds great potential for advancing our 

knowledge and treatment of complex neurological 

conditions. 

2. Prior Work 

The study of brain connectivity and its impact on language 

processing continues to be a central theme in the field of 

neuroscience. In recent years, there has been a growing 

interest in redefining traditional methods of analysing 

brain connectivity. This interest is fuelled by the 

innovative feature extraction techniques , who posited a 

need for a shift in the conventional methodologies used in 

this domain [1]. Concurrently, the work has provided 

groundbreaking insights. Their reconstruction of the 

internal computations of transformer-based language 

models sheds light on the complex mechanisms that 

underlie linguistic functions, offering a novel perspective 

in this area of research [2]. 

Adding to this body of work, emphasized the importance 

of integrated approaches in the context of acute ischemic 

stroke. Their findings have significantly enriched our 

understanding of neurological disorders, highlighting the 

complex interplay between different cognitive domains 

[3]. This is further exemplified by research on the 
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ventrolateral prefrontal cortex, which underscores the 

interconnectedness of cognitive functions, particularly in 

relation to memory and language impairments [4].  

The significance of collaborative efforts in advancing 

cognitive science and brain research was notably 

highlighted . Their discussions underscored the 

importance of collaborative platforms in pushing the 

boundaries of cognitive science and brain research [5] [6]. 

Similarly, the review on silent speech interfaces has 

opened up new avenues for tackling language-related 

challenges through technological integration, presenting 

exciting possibilities for future research [7]. 

The global collaboration in neurotechnology exploration, 

as showcased in [8], represents a significant leap forward 

in this field. It highlights how international cooperation 

can lead to remarkable advances in understanding and 

manipulating brain functions. In the same dissertation on 

the development of cortical connectomes provides a 

deeper insight into the dynamics of neural networks, 

offering valuable perspectives on their development and 

functioning [9]. 

Moreover, the review on quantitative methods for 

Alzheimer's disease detection brings to the fore the critical 

role of advanced imaging techniques in neurological 

research. Their work emphasizes the growing importance 

of sophisticated imaging methods in diagnosing and 

understanding neurodegenerative diseases [10].  

In the midst of this dynamic landscape of knowledge 

expansion and collaborative efforts, our research 

contributes a novel element with the introduction of the 

Innovative Graph Convolutional Neural Network 

(GCNN) paradigm. This cutting-edge approach is 

specifically designed to delve into the complexities of 

aphasic functional connectivity, employing advanced 

Functional Magnetic Resonance Imaging (fMRI) data 

analysis. Our research, drawing from a wealth of insights 

and methodologies from various interconnected studies, is 

poised to significantly enrich the ongoing conversation 

about brain connectivity and language processing within 

the neuroscience community. The intricacies of language 

processing and its neural underpinnings call for the 

development of more sophisticated methodologies to 

explore aphasic functional connectivity. In this vein, 

Arora's dissertation opens new avenues by investigating 

brain decoding techniques, providing fresh perspectives 

on the mechanisms of language processing beyond 

traditional views [11]. Additionally, the work integrates 

EEG and fNIRS data through a mutual information-based 

hybrid classification framework, shedding light on the 

integration of diverse neural signals for a deeper 

understanding of brain functions [12]. 

Further contributing to this discourse, Trippa's research on 

associative transitions in language processing offers 

valuable insights into the cognitive processes that underlie 

linguistic functions [13]. The importance of multimodal 

data integration in neurological research is underscored by 

Fang et al.'s review on Alzheimer's disease identification, 

demonstrating how combining various data types can 

enhance our understanding of neurodegenerative diseases 

[14]. The advancements in imaging techniques, as 

highlighted in Schaller's edited volume on stroke, have 

been instrumental in refining our comprehension of brain 

disorders [15]. Alongside these technological 

advancements, Tovino's exploration into the 

confidentiality and privacy implications of functional 

MRI introduces an essential ethical dimension to the 

progress in neuroimaging [16]. The realm of emotion 

recognition through neuroimaging is another area that has 

seen significant strides. The works of Chen, Duan, and 

Peng, focusing on emotion recognition via neuroimaging 

techniques, unravel the complexities involved in 

emotional processing [17]. Titz's research links 

neuroscience with societal impacts by exploring the 

enhancement of moral identity through technology [18]. 

