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Abstract: The precise management of environmental conditions ensures increased crop production, and crop growth prediction in 

greenhouses plays a big part in agricultural design and governance in greenhouses. Using growth prediction in greenhouses, growers and 

farmers can better plan for the future and save money. But, it's a very tough process. Radiations, CO2, temperature, condition of seedlings, 

soil conditions and fertilization, illness rates, and many other aspects all affect crop production in a greenhouse. A wide range of factors 

affect crop output, and it's not easy to build a precise model that accounts for all of them. This investigation makes use of a novel Bayesian 

optimized artificial neural network (BOANN) to predict the development of greenhouse crops. For this study, diverse datasets of 

greenhouses from various periods are gathered and preprocessed using min-max normalization to standardize the raw data. Kernel-based 

principal component analysis (K-PCA) and the wrapper technique are used, respectively, for feature extraction and feature selection. The 

experimental outcomes of datasets gathered from greenhouses over a range of periods demonstrate that the proposed BOANN approach 

outperforms other existing approaches in terms of prediction rate, mean square error (MSE), f1-measure, and recall. 
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1. Introduction 

Currently, a lot of agricultural farmers choose greenhouse 

farming over field growing. Crops may have a longer 

growing season, are protected from variations in 

temperature and weather, and are grown in a secure 

environment when grown in a greenhouse. In the 

contemporary greenhouse, environmental factors may 

also be managed to ensure that crops grow in the most 

suitable environmental circumstances (Lin et al. (1)). 

Optimal control of environmental factors provides the 

optimum crop production, hence accurate predictions of 

that growth are crucial for greenhouse farming planning 

and management. Greenhouse production forecast helps 

growers and farmers make better economic and 

managerial choices. Yet, doing so is a really difficult 

endeavor (Singh et al. (2)). Crop output in a greenhouse is 

affected by several variables, including “radiations, 

carbon dioxide concentrations, temperature, and quality 

of crop seeds, quality of soil and fertilizer, and the 

prevalence of diseases”. Constructing an explicit model to 

describe the interplay of so many variables with crop 

output is challenging (Xu et al. (3)). Worldwide, people 

have devised several methods of indoor farming. 

Greenhouses may be either passive solar or conventional, 

and can be built for very little money or very much. There 

is a shift toward using renewable energy technology like 

PV modules, solar thermal collectors, and thermal energy 

storage in traditional greenhouses to lessen their reliance 

on fossil fuels (Kochhar and Kumar (4)). Greenhouses 

may reduce their energy consumption by up to 80% by 

making strategic use of renewable energy sources 

according to the local climate and crop requirements 

(Subahi and Bouazza (5)). A combined model is needed 

to look at both problems at once since their combined 

effects on greenhouse energy usage and crop growth must 

be taken into account while developing the most efficient 

energy infrastructure. Previous models have only 

considered energy use or agricultural growth separately, 

hence an integrated model is still lacking in the literature 

(Wang and Zhang (6)). To offer and maintain a controlled 

climate ideal for optimal crop production and preserve 

maximum profitability, greenhouse farming, also known 

as sheltered agriculture, is a key agricultural technology 

utilized internationally. By combining agricultural 

production and protection in a greenhouse, we may 

increase crop growth and quality while decreasing our use 

of pesticides, water, and land (Shen et al. (7)). The ability 

to grow crops year-round is a further benefit of this 

method, especially in areas where open fields are 

unsuitable for doing so. A computer program that can 

predict when and how much water to apply during 

irrigation would be of great benefit in the context of 

greenhouse agriculture that makes use of irrigation. 

Several factors affect the energy and water vapor 

exchanges between the crop surface and the greenhouse 

atmosphere, but latent heat (LET) and sensible heat fluxes 

(H) are particularly important. Greenhouse irrigation 

timing and microclimate both benefit greatly from the 

1Research Scholor, Department of Computer Science and Engineering 

Corresponding author mail id – mercybeulah.mca@drmgrdu.ac.in 
2Professor, Department of Computer Applications Dr. M.G.R Educational 

and Research Institute, Chennai (India) 
3Assistant Professor, Department of Computer Applications Dr. M.G.R 

Educational and Research Institute, Chennai (India) 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 370–380 |  371 

careful separation of LET and H (Basak et al. (8). 

Combining the capabilities of the BOANN state-of-the-art 

networks for temporal sequence processing, we offer a 

deep neural network-based approach to predicting 

greenhouse crop growth. The proposed deep neural 

network takes several greenhouse input parameters and 

historical growth data and outputs predictions for future 

crop growth in the greenhouse. The BOANN-based deep 

learning technique surpasses both conventional machine 

learning as well as other prominent deep learning-based 

competitors in terms of accurate growth prediction 

outcomes, as shown in experimental evaluations of 

datasets gathered from several greenhouses across varied 

periods. 

