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Abstract: Since the emergence of Big Data, data mining has changed for the better. We now have unprecedented opportunities to discover 

new knowledge and support decision-making. While Big Data methods are gaining traction, privacy is becoming a major concern. In order 

to overcome these difficulties, we employ new data perturbation approaches based on random translation and random projections, as well 

as additive noise. In addition, we assess the performance of different data perturbation modes and their corresponding attack modes using 

input-output maximum a posteriori (MAP) attacks. Firstly, we evaluate random projections for online classifications. Two data perturbation 

modalities are assessed: random translation (RT) and random projection (R). Independent noise (RPIN), or cumulative noise (RCPN) are 

also assessed. Our results show that a combination of 2 MAP attacks (MAX (A-RT, A-RCPN-1)) vs. RPCN method is the most efficient. 

As the data record moves away from the known data record, the attack becomes less efficient, indicating that over time, RPCN gradually 

improves data privacy. Thanks to our work, we can apply these perturbation techniques to more than just classification tasks. We can apply 

them to cluster, anomaly detection and regression, which opens up new research directions. We are also exploring privacy preservation 

techniques that are tailored to the streaming nature of real-world data sets to improve privacy for nominal data. 

Keywords: Cumulative noise, data mining, data perturbation, privacy preservation, RPCN

1. Introduction 

Big Data has popularized the field of data mining, which has 

led to the discovery of new knowledge and the provision of 

decision support. However, there are many challenges in the 

implementation of big data methods that need to be 

addressed before these methods can be applied to real-world 

situations. An important concern for users is privacy 

protection in data mining. A majority of users are hesitant 

to share private information which restricts the useful data 

to be available for mining purposes. The Netflix Prize 

dataset, which proved that users may be recognized using 

their publicly available movie ratings submitted on the 

Internet Movie Database, is an example of placing 

insufficient importance to privacy on data exchange 

platforms [26]. 

To avoid such issues in the future, the community of data 

mining developed several methods for PPDM [22] using 

which privacy of users was protected while using their data 

for analysis purposes. PPDM relates to privacy preservation 

during data mining, whereas PPDP generates a clean dataset 

which can be used and shared without exposing sensitive 

information of users. These methods convert sensitive 

information to a format that protects users’ privacy and that 

can be used to build models having an accuracy which is 

comparable to that of models built using the original 

information.  

There are many limitations of data streams, including 

humongous information arising from continuously 

generated and transmitted data, and pressing require to 

quickly build models to analyze this data by recognizing 

underlying patterns. In such a fast-paced data generation 

environment, any privacy-preservation method will need to 

make sure that the method is capable of handling the speed 

at which data is generated and can perform efficiently. 

When data streams have high data generation rates, the 

overheads responsible for privacy preservation should be 

minimal so that transformations are implemented before the 

next data arrives; otherwise, it might lead to load shedding 

and loss of information. If this data is useful only for specific 

time following its arrival, then the method should be able to 

exert a high level of computation to ensure that sensitive 

record is not exposed in that time frame. 

Several PPDM and PPDP methods have high overheads for 

implementation of privacy preservation protocols and are 

therefore not suitable for data mining [17]. As a result, this 

has led to the development of specific privacy preservation 

strategies for data stream mining. An important 

consideration for privacy preservation methods is that there 

needs to be a balance between data privacy and utility. The 

greater the data privacy, the lesser it’s utility for analysis 

thereby lowring the accuracy of the model. Despite this, it 

is extremely important to ensure privacy when highly 

sensitive data is being handled. The accuracy of the model 

is useful only if it ensures privacy of data. Therefore, current 
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research in this field is concerned with optimizing the 

balance between data privacy and utility. Also, newly 

developed privacy preservation methods are constantly 

under attack [27]. In our study, we have explored a 

combination of various mechanisms of data perturbation for 

either PPDM or PPDP for classifying data streams online 

with the objective of striking a balance between model 

accuracy and data privacy. The main contributions of our 

study are: 

We applied relatively novel data perturbation methods that 

utilize the concepts of randomized translation, randomized 

projection, and two kinds of added noise. We modified the 

input-output Maxim on randomized basis for addition of 

mixed noise and randomized translation. We have evaluated 

the various data perturbation methods along with their 

corresponding attack methods. First to examine the 

performance of randomized projection for the aim of web-

based author classification. 