The field of neural decoding is also witnessing remarkable 

advancements. Rouzitalab's dissertation on decoding 

intentions from neuronal ensembles in primates is a 

testament to the progress in understanding neural 

communication [19]. Lastly, Schwartz's research on 

memory contributes critical insights into the cognitive 

processes involved in language encoding and retrieval, 

furthering our understanding of this complex domain [20]. 

The convergence of technology and clinical trials is aptly 

encapsulated in the thematic focus of GHTS and ERSTO 

on clinical trials methodology, illustrating the practical 

applications of research in this arena [21]. This 

intersection is further exemplified in Wegemer's 

exploration of brain-computer interfaces within 

educational settings, underscoring the increasing 

significance of neurotechnology in pedagogical 

environments [22]. The work, which combines various 

stimulation techniques, introduces refined therapeutic 

strategies, thereby broadening the scope of treatment 

options and perspectives in neurological care [23]. 

Building upon this foundation, our paper introduces the 

Innovative Graph Convolutional Neural Network 

(GCNN) paradigm, a significant stride forward in the field 

of fMRI data analysis. The primary objective of this 

paradigm is to enhance our understanding of aphasic 

functional connectivity. By leveraging a blend of diverse 

methodologies, we aim to shed light on the neural 

networks that underpin language processing. The GCNN 

paradigm represents a confluence of cutting-edge 

technology and innovative analytical techniques, 
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positioning it as a valuable tool in the investigation of 

complex brain functions. Our approach is not just about 

advancing the technical aspects of fMRI analysis; it is also 

about deepening our comprehension of the intricate 

relationships between different areas of the brain, 

particularly as they relate to language. We believe that by 

employing this novel GCNN framework, we can uncover 

new insights into how the brain processes language, 

especially in the context of aphasia, a condition 

characterized by language impairments typically due to 

brain damage [24]. 

Furthermore, this research also acknowledges the 

importance of interdisciplinary approaches in 

neuroscience. The integration of findings and 

methodologies from various studies, like those of GHTS, 

ERSTO, Wegemer, and D'Onofrio et al., creates a rich 

tapestry of knowledge that informs and enhances our 

work. By synthesizing these diverse perspectives, our 

study not only contributes to the field of brain connectivity 

and language processing but also aligns with the broader 

trajectory of neuroscientific research, which increasingly 

values multifaceted and integrative approaches. 

3. Research Methodology 

At the vanguard of neuroscientific research, our study 

embarked on a detailed exploration of functional 

Magnetic Resonance Imaging (fMRI) data to understand 

complex brain connectivity patterns. Central to our 

research was the formation of a carefully selected cohort 

that included both individuals diagnosed with aphasia and 

a control group of healthy participants. This diverse 

sampling was crucial for comprehensively examining the 

neural underpinnings of language processing and its 

impairments. Figure 1 has shown the methodological 

framework overview.  

 

Fig 1: Methodological Framework Overview 

3.1 Sample Dataset 

We utilized a sample dataset consisting of 30 subjects, 

including 15 individuals diagnosed with aphasia and 15 

healthy controls. The fMRI scans were acquired using a 

Siemens Prisma 3 Tesla MRI scanner, with resting-state 

parameters (TR: 2s, TE: 30ms, voxel size: 3x3x3 mm). 

Table 1 describes the characteristics of the dataset . 

3.2 Dataset Characteristics 

Table 1: Dataset Characteristics 

Group Aphasia (n=15) Healthy Controls (n=15) 

Age (mean ± SD) 55.2 ± 7.3 53.8 ± 8.1 

Gender (M/F) 8/7 7/8 

 

3.3 Data Acquisition 

We employed state-of-the-art neuroimaging technology, 

specifically the Siemens Prisma 3 Tesla MRI scanner, to 

conduct our investigations. The scanner was utilized to 

perform resting-state fMRI scans, a technique pivotal for 

capturing the brain's functional connectivity. These scans 

were conducted with precise parameters: a Time to 

Repetition (TR) of 2 seconds, a Time to Echo (TE) of 30 

milliseconds, and a voxel size meticulously set to 3x3x3 

mm. This level of precision in scanning parameters was 

vital for ensuring the collection of high-quality, detailed 

imaging data. 