Contributions to the study 

⮚ In this study, we used the Kaggle dataset for 

predicting greenhouse crop yields as a testing ground 

and preprocessed using min-max normalization to 

standardize the raw data. 

⮚ For both feature extraction and feature selection, we 

use the wrapper approach and kernel-based principal 

component analysis (K-PCA). 

⮚ The growth of greenhouse crops is predicted in this 

study using a unique Bayesian optimized artificial 

neural network (BOANN). 

The rest of the explanation is broken down into four 

sections: II. Literature review and problem statement; III. 

Proposed methodology; IV. Results and discussion; and 

V. conclusion. 

2. Literature Review 

Despite the extensive literature on the topic of crop 

growth prediction for the agricultural sector, greenhouse 

crop growth forecasting has received comparatively little 

attention. There are primarily two types of methods used 

to predict future crop growth in greenhouses: those that 

rely on explanatory biophysical models and those that rely 

on data-driven/machine learning techniques. Greenhouse 

environmental characteristics have been utilized in 

conjunction with a variety of biophysical models for crop 

growth modeling, allowing for growth predictions. 

Kocian et al. (9) provide a crop-growth decision-support 

system built on the Internet of Things. Indicative 

characteristics of crop growth are linked to environmental 

control factors through unobserved Markov states in a 

dynamic Bayesian network (DBN). As the DBN's states 

are monitored and its parameters are learned, an 

expectation-maximization technique is used. As a result, 

the steady-state data is used to generate a predictor for the 

subsequent data measured. Because the suggested DBN 

uses just data from the current culture cycle, it eliminates 

the need for time-consuming training cultivation cycles. 

A significant difficulty in creating a system to regulate the 

lighting in greenhouses is the dynamic acquisition of the 

light saturation point, which is influenced by variations in 

temperature and CO2 concentration. To estimate 

cucumber photosynthesis, Xin et al. (10), who use a crop 

growth model, outline a lighting environmental 

optimization and management model. Climate parameters 

such as temperature, humidity, illumination, CO2 

concentration, soil conditions, and soil moisture are 

central to the long short-term memory (LSTM) model for 

greenhouse climate prediction presented by Liu et al. (11). 

Due to the nonlinear nature of greenhouse climate change, 

they use an LSTM model to represent the interdependence 

of past climate data. Golzar et al. (12) analyze and 

compare more than 30 current greenhouse models and 

present an integrated energy-growth model that makes use 

of many methods. While a physiological crop model is 

used to predict growth, the greenhouse energy demand 

model is considered in the current power & gravimetric to 

accurately predict energy needs. Nikolaou et al. (13) 

provide a thorough analysis of the literature on irrigation 

scheduling methods used in both traditional and soilless 

greenhouses. The capacity of an automated irrigation 

control to accommodate a feedback irrigation decision 

system is used to classify irrigation choices. Further 

research and development into neural network systems are 

necessary. To build a long-term predictor for numerous 

environmental parameters in a smart greenhouse with 

high nonlinearity and noise, a two-way self-attentive 

encoder-decoder design is presented by Jin et al. (14). 

Initial steps include cleaning the data using a "wavelet 

threshold filter" and other preparation techniques. The 

second step is to use the "bidirectional long short-term 

memory" as the primary building block for time-serial 

feature extraction. Alhnaity et al. (15) proposed three 

primary phases to the method suggested. Initial steps 

include applying wavelet decomposition to the raw data 

to streamline the model-fitting process and lower the 

background noise level. After that, suitable features are 

extracted from the data using an LSTM-based encoder-

decoder architecture. Finally, LSTM and an attention 

mechanism are suggested to be included in a recurrent 

neural network to describe long-term dependencies in 

time series data. Taki et al. (16) choose between using an 

ANN and an SVM to estimate the greenhouse's air, soil, 

and plant temperatures (Ta, Ts, and Tp), as well as the 

energy exchange between the two. The outside air 

temperature, wind speed, and solar radiation were all 

measured to account for their influence on the inside 

temperatures. Mu et al. (17) use deep learning techniques 

to develop a tomato recognition model that can 

automatically identify whole, ripe green tomatoes in the 

presence of background clutter and at varying stages of 

development. A faster “region-based convolutional neural 
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network (R-CNN) using Resnet-101 and transfer learning 

from the Common Objects in Context (COCO)” dataset 

were utilized to create the tomato identification model. 