2. Literature Review 

Privacy is defined as concealing the data pertaining to a 

person’s usage of a website or an application as it may have 

negative consequences for that person [12]. As a result, 

privacy preservation refers to the implementation of 

strategies that protects the browsing data of people from 

access by unauthorized persons. Several studies have 

focused on this aspect and many efforts have been made in 

the field of PPDM. Perturbation algorithm was proposed for 

a distributed scenario known as DISTPAB for privacy 

preservation of data partitioned horizontally [2, 3]. In this 

method, the asymmetrical patterns of resources are used for 

distributing the privacy preservation tasks and removing the 

computational hurdles. It is suitable for both resource-

constraint devices as well as high-performing systems. An 

approach for privacy preservation based on distance matrix 

was developed to protect shared data among different 

organizations [7]. The original data’s distance matrix was 

calculated using the shared data and this distance matrix was 

shared among organizations to mimic the original data. 

The Reversible Privacy Contrast Mapping (RPCM) 

algorithm was suggested that distorts and restores data using 

reversible strategies for concealing data [27]. Experiments 

have indicated that RPCM does not lead to data loss when 

distorting data. Shan et al. (2020) used range noise to 

propose a novel random perturbation strategy known as the 

Range Noise Perturbation (RNP) method. This method 

performs data perturbation by: (1) selecting a set of data 

characteristics, (2) selecting a value for range noise, (3) 

selecting the noise after calculating the range, and (4) 

updating the dataset with the help of the perturbed data 

characteristics. 

A data perturbation strategy based on a Bayesian model was 

discussed [21]. This method does not use an algorithm and 

is best for classification. This shows that the classification 

algorithms that are currently in use can directly use the 

perturbed data ensuring privacy preservation. A clustering 

algorithm based on semi-supervised schema was proposed 

for privacy preservation that makes use of small supervised 

information [16]. This algorithm first computes the metric 

for cluster recognition with the help of convex optimization. 

Following this, the learned metric is used to impose a 

multiplicative alternation on actual data set which is used to 

alter the dimensionality of actual data set. This not only aids 

privacy preservation but also ensures that the original 

features of the data are conserved. 

A framework for spatial data transformation was proposed 

which was known as rotation-based transformation [28]. In 

this method, operations of mathematical foundation, 

clustering, and other CPU-intensive operations were 

performed efficiently. A method for data perturbation using 

min-max normalization has been suggested [20]. It involves 

the selection of sensitive characteristics from the dataset 

after which the min-max normalization is applied on the 

selected characteristics for perturbation. These perturbed 

features are then used for analysis purposes following 

integration with the original dataset. A method based on 3D 

rotation transformation was discussed that performs the 

rotation of data characteristics in groups of three each [8]. 

The angle of rotation is chosen based on the variance of the 

characteristics that threshold to a bias factor was described 

[21]. A technique has been developed that is based on 

rotation and condensation and it is also known as the P2 RoC 

Al. This algorithm uses the condensation and rotation 

characteristics to preserve the privacy and it maintains the 

actual features of the data in data streams. PABIDOT, a non-

reversible method was developed for data perturbation, 

which is based on optimal geometric transformations [2, 3]. 

It is useful for privacy preservation of big data. It functions 

by using multi-dimensional geometrical alternations, 

translations, reflections, and rotations for perturbing data 

following which, the data is subjected to random data set 

generation along with random tuple shift out. Two methods 

have been developed to compute the data perturbation that 

leads to the privacy preservation in mining [10]. These two 

methods are based on random translation, random 

projection, and there is a couple of techniques for noise 

integration, one of which is independent and generated for 

individual purposes and the other is accumulative and 

generated across the data’s lifespan. 