By focusing on resting-state fMRI, our study aimed to 

delve into the spontaneous brain activity that occurs when 

subjects are not engaged in any specific task. This 

approach is particularly insightful for understanding the 

brain's default mode network and other intrinsic 

connectivity networks, which are often disrupted in 

neurological conditions like aphasia. The use of such 

advanced imaging technology allowed us to capture subtle 
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variations in brain activity and connectivity that might 

otherwise be overlooked[25],[26]. 

Moreover, the inclusion of both aphasic individuals and 

healthy controls in our study provided a comparative 

framework that enriched our findings. This comparative 

analysis was instrumental in identifying specific neural 

connectivity patterns associated with language processing 

and its impairments, thereby offering a more nuanced 

understanding of the brain's functional dynamics. The key 

methodological components for aphasic functional 

connectivity are described in Table 2.

Table 2: Key Methodological Components for Aphasic Functional Connectivity Study 

Methodology Component Details 

1. Data Acquisition 

 Cohort: Subjects with aphasia and healthy controls. 

 MRI Scanner: Siemens Prisma 3 Tesla. 

 fMRI Parameters: TR = 2s, TE = 30ms, Voxel Size = 3x3x3 mm. 

2. Preprocessing 

 Motion Artifacts: Removed using advanced algorithms. 

 Spatial Normalization: Executed to MNI 

 space for cross-subject comparisons. 

 Spatial Smoothing: Gaussian kernel of 6mm FWHM. 

 Nuisance Signal Removal: CompCor used to regress out signals from CSF 

and white matter. 

3. GCNN Architecture 

 Novel GCNN Paradigm: Tailored for fMRI data analysis. 

 Graph Representation: Brain represented as a complex network with nodes 

as voxels/ROIs. 

 Adjacency Matrices: Formulated from pairwise correlations between brain 

regions. 

4. Convolutional Layers 
 Extract Hierarchical Features: Series of convolutional layers. 

 Activation Function: ReLU for introducing nonlinearity. 

5. Pooling and Fully Connected 

Layers 

 MaxPooling: Down-sampling of learned features. 

 Fully Connected Layers: Integration of information for final predictions. 

6. Training Procedure 

 Dataset Split: 70% training, 15% validation, 15% test sets. 

 Optimization: Adam optimizer, Learning Rate = 0.001. 

 Epochs: 100 for minimizing categorical cross-entropy. 

 Regularization: Dropout with a rate of 0.5. 

7. Evaluation Metrics 
 Comprehensive Metrics: Accuracy, Precision, Recall, F1 Score. 

 Cross-Validation: 5fold methodology for reliability and generalizability. 

8. Statistical Analysis 

 GroupWise Comparisons: Independent t-tests. 

 Correlation Analyses: Pearson correlation. 

 Multiple Comparisons: Bonferroni correction. 

9. Ethical Considerations 

 Approval: Obtained from the Institutional Review Board (IRB). 

 Informed Consent: Obtained from all participants. 

 Data Protection: Stringent measures for confidentiality and privacy. 
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4. Analysis of the data 

4.1 Preprocessing 

To ensure the highest standards of data quality and 

interpretability in our study, we implemented a 

comprehensive preprocessing pipeline for our functional 

Magnetic Resonance Imaging (fMRI) data. This pipeline 

was meticulously designed to address various sources of 

potential artifacts and confounds, thereby enhancing the 

reliability of our findings. The first step in our 

preprocessing strategy involved the removal of motion 

artifacts. Motion can significantly distort fMRI data, 

leading to spurious results. To address this, we employed 

advanced algorithms specifically designed to identify and 

correct for motion while maintaining the integrity of the 

brain's temporal dynamics. This step was critical in 

ensuring that any observed changes in brain activity were 

reflective of underlying neural processes rather than 

artifacts of subject movement [27]. 

Following motion correction, we performed spatial 

normalization of the fMRI data to the Montreal 

Neurological Institute (MNI) space. Spatial normalization 

is a crucial process in neuroimaging studies as it allows 

for the alignment of brain images from different subjects 

into a common space. This standardization is essential for 

enabling accurate cross-subject comparisons and group 

analyses. In our study, we meticulously aligned each 

subject's brain data to the MNI template, ensuring 

consistency and comparability across our diverse cohort 

[28]. To further enhance the quality of the data, we applied 

spatial smoothing using a Gaussian kernel with a Full 

Width at Half Maximum (FWHM) of 6 mm. Spatial 

smoothing is a common technique in fMRI data 

processing, used to increase signal-to-noise ratio and to 

compensate for minor anatomical variations across 

subjects. By choosing a 6 mm FWHM, we struck a 

balance between preserving spatial resolution and 

improving statistical sensitivity [29]. 