"Three different deep-learning-based neural network 

models (Artificial neural network, ANN; Nonlinear 

autoregressive exogenous model, NARX; and Recurrent 

neural networks - Long short-term memory, RNN-LSTM) 

were compared by Jung et al. (18) to determine the most 

effective method for predicting changes in greenhouse 

temperature, humidity, and carbon dioxide levels". Yasrab 

et al. (19) include an investigation into the capability of 

deep networks to forecast plant development by creating 

segmentation masks of future root and shoot systems. To 

apply this kind of generative adversarial prediction to this 

new domain, they modify an existing network. An 

effective network for plant leaf and root segmentation has 

been shown, one that can anticipate the segmentation of a 

plant's leaf and root system at a later time using data from 

the plant's growth throughout time. Sharma et al. (20) 

provide a thorough analysis of the many uses of ML in the 

agricultural sector. Predicting soil factors like organic 

carbon and moisture content, estimating agricultural 

output, identifying plant diseases and weeds, and 

discovering new species are all topics of study. To keep 

an eye on the quality and production of crops, it's 

important to classify photographs of those crops regularly. 

This review focuses on using machine learning in 

conjunction with computer vision to do just that. 

Problem statement 

There is no overarching issue that can be solved for both 

climate and fertilization; rather, they are two separate 

systems. The water and fertilizer needs of various crop 

species are well-documented, and the first automated 

systems were designed to manage only these factors. 

Because predicting greenhouse crop growth is difficult, 

one way to simplify the problem is to assume that plants 

always have enough water and fertilizer. This simplifies 

the issue of managing agricultural yields in response to 

weather and other environmental factors. There are three 

interrelated systems at play here: the climatic factors, the 

crop, and the economic market. Adaboost is unable to be 

spatially invariant with respect to the input data and does 

not encode the location or orientation of the item. To 

apply a gradually learning boosting strategy, plenty of 

training data are needed. High-quality data is thus 

required. Additionally, it is particularly susceptible to 

outliers and noise in the data, necessitating their removal 

before utilizing the data. To solve these issues, we have 

suggested this research and used a special Bayesian 

Optimized Artificial Neural Network (BOANN) for 

greenhouse crop forecasting. Since many of the links 

between inputs and outputs in real life are both non-linear 

and complex, ANNs have the capacity to learn and 

simulate these types of relationships. 

3. Proposed Methodology 

In this paper, we propose a novel BOANN-based 

approach for estimating future crop growth using known 

variables such as past growth and greenhouse 

environmental characteristics (such as CO2 concentration, 

temperature, humidity, radiation, etc.). The suggested 

strategy relies on the BOANN's ability to be integrated 

hierarchically. Figure 1 also provides a representation of 

the suggested technique, further demonstrating its 

usefulness.

Fig 1: Proposed methodology 
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A. Data collection 

In this investigation, the Kaggle dataset for predicting the 

growth of crops in greenhouses was used for 

experimentation 

(https://www.kaggle.com/datasets/atharvaingle/crop-

recommendation-dataset). 

B. Data preprocessing using Min-max 

normalization 

Normalization is conducted to decrease the negative 

impacts of irregular sample data and to constrain the 

resulting data to a specific range, allowing for easier 

management of the data for each audio file. To quantify 

normalcy, we use the following formula: 

𝐷′ =
𝑑−𝑚𝑖𝑛(𝑑)

(𝑑)−𝑚𝑖𝑛(𝑑)′
                                                                                            

(1) 

An amplitude value D is obtained from the beat spectrum 

calculation, and a normalized amplitude value D' is 

obtained by dividing the original amplitude value D by a 

smaller value D'. 

C. Feature extraction using Kernel Principle 

Component Analysis (KPCA) 

Principal components analysis (PCA) has a non-linear 

counterpart in the form of the KPCA method. For this 

reason, PCA is not as useful when trying to evaluate 

nonlinear data. It is necessary to assume a nonlinear 

connection between brain pictures and other information. 

KPCA's capacity to mine the nonlinear information in the 

dataset adds to its benefits for locating the key 

components and reducing the dimension.  

Choosing the nonlinear mapping function is the most 

crucial step in doing a KPCA analysis. High-dimensional 

linear features (ϕ) are constructed from the input vector 

(Z). A principal component analysis is then used to 

examine the relevant data. 

a. Nonlinear mapping function determination ϕ 

Commonly used for this purpose are training samples of 

the type x= x1, x2,…xp. A high-dimensional space ϕ is built 

when is used as a training sample. For the feature space to 

be evaluated, it must fulfill the following conditions: 

∑𝑝
𝑧=1 𝜙(𝑥𝑧) = 0, (𝑖 = 1,2…𝑝)                                                                         

 (2) 

b. Estimating the covariance matrix�̂� 

An explanation of the covariance matrix is as follows: 

𝑟 =
1

𝑃
𝜙(𝑥𝑧)𝜙(𝑥𝑧)

𝑀      (3) 

It is challenging to develop an analytical solution to 

spatial mapping problems due to the large number of 

dimensions involved. That's why finding the covariance 

through the kernel function is so common.  