SEAL, an efficient and secure method was proposed for data 

perturbation, which is based on local differential privacy 

[6]. This method was developed using Chebyshev 

interpolation and Laplacian noise. There is an ideal for 

method for privacy preservation in data mining which is 

generated through smart cyber-physical systems. A 2-stage 

schema was proposed that is based on RG (Repeated 

Gompertz) + RP (Random Projection) [25]. RG is a non-
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linear function that is used in the first step for making 

changes to the data. Then, the RP matrix is used to reduce 

the data dimensions while preserving distances. RG is 

designed such that it prevents MAP estimation attacks and 

RP prevents ICA attacks thereby confirming clustering 

performance. 

Data perturbation using a fuzzy data transformation 

approach is performed [7]. In this, the fuzzifier is used to 

convert the crisp values into linguistic values and an 

inference engine is used to compare these values with the 

fuzzy rules previously defined. Then, a defuzzifier is used 

to convert the linguistic values back into the crisp values 

which are used as the data which has been perturbed.  

3. Models of Data Perturbation 

This section describes the models of data perturbation, 

specifically the foundational model that is based on 

translation and RP, the model with cumulative additive 

noise, and the model with independent additive noise. For 

all models, the features of the data and columns represent 

the records. When a data perturbation method is applied, X 

is converted into a perturbed dataset which is represented as 

k x n matrix Y. It should be noted that the number of columns 

remains the same between the two matrices while the 

number of rows may decrease (k ≤ m). 

3.1. Random Projection Techniques 

This model can be represented as: 

𝒀 =
𝟏

√𝒌𝝈𝒓
𝑹𝑿                                                                  (1) 

Where, Y is the matrix multiplication, 

R =k x m (matrix). 

When the projection is multiplied by
𝟏

√𝒌𝝈𝒓
, the values in the 

columns are preserved when horizontally-arranged values in 

datasets are perturbed using the same R. These datasets 

typically represent different records of data having the same 

features. This is not mandatory when only one dataset is 

available because when the scale of the dataset is changed, 

it will not have any effect on data mining. 

An approach was discussed on the basis of RP  [18], 

according to which it is possible to reduce a dataset having 

s records to 𝑂(
log 𝑠

𝜀2 ) dimensions while maintaining the 

pairwise distances intact (ɛ represents error). As a result, RP 

perturbs data while maintaining distances. With a reduction 

in k, there is a corresponding exponential increase in the 

error of pairwise distances [5, 6]; however, the resistance of 

the system to attacks also increases [16]. 

3.1.1. Using random translation for resisting rotation 

centre attacks 

The reduction in dimensionality brought about by RP may 

reduce the vulnerability of the data to attacks; however, 

further reduction of the vulnerability may be brought about 

by applying random translation during the modification 

process. Therefore, the modified model can be extended to 

the following equation: 

𝑌 =
1

√𝑘𝜎𝑟
𝑅𝑋 + 𝜑                                                                (2) 

Where every column of 𝜑 is the same. Furthermore, every 

element in each of the rows may be a positive or a negative 

number that is extracted from value (feature range Fi) and 

max value of translation (equal to twice the value of the 

range). 

𝜑∗,𝑖 =  𝜑∗𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛                                                          (3) 

𝜑 =
(𝜑𝑖,𝑗)

𝑘×𝑛
= 𝛽(−1,1) × 𝜇(𝑅(𝐹𝑖), 2𝑅(𝐹𝑖))         (4) 

Where, R(Fi) represents the properties range 

In general, most data mining tasks are not affected by 

applying constant random translation to the data records. 

Despite this, it is still useful because attackers can only 

account for this translation by sacrificing a pair of input-

output records. 

Therefore, this foundational model of data perturbation 

involves both RP as well as random translation. 