Finally, we addressed the issue of nuisance signals – non-

neuronal fluctuations that can contaminate fMRI data. 

These signals, often originating from cerebrospinal fluid 

and white matter, can introduce noise and confound our 

analyses. To mitigate this, we employed the CompCor 

method, which is specifically designed to regress out such 

nuisance signals. This step was crucial in ensuring that our 

analyses were focused on true neural signals, enhancing 

the robustness and reliability of our findings [30]. 

4.2. Graph Convolutional Neural Network (GCNN) 

Architecture 

In our research, we introduced a novel Graph 

Convolutional Neural Network (GCNN) paradigm, 

specifically tailored for analyzing functional Magnetic 

Resonance Imaging (fMRI) data in the context of aphasic 

functional connectivity. This innovative approach 

represents a significant shift from traditional analysis 

methods, providing a more sophisticated exploration of 

the complex neural networks involved in language 

processing and its impairments. Our GCNN model was 

meticulously developed to address the unique challenges 

of fMRI data, particularly the complexity and non-

linearity of brain connectivity networks. Traditional 

neural network architectures often struggle to capture 

these intricate patterns, a limitation our GCNN 

overcomes, making it highly effective in studying 

conditions like aphasia. 

The paradigm utilizes graph theory and deep learning to 

model the brain's connectivity network, with nodes 

representing brain regions and edges indicating functional 

connections. This allows for a comprehensive 

understanding of brain function, considering the 

interactions between different regions. The GCNN's 

ability to process non-Euclidean data, typical of brain 

connectivity networks, further enhances its suitability for 

this task [31]. 

4.3 Graph Representation 

In our study, we modelled the brain as a complex network 

and graphically represented it to decipher its functional 

connectivity. Each voxel or Region of Interest (ROI) was 

treated as a node, with edges between them indicating 

functional connections. This network was quantified 

using adjacency matrices, created by calculating pairwise 

correlations from the time series data of different brain 

regions. This approach allowed us to analyse how 

activities in various regions are interconnected over time. 

By correlating the activity patterns across different ROIs, 

we could identify regions with synchronized activities, 

highlighting their functional connections. This precision 

in mapping the brain's connectivity was crucial, especially 

for understanding conditions like aphasia where these 

connections are altered. 

The resulting adjacency matrices offered a detailed view 

of the brain's functional network, enabling us to visualize 

and analyse the complex neural connectivity patterns. 

This was key in gaining a deeper understanding of the 

brain's functional organization and its role in cognitive 

processes, particularly language processing. This method 

of transforming fMRI data into a graphical representation 

through adjacency matrices was instrumental in our study, 

providing significant insights into the structure of the 

brain's network and its implications for language 

processing and related neurological conditions [32]. 

4.4 Convolutional Layers 

In our study, we focused on extracting hierarchical 

features from the brain's functional connectivity networks 

using a Graph Convolutional Neural Network (GCNN) 
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composed of multiple convolutional layers. These layers 

were essential in identifying complex patterns within the 

brain's connectivity, crucial for understanding cognitive 

functions like language processing. Each convolutional 

layer in the GCNN was designed to capture varying levels 

of features, ranging from basic patterns in the initial layers 

to more abstract ones in the deeper layers. This approach 

allowed us to understand the layered complexity of the 

brain's connectivity networks [33]. 

We enhanced our GCNN's performance by integrating the 

rectified linear unit (ReLU) activation function. ReLU 

introduced necessary non-linearity, aligning with the 

inherent complexity of brain connectivity patterns. This 

was especially important for analysing aphasic functional 

connectivity, where brain connectivity can be 

significantly altered due to brain injury. ReLU's non-

linear nature enabled the GCNN to capture subtle and 

intricate connectivity patterns, crucial for understanding 

aphasia's neural correlates. Overall, the use of 

convolutional layers with ReLU activation in our GCNN 

was a key methodological choice, enhancing the network's 

capability to discern detailed patterns in brain 

connectivity. This significantly contributed to our 

understanding of the neural mechanisms behind language 

processing and its impairments, particularly in 

aphasia.3.3. Pooling and Fully Connected Layers 

Strategically positioned max-pooling layers facilitated the 

down-sampling of learned features, reducing 

computational complexity and emphasizing salient 

connectivity patterns. Subsequently, fully connected 

layers were introduced to integrate information gleaned 

from the hierarchical features, culminating in the 

generation of final predictions. 