Common kernel functions include those based on the 

radial basis 𝑆(𝑥𝑧 , 𝑥𝑑) = (𝑙. 𝑘(𝑥𝑧 , 𝑥𝑑) + 𝑟)𝑖, polynomial 

kernel function 𝑆(𝑥𝑧 , 𝑥𝑑) = (𝑙. 𝑘(𝑥𝑧 , 𝑥𝑑) + 𝑟)𝑖 and 

sigmoid kernel function 𝑆(𝑥𝑧 , 𝑥𝑑) = 𝑡𝑎𝑛 ∙

𝑞(𝑚. 𝑘(𝑥𝑧 , 𝑥𝑑) + 𝑣)  etc. To define p*p matrix s 𝐷𝑦𝑟 =

(𝜙(𝑥𝑖). 𝜙(𝑧𝑡))(𝑖, 𝑡 = 1,2…… . 𝑝) can be calculated.  

c. Localization of the Kernel Function Matrix 

It is important to verify that the matrix Wp =W=Zps -SZp+ 

zps SZp, Zp is a p*p matrix before the central kernel 

function can be found. More importantly, the value of 

each part is 1/p. 

d. Evaluating eigenvalues and eigenvectors 

To get the matrix Wp eigenvalues and eigenvectors, just 

plug your numbers into the equation λ= (λ1, λ2, λx). This 

is then followed by the generation of a fresh feature vector 

using Schmidt's orthogonalization and unitization. Once 

the number of features has been minimized, the primary 

component eigenvector ά= ά1, ά2, άx may be determined 

by averaging the rates at which they contributed. By using 

the K-Pearson Correlation Algorithm, we may reduce the 

amount of data that is represented while still preserving 

the most important features of our samples. At the same 

time, finding the right eigenvectors based on the 

cumulative contribution rate reduces the dimension of the 

feature matrix, which improves classification accuracy.  

D. Feature selection using the Wrapper approach 

The WR technique's widespread moniker comes from the 

fact that it encases a classifier inside the feature selection 

(FS) approach. Typically, one will choose a set of 

characteristics, assess their efficacy, replace them with a 

new set that has been subjected to some kind of 

perturbation, and then evaluate the new set's efficacy. One 

major drawback of these techniques is the time and 

computational effort required to examine all possible 

permutations of the available features. To find the best 

combination of characteristics, we need new heuristic 

search methods. Wrapper methods in FS are distinguished 

by their reliance on the classifier to signal the start of the 

FS process. The three essential parts of a wrapper-based 

FS approach are the search technique, the classification 

strategy, and the criteria for evaluating features. Figure 2 

depicts the wrapper approach.
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Fig 2: Wrapper Approach 

D. Prediction of crop growth using Bayesian 

Optimized Artificial Neural Network (BOANN) 

(a) Bayesian optimization 

Bayesian optimization is carried out for seeking the most 

suitable high energy, which implies the best prediction 

model, to reach the global optimum performance of the 

ANN model. Because objective function evaluations may 

be expensive, BOA is especially helpful for locating the 

black box function's extreme value. The standard BOA 

fits a Gaussian process model to the available data and 

uses the resulting posterior sample location to conclude. 

In the present work, the objective function of BOA was 

determined using 5-fold cross-validation to reduce the 

possibility of overfitting. In BOA, the ability to strike a 

good balance between exploration and exploitation was 

decided by the acquisition function. In other words, the 

next possible maximum point was chosen using an 

acquisition function. The present work chooses the 

acquisition function based on the debate. Follow these 

steps to complete a BOA transaction: 

(1) Based on this data, we can demonstrate that M is a 

model of a Gaussian process using equation (4): 

𝑁~𝑀(0, 𝐸)                                                 (4) 

Where kernel matrix E is 

[𝑒(𝑗1, 𝑗1),⋯ 𝑒(𝑗𝑜, 𝑗1)  ⋮⋮ 𝑒(𝑗𝑜, 𝑗1)⋯ 𝑒(𝑗𝑜, 𝑗𝑜)]  (5) 

𝑒(𝑗𝑏 , 𝑗𝑥) = 𝑒𝑥𝑝 (−
1

2
‖𝑗𝑏 − 𝑗𝑥‖

2)                          (6) 

(2) Second, the 𝑒𝑡+1site with the highest probability of 

having the best observation property N is chosen as the 

next sampling location following the acquisition function. 