3.2. Random projection combined with independent 

noise 

The RP method can be further strengthened by using 

additive noise in two different forms to balance between 

privacy preservation and accuracy. One of the ways in 

which this can be done to add a noise to each entry in the 

records that has undergone perturbation. In this way, the 

foundational model can be extended by including 

independent noise which is known as RPIN. It is important 

that the variance of this independent noise is proportional to 

each feature’s (Fi) range and is represented as follows: 

𝑌 =
1

√𝑘𝜎𝑟
𝑅𝑋 + 𝜑 + ∆                                                        (5) 

∆ =  
(𝛿𝑖,𝑗)

𝑘×𝑛
= 𝑁(0, 𝜎𝛿

2 ∙ 𝑅(𝐹𝑖))                                             (6) 

3.3. Random projection combined with cumulative noise 

This approach is especially suited for data mining and 

represents a modification of RPIN, where cumulative noise 

is used instead of independent noise and the model is called 

RPCN. Similar to RPIN, each data record is integrated with 

Gaussian values and every subsequent data record is 

integrated with a random value (𝜸𝒊,𝒋) in such a way that the 

noise accumulates in the dataset. This can be denoted by: 

𝒀 =
𝟏

√𝒌𝝈𝒓
𝑹𝑿 + 𝝋 + 𝚪                                                          (7) 

Γ =
(𝛾𝑖,𝑗)

𝑘×𝑛
= {

𝑁 (0, 𝜎𝛾
2 ∙ 𝑅(𝐹𝑖))                     𝑗 = 1

𝑁 (0, 𝜎𝛾
2 ∙ 𝑅(𝐹𝑖)) + 𝛾𝑖,𝑗−1     𝑗 > 1

                 (8) 
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Where, i represents the data feature, and j represents the 

index of the data record. 

As shown in Figure 1, the successive values that are present 

in each row of the noise (Γ) is in the form of a Gaussian 

random walk which is important to protect the data against 

input-output attacks. When attackers try to access data that 

is far away from the known data, they will encounter a 

progressive increase in noise levels. Also, cumulative noise 

with a small value of σγ is almost the same as independent 

noise with a large value of σδ. So, when a small value of σγ 

is used, it has a minimal effect on the pairwise distances 

between the records of the data stream which increases the 

accuracy of data mining. The Gaussian random walk starts 

to exhibit a sustained gradual motion over time which can 

represent concept drift, a phenomenon that a lot of data 

mining algorithms tend to adapt to with time [1]. As a result, 

the privacy benefit of RPCN is similar to that of RPIN; 

however, it has a reduced impact on the accuracy of the 

algorithms. 

3.4. Comparison between independent noise and 

cumulative noise 

To compare independent and cumulative noise, it is 

important to first establish the relation among parameters of 

σδ in the same levels of noise. We can represent this 

relationship in the form of simple equations by assuming 

R(Fi) = 1, which indicates that the features of the dataset are 

min-max normalized. Thus, the Gaussian distribution 

defined by γij can be simplified to N(0, σγ
2) and the Gaussian 

distribution defined by δij can be simplified to N(0, σδ
2). 

The following half-normal distribution: 

|𝑁(0, 𝜎𝛿
2)| 

 

Fig 1: Random walks of cumulative noise (50 

simulations); top - σγ = 0.01, bottom – average values of 

the absolute noise across simulations 

The average of the above equation can be expressed as: 

𝜎𝛿 ∙ √
2

𝜋
 

Hence, an estimate of the independent noise value (Eδ) 

which is integrated with n number of records can be 

expressed as: 

𝐸𝛿 = ∑ (𝜎𝛿 ∙ √
2

𝜋
)𝑛

𝑖=1                                                                     (9) 

𝐸𝛿 = 𝑛 ∙ 𝜎𝛿 ∙ √
2

𝜋
                                                                                (10) 

Similarly, we can calculate the cumulative noise (Eγ) which 

is integrated with n number of records; however, we must 

consider that the variance of the cumulative noise that is 

integrated with each data record increases proportionally for 

all subsequent data records as follows: 

𝐸𝛾 = ∑ (√𝑖 ∙ 𝜎𝛾
2 ∙ √

2

𝜋
)𝑛

𝑖=1                (11) 