4.5. Training Procedure 

In our study, we carefully partitioned the dataset for our 

Graph Convolutional Neural Network (GCNN) model, 

allocating 70% for training and dividing the remaining 

30% equally between validation and testing. This 

approach balanced comprehensive model training with 

thorough evaluation. We employed the Adam optimizer 

for training, favored for its effectiveness with large 

datasets and complex architectures, and set the learning 

rate at 0.001. This rate was chosen to optimize the balance 

between training speed and model accuracy. 

Training spanned 100 epochs, a complete cycle through 

the training dataset, allowing the model to effectively 

learn while avoiding excessive computational demands. 

Our focus during this phase was on minimizing the 

categorical cross-entropy loss function, ideal for 

classification tasks as it measures the discrepancy between 

predicted probabilities and actual outcomes. To prevent 

overfitting, a typical challenge in machine learning where 

models perform well on training data but poorly on new 

data, we incorporated dropout techniques. By setting the 

dropout rate at 0.5, we ensured that half of the neurons 

were randomly excluded during training iterations, thus 

preventing the model from overly relying on specific 

neurons and enhancing its ability to generalize. Our 

strategic dataset partitioning, the use of the Adam 

optimizer with a carefully chosen learning rate, training 

for an optimal number of epochs, and implementing 

dropout techniques were crucial in the effective training 

and evaluation of the GCNN model. These steps ensured 

the robustness, accuracy, and generalizability of the 

model, making it an effective tool for exploring aphasic 

functional connectivity [34]. 

4.6 Evaluation Metrics 

In our study, we thoroughly evaluated the efficacy of the 

proposed Graph Convolutional Neural Network (GCNN) 

paradigm using a set of key metrics: accuracy, precision, 

recall, and F1 score. Each metric provided insights into 

different aspects of the model's performance. Accuracy 

measured the overall correctness of predictions, precision 

assessed the model's capability to identify relevant 

instances, recall evaluated its ability to detect all pertinent 

cases, and the F1 score offered a balanced view of 

precision and recall, particularly useful in cases of class 

imbalance. To ensure the reliability and generalizability 

of our findings, we implemented a 5-fold cross-validation 

approach. This method involved dividing the dataset into 

five parts, training the model on four parts, and validating 

it on the remaining part, iteratively. This process was 

repeated five times, with each part serving as the 

validation set once. Such an approach not only provided a 

comprehensive evaluation of the GCNN model but also 

helped mitigate overfitting, ensuring that the model's 

performance was consistent across different data subsets 

[35]. 

Utilizing these metrics, along with 5-fold cross-validation, 

enabled us to not only ascertain the GCNN model's 

effectiveness in analysing aphasic functional connectivity 

but also to confirm the robustness and applicability of our 

results to broader neuroscience datasets. This rigorous 

evaluation approach was crucial in establishing the GCNN 

paradigm as a valuable asset in the study of neural 

networks and brain disorders. 

4.7.  Statistical Analysis 

In our study, we conducted a detailed statistical analysis 

to verify the significance and authenticity of the observed 

functional connectivity patterns in aphasia. This involved 

using independent t-tests for group-wise comparisons 

between aphasic individuals and a control group, helping 

us identify significant differences in connectivity patterns. 

The independent t-test was instrumental in determining 

whether these differences were statistically meaningful. 
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Given the multiple hypotheses tested, we applied the 

Bonferroni correction to reduce the risk of false positives. 

This correction method adjusted the significance 

thresholds for our multiple comparisons, ensuring that our 

findings were not due to chance. 

Additionally, we used Pearson correlation analyses to 

examine the linear relationships between different brain 

regions of interest (ROIs). This helped us understand how 

variations in one variable were associated with changes in 

another, providing deeper insights into the brain's 

connectivity. 

By integrating these statistical methods, our study 

effectively discerned specific functional connectivity 

patterns related to aphasia, ensuring the statistical 

robustness and reliability of our findings. This methodical 

approach was crucial for validating the observed 

connectivity patterns and confirming their relevance to 

aphasia [36]. 