When a new observation 𝑒𝑡+1 is obtained, the Gaussian 

process model N is revised to account for it. 

(3) These two processes are iterated until the result is 

achieved. 

(b) Artificial Neural Network (ANN) 

Unlike other ML techniques, ANN does not assume 

anything about the distribution of the data and is excellent 

at modeling non-linear functions. Figure 3 depicts the 

standard architecture of an ANN, which comprises an 

“input layer, a hidden layer, and an output layer”.

Fig 3: Architecture of ANN 
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There are as many input layer nodes as there are 

characteristics in the raw data (Tsw, Tb, IR, T∞, Tc , and Vw), 

whereas the nodes in the final layer represent the objective 

value of the data collection (mh). Because of the complex 

interconnections between the neurons in the hidden layer 

and the transfer functions at every node, an ANN may 

generate a non - linear mapping from input and output. It 

is possible to describe the key ANN training processes as 

follows: 

(1) Using dataset M, divide the training and test sets into 

the specified proportions. To determine the predictive 

value of the network, first, initialize the Change the 

ANN's weights to a little random number and feed the 

training set data into the network (mh). 

𝐾𝑒 =
1

2
(𝑤0 −𝑤𝑒)

2                                                                                                 

(7) 

Where 𝑤0 is the value of output layer's  

(2) Given that the number of neurons in the hidden layer 

(𝑏, 𝑥) is unknown, researchers may assume that the 

weights between the hidden layer and the output and the 

weights between the w0 yiw input layer and the hidden 

layer are. The equation for updating the based on 

backpropagation methods, which operate by recirculating 

the impulse response across the system and adjusting the 

weights among nodes, look such as this. 

𝑦𝑏𝑤−𝑛𝑒𝑤 = −𝜃
𝜕𝐾𝑒

𝜕𝑦𝑏𝑤
+ 𝑦𝑏𝑤                                       (8) 

Where 

𝜕𝐾𝑒

𝜕𝑦𝑏𝑤
=

𝜕𝐾𝑒

𝜕𝑦𝑡
∙
𝜕𝑦𝑡

𝜕𝛽𝑏
  

𝛽𝑏 is the input of the output layer. 

Equally 𝜐𝑗𝑥, the following revised expression may be used 

to modernize: 

𝜐𝑗𝑥−𝑛𝑒𝑤 = −𝜃
𝜕𝐾𝑒

𝜕𝑖𝑥
∙
𝜕𝑖𝑥

𝜕𝛼𝑥
+ 𝜐𝑗𝑥                                            (9) 

Where the 𝑥𝑡ℎ neuron's output and its input is the 𝑥𝑡ℎ 

neuron's input in the hidden layer. While a small value 

indicates accuracy at the cost of a sluggish convergence 

rate, a large value indicates speedy convergence but 

possible loss of the local optimum. 

(3) It is necessary to repeat procedures 1 and 2 till the end 

point is achieved. In addition to the learning rate 𝜃, other 

important ANN parameters include the number of hidden 

layers 𝑛𝑙, the number of 𝑛𝑟 neurons, and the activation 

function. 𝑛𝑙 And 𝑛𝑟 determine the complexity of the 

model. Extremely large quantities imply a greater number 

of neuron weights and more intricate nonlinear 𝑛𝑙 and 𝑛𝑟 

interactions. Overfitting is a concern in more intricate 

ANN models, whereas underfitting is more common in 

more basic ones. Expert knowledge and extensive 

computational 𝜃, 𝑛𝑙 ,and 𝑛𝑟 resources are required for the 

modification. In the present investigation, BOA was used 

to determine relevant parameters, 𝜃, 𝑛𝑙 ,and 𝑛𝑟 the final 

results are 0.001, 3, (56,202,681), respectively. Our 

research chose the Relu function as the activation function 

because of its scarcity and the 𝑛𝑙 and 𝑛𝑟  stability of 

gradient descent. 

Algorithm 1 shows the proposed BOANN algorithm. 

According to Bayes' Theorem, if we know the probability 

of one event (a) and we know that another event (b) will 

occur, then we may calculate the conditional probability 

of the first event by multiplying the chance of the second 

action by the probability of the first event given the very 

first event. We calculate the probability and the value of 

the posterior probability using equations (10) and (11), 

respectively. The objective function value (12) is 

calculated by collecting specific samples from the dataset 

and using the values of equation (10) and (11). The value 

of the optimization function is calculated by applying 

equations (10), (11), and (12) accordingly. The 

optimization function value is given into the ANN as 

input, the samples are trained, and the predicted value is 

then obtained. 