𝐸𝛾 = ∑ (√𝑖𝑛
𝑖=1 ∙ 𝜎𝛾 ∙ √

2

𝜋
)                        (12) 

𝐸𝛾 =  𝜎𝛾 ∙ √
2

𝜋
∙ ∑ √𝑖𝑛

𝑖=1                               (13) 

Thus, from above equations  

𝐸𝛿 = 𝐸𝛾                                                           (14) 

𝑛 ∙ 𝜎𝛿 ∙ √
2

𝜋
= 𝜎𝛾 ∙ √

2

𝜋
 ∙ ∑ √𝑖𝑛

𝑖=1                    (15) 

𝑛 ∙ 𝜎𝛿 = 𝜎𝛾  ∙ ∑ √𝑖𝑛
𝑖=1                                                                         

(16) 

𝜎𝛾 = 𝜎𝛿 ∙
𝑛

∑ √𝑖𝑛
𝑖=1

                              (17) 

This relationship has been shown in Figure 2 where the 

expected noise value added to each data record σδ = 0.11 

becomes equivalent to noise (σδ ~ 0.0047) is represented as 

a graph. 

 

Fig 2: A graph comparing different noise when both are 

equal 
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3.5. Interpolation of cumulative noise between known 

data points 

Consider that cumulative noise is integrated with two data 

records – γa and γc. Then, we can represent the cumulative 

noise that is integrated with a data record between these two 

records as γb, where a < b < c. We can estimate this 

cumulative noise by multiplying as follows: 

𝑃(𝛾𝑏|𝛾𝑎) = 𝑁(𝛾𝑎, (𝑏 − 𝑎)𝜎𝛾
2)             (18) 

𝑃(𝛾𝑏|𝛾𝑐) = 𝑁(𝛾𝑐 , (𝑐 − 𝑏)𝜎𝛾
2)             (19) 

𝑃(𝛾𝑏|𝛾𝑎𝛾𝑐) = 𝑁(𝜇, 𝜎2)             (20) 

𝜇 =
𝛾𝑎(𝑐−𝑏)𝜎𝛾

2+𝛾𝑐(𝑏−𝑎)𝜎𝛾
2

(𝑐−𝑏)𝜎𝛾
2+(𝑏−𝑎)𝜎𝛾

2                    (21) 

𝜇 =
𝛾𝑎(𝑐−𝑏)+𝛾𝑐(𝑏−𝑎)

𝑐−𝑎
                       (22) 

𝜎2 =
(𝑏−𝑎)𝜎𝛾

2(𝑐−𝑏)𝜎𝛾
2

(𝑏−𝑎)𝜎𝛾
2+(𝑐−𝑏)𝜎𝛾

2                         (23) 

𝜎2 =
(𝑏−𝑎)(𝑐−𝑏)𝜎𝛾

2

𝑐−𝑎
                                 (24) 

It must be noted that as the value of b becomes closer to the 

value of c or a, there is a decrease in the effective variance, 

because when 𝑏 =
𝑐−𝑎

2
, then the value of (𝑏 − 𝑎)(𝑐 − 𝑏) 

becomes maximum. 

They may not be able to determine the value of the 

cumulative noise. Consider that the perturbation applied on 

the data perfectly preserves the pairwise distance between 

the data records such that |𝑥𝑐 − 𝑥𝑎| = |𝑦𝑐 − 𝑦𝑎| (because 

pairwise distance is preserved by RP), then represented as: 

‖𝛾𝑐 − 𝛾𝑎‖ = |(‖𝑦𝑐 − 𝑦𝑎‖ − ‖𝑥𝑐 − 𝑥𝑎‖)|             (25) 

However, the difference vector 𝛾𝑐 − 𝛾𝑎 cannot be computed. 

3.6. Efficiency of data perturbation 

The performance is not significantly affected by extra 

operations that are implemented for additive noise and 

random translation. For RPIN, the noise that is generated 

and the random translation need to be added to each data 

feature (k) that is present in the projected data record in a 

way that the total computational complexity is proportional 

to O(km). In case of RPCN, the noise that is generated can 

be integrated with the random translation following which it 

is integrated with the records providing the same 

computational complexity as provided by the noise. 