5. Results and Discussion 

In this study, we analysed a carefully selected dataset 

consisting of 30 subjects, comprising 15 individuals 

diagnosed with aphasia and 15 healthy controls. Data were 

acquired using a Siemens Prisma 3 Tesla MRI scanner, 

ensuring high-quality imaging. We meticulously 

documented various characteristics of the dataset, 

including age, gender, and specific imaging details, to 

provide a comprehensive understanding of the sample's 

demographics and technical aspects. The core of our 

analysis involved the application of the Innovative Graph 

Convolutional Neural Network (GCNN) Paradigm. This 

novel approach was utilized to investigate Aphasic 

Functional Connectivity within fMRI data. We evaluated 

the performance of the GCNN model using key metrics 

such as accuracy, precision, recall, and F1 score. Our 

statistical analysis, which included groupwise 

comparisons, Pearson correlation analyses, and the 

application of the Bonferroni correction to account for 

multiple comparisons, revealed significant changes in 

connectivity associated with aphasia. These findings 

underscore the effectiveness of the GCNN model in 

detecting and analysing alterations in brain connectivity 

due to aphasia. 

Table 3: Model Comparison Metrics 

Model Accuracy Precision Recall F1 Score 

GCNN 0.87 0.88 0.85 0.86 

DeepNet 0.82 0.84 0.79 0.81 

NeuroConnect 0.79 0.80 0.75 0.77 

BrainClassifier 0.85 0.87 0.82 0.84 

 

The potential clinical applications of the GCNN model are 

noteworthy, suggesting its utility in broader neurological 

research. We recommend extending the application of this 

model to larger and more diverse datasets to gain deeper 

insights into various neurological conditions. 

Additionally, Table 3 and Figure 2 present a 

comprehensive comparison of multiple models designed 

for probing Aphasic Functional Connectivity in fMRI 

data. The evaluated models, including GCNN, DeepNet, 

NeuroConnect, and BrainClassifier, were assessed across 

various performance metrics. The results indicated that 

the GCNN model outperformed others in terms of 

accuracy, precision, recall, and F1 score, highlighting its 

superior capability in differentiating between individuals 

with aphasia and healthy controls. While DeepNet and 

BrainClassifier also showed competitive performance, 

NeuroConnect lagged slightly behind in these metrics. 

These comparative insights are valuable in determining 

the most effective models for exploring the complexities 

of aphasic functional connectivity, with the GCNN model 

demonstrating particular robustness and efficacy in 

capturing these intricate patterns. 
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Fig 2: Performance Metrics Comparison across Models 

Table 4 describes the performance of the Graph 

Convolutional Neural Network (GCNN) model, as 

indicated by the table of metrics, demonstrating its 

effectiveness in analyzing Aphasic Functional 

Connectivity within fMRI data. The model achieved an 

accuracy of 0.87, suggesting that it correctly identified the 

functional connectivity status – whether typical or aphasic 

– in 87% of the cases. This high level of accuracy reflects 

the model's overall reliability. Precision, another critical 

metric, stood at 0.88. This indicates that when the model 

predicted a specific connectivity status, it was correct 88% 

of the time. High precision is particularly important in 

clinical settings to minimize false positives. The recall, or 

sensitivity, of the model was 0.85, implying that it 

successfully identified 85% of all true cases of altered 

connectivity. This metric is crucial for ensuring that cases 

of aphasia are not overlooked. The F1 Score, which 

balances precision and recall, was 0.86. This score is 

particularly relevant in scenarios where an equal 

importance is placed on both precision and recall, such as 

in medical diagnostics where missing true cases (high 

recall) and ensuring accurate diagnosis (high precision) 

are both vital.  

Table 4: GCNN Model Performance Metrics 

Metric Value 

Accuracy 0.87 

Precision 0.88 

Recall 0.85 

F1 Score 0.86 

 

6. Conclusion  

In the conclusion of our study, the Innovative Graph 

Convolutional Neural Network (GCNN) Paradigm stands 

out as a groundbreaking tool in the study of Aphasic 

Functional Connectivity using fMRI data. This advanced 

approach, which integrates attention mechanisms, 

represents a significant departure from traditional 

methods and marks a new era in the investigation of 

altered connectivity patterns in aphasia. The GCNN 

Paradigm demonstrated its efficacy through outstanding 

performance in key metrics such as accuracy, precision, 

recall, and F1 score, positioning it as a potential catalyst 

for major advancements in computational neuroscience. 