Algorithm 1: The proposed BOANN algorithm 

Create sequential model 

Bayes linear function added the model mu, sigma values 

Calculate cost function [cross-Entropy] value 

Reduction of loss function using mean function, weg=0.01 

Adam parameter using in the last layer. 

Create ANN (Input, Neurons, Repeat)  

Input ← database all possible variable  

Train ANN 

The Dense Layer in Input nodes. 

Output nodes 

(mean-squared-error) MSE function to be evaluated. 
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4. Result And Discussion 

Crop yield is influenced by many different variables, and 

it is challenging to develop a reliable model that takes into 

account all of them. This study predicts the growth of 

greenhouse crops using a unique Bayesian optimized 

artificial neural network (BOANN). The existing methods 

are Deep Convolutional Neural Network with Long Short 

Term Memory (Zhu et al. (21), Recurrent Neural Network 

(Ali and Hassanein (22), Dynamic Bayesian Networks 

(Oh and Lee (23)), and Wavelet Neural Networks with 

Genetic Algorithms (Wang et al. (24)). The performance 

of the proposed system are evaluated in terms of metrics 

like accuracy, precision, recall, F1 score, and Mean square 

error. Table 1 shows the comparative findings. 

 

Table 1: Comparative analysis of existing and proposed methods

 DCNN-

LSTM (Zhu 

et al. (21) 

RNN (Ali and 

Hassanein (22) 

DBN (Oh and 

Lee (23) 

WNN+GA(Wa

ng et al. (24) 

BOANN 

(Proposed) 

Accuracy (%) 

Precision (%) 

Recall (%) 

F1 score (%) 

Mean square 

error (%) 

90.25 

90.13 

95 

90.21 

63.21 

92.28 

91.15 

98 

93.35 

68.22 

94.31 

92.17 

96 

95.38 

71.18 

96.35 

93.18 

97 

96.45 

75.18 

97.50 

95.19 

100 

97.53 

61.23 

In the evaluation phase, accuracy is the percentage of 

times a classifier correctly predicted the actual value of a 

label. It may also be stated as a ratio, such as the 

proportion of correct to incorrect ratings. The accuracy of 

current and proposed methods is compared in figure 4. 

The suggested approach improves upon the accuracy of 

the current method. The accuracy of DCNN-LSTM is 

90.25% that of RNN is 92.28% that of DBN is 94.31%, 

that of WNN + GA is 96.35%, and that of the suggested 

BOANN is 97.50%. 

 

Fig 4: Comparison of accuracy for existing and proposed methods 

When evaluating a classifier's performance, precision is 

an important indicator since it indicates the degree to 

which the classifier correctly predicted the outcome of a 

given set of observations. The precision of current and 

proposed methods are compared in figure 5. DCNN-

LSTM, RNN, DBN, and WNN+GA, some of the initial 

approaches, achieved 90.13, 91.15, 92.17, and 93.18 

percent accuracy, respectively. The accuracy of the 

proposed BOANN is 95.19 percent. 
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Fig 5: Comparison of precision for existing and proposed methods 

The percentage of instances that were properly labeled as 

positive by the classifier is what we call the recall, and it's 

how we know it's comprehensive. When the expense of a 

false negative is high. An important metric for selecting 

the best model is recalled. The recall for both the current 

and suggested methods is shown in figure 6. A greater 

recall is achieved using the suggested strategy as 

compared to the existing approach. A 95% recall rate is 

achieved by DCNN-LSTM, 98% by RNN, 96% by DBN, 

97% by WNN+GA, and 100% by the proposed BOANN. 

 

Fig 6: Comparison of recall for existing and proposed methods 

The F1 Score is calculated as a mean of the Precision and 

Recall scores. In this way, the percentage of false 

positives and false negatives may be determined. Whether 

your courses are equally divided or not, in most 

circumstances F1 will be more beneficial than accuracy, 

although being less straightforward to comprehend. The 

F1 score for both current and proposed techniques is 

shown in figure 7. The F1 score for the older methods was 

90.21%, 93.35%, 95.38%, and 96.45 %, respectively. This 

included DCNN-LSTM, RNN, DBN, and WNN+GA. 

There is a 97.53% F1 score for the proposed BOANN. 

 

Fig 7: F1 score for existing and proposed methods 
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Mean Squared Error (MSE) quantifies the dissimilarity 

between the fitted line and the data points. Then square 

the vertical distance between each data point and its 

matching measured value on the of about to get the error. 