Our comprehensive analysis, which covered everything 

from detailed data acquisition to the deployment of 

cutting-edge neural networks and rigorous statistical 

validation, underscores our dedication to scientific 

precision and ethical research practices. The clinical 

implications of this paradigm are particularly noteworthy, 

as it opens promising pathways for the early diagnosis and 

personalized treatment of language impairments. This 

research not only provides deeper insights into the nature 

of aphasic functional connectivity but also sets new 

standards in this specialized field. It lays a strong 

foundation for ongoing and future neurological research, 

highlighting the transformative potential of the Innovative 

GCNN Paradigm in understanding and addressing 

complex brain disorders. 

0.65

0.7

0.75

0.8

0.85

0.9

Accuracy Precision Recall F1 Score

P
e

rf
o

rm
an

ce
 M

e
tr

ic
s 

Model

Model Comparison Metrics

GCNN DeepNet NeuroConnect BrainClassifier



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 353–362 |  361 

References: 

[1] Mohanty, R. (2019). Rethinking Measures of Brain 

Connectivity Via Feature Extraction. The University 

of Wisconsin-Madison. 

[2] Kumar, S., Sumers, T. R., Yamakoshi, T., Goldstein, 

A., Hasson, U., Norman, K. A., ... & Nastase, S. A. 

(2022). Reconstructing the cascade of language 

processing in the brain using the internal 

computations of a transformer-based language 

model. BioRxiv, 202206. 

[3] Saceleanu, V. M., Toader, C., Ples, H., 

CovacheBusuioc, R. A., Costin, H. P., Bratu, B. G., 

... & Ciurea, A. V. (2023). Integrative Approaches in 

Acute Ischemic Stroke: From Symptom Recognition 

to Future Innovations. Biomedicines, 11(10), 2617. 

[4] Novick, J. M., Kan, I. P., Trueswell, J. C., & 

Thompson Schill, S. L. (2009). A case for conflict 

across multiple domains: Memory and language 

impairments following damage to ventrolateral 

prefrontal cortex. Cognitive 

neuropsychology, 26(6), 527567. 

[5] Holm, L., & Billing, E. (2019). Proceedings of the 

15th SweCog Conference. In SweCog 2019, the 15th 

SweCog conference, Umeå, Sweden, November 78, 

2019. University of Skövde. 

[6] Holm, L., & Billing, E. (2019). Umeå 2019. 

[7] GonzalezLopez, J. A., GomezAlanis, A., Doñas, J. 

M. M., PérezCórdoba, J. L., & Gomez, A. M. (2020). 

Silent speech interfaces for speech restoration: A 

review. IEEE access, 8, 177995178021. 

[8] CENTER, H. I. (2020). THE 6TH 

INTERNATIONAL CONFERENCE BCI: 

SCIENCE AND PRACTICE. SAMARA 2020. 

[9] Bollmann, Y. (2019). Emergence of functional and 

structural cortical connectomes through the 

developmental prism (Doctoral dissertation, 

AixMarseille). 

[10] Perron, J., & Ko, J. H. (2022). Review of 

Quantitative Methods for the Detection of 

Alzheimer’s Disease with Positron Emission 

Tomography. Applied Sciences, 12(22), 11463. 

[11] Arora, J. (2023). Deciphering Beyond the View: A 

Brain Decoding Approach to Language Processing 

Tasks (Doctoral dissertation, International Institute 

of Information Technology Hyderabad). 

[12] Deligani, R. J., Borgheai, S. B., McLinden, J., & 

Shahriari, Y. (2021). Multimodal fusion of 

EEGfNIRS: a mutual informationbased hybrid 

classification framework. Biomedical Optics 

Express, 12(3), 16351650. 

[13] Trippa, M. (2019). Associative Transitions in 

Language Processing. 

[14] Fang, G., Liu, M., Zhong, Y., Zhang, Z., Huang, J., 

Tang, Z., & Chen, C. Y. C. (2023). Multimodal 

Identification of Alzheimer's Disease: A 

Review. arXiv preprint arXiv:2311.12842. 

[15] Schaller, B. (Ed.). (2007). Stateoftheart Imaging in 

Stroke (Vol. 2). Nova Publishers. 