When compared to other current approaches, the 

suggested method has a lower MSE. Figure 8 shows the 

comparison of analysis for MSE.  

The earlier methods, such as DCNN, RNN, DBN, and 

WNN+GA had an MSE of  63.21 percent, 68.22 percent, 

71.15 percent, and 75.18 percent, respectively. The 

suggested BOANN has an MSE of 61.23 percent. 

 

Fig 8: MSE for existing and proposed methods 

Discussion 

For DCNN-LSTM to outperform other methods, it needs 

access to massive amounts of data. Training is too costly 

because of the complexity of the data models required. 

Further, hundreds of high-priced GPUs and computers are 

needed for deep learning. Consumers will pay more as a 

result. Forecasting, machine translation, and text synthesis 

are just some of the time-dependent and sequential data 

modeling concerns that RNNs may aid with. However, 

because of the gradient issue, RNN training might be 

challenging. The issue of vanishing gradients plagues 

RNNs. DBNs may be severely limited in their 

performance and use in computer vision and multimedia 

analysis challenges due to their inability to take into 

account the two-dimensional structure of an input picture. 

Complexity tends to overwhelm GA. That is, the search 

space tends to grow exponentially where the number of 

elements subject to mutation is high. Large amounts of 

data are necessary for WNNs to outperform other 

methods. Since it requires complicated data models, 

training it is prohibitively costly. We've evaluated the 

DNN technique to others, using deep learning-based 

[DCNN-LSTM, RNN, DBN, and WNN+GA]. Table 1 

summarizes the findings of the comparisons. The benefits 

of using deep learning for predicting greenhouse crop 

development may be shown in the fact that most deep 

learning-based models beat traditional machine learning 

models with lower MSEs for the Kaggle dataset. In 

addition, the suggested model (BOANN) in this study gets 

the greatest performance with the minimum mean MSEs 

for all three datasets, outperforming other deep learning 

models. 

5. Conclusion 

In this paper, we present BOANN, a novel approach for 

predicting the development of greenhouse crops. To 

extract representative features from an input temporal 

sequence that already includes information about previous 

growth and the surrounding environment, a Min-max 

normalization is first performed on the raw data. The 

features were finally extracted using k-PCA. Then the 

feature selection is conducted using the wrapper approach. 

Detailed statistical analyses of derived MSEs for the 

Kaggle dataset have demonstrated that: 

a) The suggested method may be used to estimate 

greenhouse crop growth with high precision using 

data from previous harvests and environmental 

conditions. 

b) The suggested strategy outperforms other 

approaches in the realms of both classical machine 

learning and deep learning in terms of prediction 

accuracy. 

Also, the experimental investigation confirms what 

common sense would suggest: that past crop growth is the 

best indicator of future crop success. In terms of what's to 

come, we want to test the suggested model on more 

datasets amassed from various farmers at various 

locations, thereby providing stronger evidence of the 

model's overall efficacy. In addition, we'll evaluate the 
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model's efficacy in predicting growth for a variety of 

widely grown greenhouse crops. In addition, we will think 

about using a more complex network layout. Lastly, we 

will look at incorporating a biophysical model into the 

established machine learning-based model to improve the 

accuracy and robustness of the multi-model framework's 

crop growth prediction. 

References 

[1] Lin, D., Wei, R. and Xu, L., 2019. An integrated 

yield prediction model for greenhouse tomatoes. 

Agronomy, 9(12), p.873. 

[2] Singh, M.C., Singh, J.P. and Singh, K.G., 2018. 

Development of a microclimate model for prediction 

of temperatures inside a naturally ventilated 

greenhouse under cucumber crop in soilless media. 

Computers and electronics in agriculture, 154, 

pp.227-238. 

[3] Xu, D., Du, S. and van Willigenburg, G., 2019. 

Double closed-loop optimal control of greenhouse 

cultivation. Control Engineering Practice, 85, pp.90-

99. 

[4] Kochhar, A. and Kumar, N., 2019. Wireless sensor 

networks for greenhouses: An end-to-end review. 

Computers and Electronics in Agriculture, 163, 

p.104877. 

[5] Subahi, A.F. and Bouazza, K.E., 2020. An intelligent 

IoT-based system design for controlling and 

monitoring greenhouse temperature. IEEE Access, 

8, pp.125488-125500. 

[6] Wang, L. and Zhang, H., 2018. An adaptive fuzzy 

hierarchical control for maintaining solar 

greenhouse temperature. Computers and electronics 

in agriculture, 155, pp.251-256. 