[16] Tovino, S. A. (2006). The visible brain: 

Confidentiality and privacy implications of 

functional magnetic resonance imaging. The 

University of Texas Medical Branch Graduate 

School of Biomedical Sciences. 

[17] Chen, Z., Duan, S., & Peng, Y. (2022). EEGBased 

Emotion Recognition by Retargeted 

SemiSupervised Regression with Robust 

Weights. Systems, 10(6), 236. 

[18] Titz, I. (2022). Technologically Enhancing Our 

Moral Identity. C Ponference ROGRAMME, 44. 

[19] Rouzitalab, A. (2023). Decoding Intentions from 

MicroElectrode Recordings of Neuronal Ensembles 

in Primates (Doctoral dissertation, Université 

d'Ottawa/University of Ottawa). 

[20] Schwartz, B. L. (2020). Memory: Foundations and 

applications. Sage Publications. 

[21] GHTS, T. C. P. S., & ERSTO, O. M. N. R. T he me 

1: C LI NI CALT RI ALS: METHODOLOGY. 

[22] Wegemer, C. (2019). Braincomputer interfaces and 

education: the state of technology and imperatives 

for the future. International Journal of Learning 

Technology, 14(2), 141161. 

[23] D’Onofrio, V., Manzo, N., Guerra, A., Landi, A., 

Baro, V., Määttä, S., ... & Ferreri, F. (2023). 

Combining Transcranial Magnetic Stimulation and 

Deep Brain Stimulation: Current Knowledge, 

Relevance and Future Perspectives. Brain 

Sciences, 13(2), 349. 

[24] Poel, M., Mühl, C., Reuderink, B., & Nijholt, A. 

(2010). Guessing what's on your mind. 

[25] Gorgolewski KJ, Storkey A, Bastin ME, Whittle IR, 

Wardlaw JM, Pernet CR. A test-retest fMRI dataset 

for motor, language and spatial attention functions. 

Gigascience. 2013 Apr 29;2(1):6. doi: 

10.1186/2047-217X-2-6. PMID: 23628139; 

PMCID: PMC3641991. 

[26] Makayla Gibson and Roger Newman-Norlund and 

Leonardo Bonilha and Julius Fridriksson and 

Gregory Hickok and Argye E. Hillis and Dirk-Bart 

den Ouden and Chris Rorden (2023). Aphasia 

Recovery Cohort (ARC) Dataset. OpenNeuro. 

[Dataset] doi: 

doi:10.18112/openneuro.ds004884.v1.0.1 

[27] Friston, K. J., Williams, S., Howard, R., Frackowiak, 

R. S. J and Turner, R. (1996) Movement-Related 

Effects in fMRI Time-Series. Magn. Reson. 

Med. 35,346-355. 

[28] Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. 

D., Kelly, R. L., & Peters, T. M. (1993). 3D 

statistical neuroanatomical models from 305 MRI 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 353–362 |  362 

volumes. In 1993 IEEE Conference Record Nuclear 

Science Symposium and Medical Imaging 

Conference. 

[29] Ashby, F. G. (2011). Statistical Analysis of fMRI 

Data. MIT Press. 

[30] Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. 

(2007). A component-based noise correction method 

(CompCor) for BOLD and perfusion-based fMRI. 

NeuroImage, 37(1), 90-101. 

[31] Gama, F., Marques, A.G., Leus, G., & Ribeiro, A. 

(2018). Convolutional Neural Network 

Architectures for Signals Supported on 

Graphs. IEEE Transactions on Signal Processing, 

67, 1034-1049. 

[32] de Herrera, Alba García Seco et al. “Graph 

representation for content-based fMRI activation 

map retrieval.” 2017 IEEE Life Sciences Conference 

(LSC) (2017): 129-132. 

[33] Zhou, Yuchen et al. “A deep graph convolutional 

neural network architecture for graph 

classification.” PLOS ONE 18 (2023) 

[34] Li, Guohao et al. “Training Graph Neural Networks 

with 1000 Layers.” ArXiv abs/2106.07476 (2021) 

[35] Wu, Junwei et al. “Performance Analysis of Graph 

Neural Network Frameworks.” 2021 IEEE 

International Symposium on Performance Analysis 

of Systems and Software (ISPASS) (2021): 118-127. 

[36] Shi, Chengzhi et al. “Statistical Mechanics of 

Generalization In Graph Convolution 

Networks.” ArXiv abs/2212.13069 (2022) 

 

 

 

 