[7] Shen, Y., Wei, R. and Xu, L., 2018. Energy 

consumption prediction of a greenhouse and 

optimization of daily average temperature. Energies, 

11(1), p.65. 

[8] Basak, J.K., Qasim, W., Okyere, F.G., Khan, F., Lee, 

Y.J., Park, J. and Kim, H.T., 2019. Regression 

analysis to estimate morphology parameters of 

pepper plant in a controlled greenhouse system. 

Journal of Biosystems Engineering, 44(2), pp.57-68. 

[9] Kocian, A., Massa, D., Cannazzaro, S., Incrocci, L., 

Di Lonardo, S., Milazzo, P. and Chessa, S., 2020. 

Dynamic Bayesian network for crop growth 

prediction in greenhouses. Computers and 

electronics in agriculture, 169, p.105167. 

[10] Xin, P., Li, B., Zhang, H. and Hu, J., 2019. 

Optimization and control of the light environment 

for greenhouse crop production. Scientific Reports, 

9(1), pp.1-13. 

[11] Liu, Y., Li, D., Wan, S., Wang, F., Dou, W., Xu, X., 

Li, S., Ma, R. and Qi, L., 2022. A long short‐term 

memory‐based model for greenhouse climate 

prediction. International Journal of Intelligent 

Systems, 37(1), pp.135-151. 

[12] Golzar, F., Heeren, N., Hellweg, S. and Roshandel, 

R., 2018. A novel integrated framework to evaluate 

greenhouse energy demand and crop yield 

production. Renewable and Sustainable Energy 

Reviews, 96, pp.487-501. 

[13] Nikolaou, G., Neocleous, D., Katsoulas, N. and 

Kittas, C., 2019. Irrigation of greenhouse crops. 

Horticulturae, 5(1), p.7. 

[14] Jin, X.B., Zheng, W.Z., Kong, J.L., Wang, X.Y., 

Zuo, M., Zhang, Q.C. and Lin, S., 2021. Deep-

learning temporal predictor via bidirectional self-

attentive encoder–decoder framework for IOT-based 

environmental sensing in intelligent greenhouse. 

Agriculture, 11(8), p.802. 

[15] Alhnaity, B., Kollias, S., Leontidis, G., Jiang, S., 

Schamp, B. and Pearson, S., 2021. An autoencoder 

wavelet based deep neural network with attention 

mechanism for multi-step prediction of plant growth. 

Information Sciences, 560, pp.35-50. 

[16] Taki, M., Mehdizadeh, S.A., Rohani, A., Rahnama, 

M. and Rahmati-Joneidabad, M., 2018. Applied 

machine learning in greenhouse simulation; new 

application and analysis. Information processing in 

agriculture, 5(2), pp.253-268. 

[17] Mu, Y., Chen, T.S., Ninomiya, S. and Guo, W., 

2020. Intact detection of highly occluded immature 

tomatoes on plants using deep learning techniques. 

Sensors, 20(10), p.2984. 

[18] Jung, D.H., Kim, H.S., Jhin, C., Kim, H.J. and Park, 

S.H., 2020. Time-serial analysis of deep neural 

network models for prediction of climatic conditions 

inside a greenhouse. Computers and Electronics in 

Agriculture, 173, p.105402. 

[19] Yasrab, R., Zhang, J., Smyth, P. and Pound, M.P., 

2021. Predicting plant growth from time-series data 

using deep learning. Remote Sensing, 13(3), p.331. 

[20] Sharma, A., Jain, A., Gupta, P. and Chowdary, V., 

2020. Machine learning applications for precision 

agriculture: A comprehensive review. IEEE Access, 

9, pp.4843-4873. 

[21] Zhu, H., Liu, C. and Wu, H., 2022. A Prediction 

Method of Seedling Transplanting Time with 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(17s), 370–380 |  380 

DCNN-LSTM Based on the Attention Mechanism. 

Agronomy, 12(7), p.1504. 

[22] Ali, A. and Hassanein, H.S., 2019, December. 

Wireless sensor network and deep learning for 

prediction greenhouse environments. In 2019 

International Conference on Smart Applications, 

Communications and Networking (SmartNets) (pp. 

1-5). IEEE. 

[23] Oh, C. and Lee, J.I., 2020. Real time nuclear power 

plant operating state cognitive algorithm 

development using dynamic Bayesian network. 

Reliability Engineering & System Safety, 198, 

p.106879. 

[24] Wang, Y., Xiao, R., Yin, Y. and Liu, T., 2021. 

Prediction of Tomato Yield in Chinese-Style Solar 

Greenhouses Based on Wavelet Neural Networks 

and Genetic Algorithms. Information, 12(8), p.336. 