4. Known Input-Output Attacks 

There are several input-output attacks that can cross the 

barrier of the perturbation methods that have been described 

above. However, the prerequisite for these attacks is that the 

attacker should know a subset of the input data records along 

with their corresponding perturbed data records. This is 

possible when every data record represents an individual so 

that a privacy breach of other data records presents in the 

stream. 

Let us consider that the input data stream is X, and the 

known data (p) present in columns is represented as Xp. 

Similarly, consider that the output data stream is Y, and the 

corresponding columns of this stream are represented as Yp. 

The known data will be used by the attacker to breach the 

privacy of other data (𝒚𝒊 ∈  
𝒀

𝒀𝒑
) so that data record (𝒙𝒊) is 

generated. According to existing conventions proposed by 

[19], it is likely that the data perturbation method applied to 

the input record is known to the attacker along with the 

variances (𝝈𝒓
𝟐, 𝝈𝜹

𝟐, and 𝝈𝜸
𝟐). The attacker may either reveal 

this information or it may be shared by external 

organizations that use the same approach for perturbation to 

share and merge data. As stated previously, we consider that 

the features have undergone min-max normalization so that 

the expressions of privacy attacks can be simplified. 

4.1. Notations 

The following notations will be followed in the rest of the 

paper: 

• [A, a] stands for the matrix that is generated by 

integrating a vector (a) with the matrix (A) as a new 

column. We consider that the columns in the matrix 

are sorted based on their order of addition especially 

when they are related to the data records. 

• 𝐴̅ stands for the matrix that is generated by combining 

all columns of the matrix m x n such that they form a 

single column vector having length mn. 

• 𝛿𝑖 is the independent noise vector and 𝛾𝑖 is the 

cumulative noise vector, both of which form a part of 

the modified data record (yi). 

4.2 Input-output MAP attack on RP 

This MAP attack can perform a privacy breach of datasets 

having known pairs of inputs and outputs that have 

undergone RP. For this attack, Xp needs to have a complete 

column rank, meaning that all the columns need to be 

linearly independent of each other. Furthermore, the target 

xi also needs to be linearly independent of all the columns 

of Xp. Therefore, the value of p must be lower than that of 

m.  

In order to carry out an attack, 𝑥𝑖̂ is estimated as 𝑥̂ in order 

to maximize the probability of an RP of [𝑋𝑝, 𝑥̂] resulting in 

[𝑌𝑝, 𝑦𝑖]. 

𝑥𝑖̂ = arg 𝑠𝑢𝑝
𝑥

 ∅𝑟([𝑌𝑝, 𝑦𝑖]
̅̅ ̅̅ ̅̅ ̅̅ ̅)                                                    

(26) 

Where, ∅𝑟  and 𝑥̂  ∈  𝑅𝑚  𝑙. 𝑖. 𝑋𝑝 denote the probability 

density function of the RP (Yp) which is represented as 

follows: 
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[𝑌𝑝 , 𝑦𝑖]̅̅ ̅̅ ̅̅ ̅̅ =  
𝑖

√𝑘𝜎𝑟
𝑅[𝑋𝑝, 𝑥̂]̅̅ ̅̅ ̅̅ ̅̅ ̅̅                              (27) 

∅𝑟  is distributed as a Gaussian distribution comprising of 

dimensions having a block-diagonal covariance matrix and 

a zero mean vector represented as follows: 

∑ =∅𝑟
 𝐼𝑘 ⊗  

1

𝑘
[𝑋𝑝, 𝑥̂]𝑇[𝑋𝑝, 𝑥̂]                      (28) 

It is not feasible to find analytic solutions for problems of 

maximization; however, approximate solutions can be 

found numerically through optimization [22]. To perform 

this type of attack, the computational complexity is 

immense mainly due to O(m(p+1)) multiplication of the 

matrix XTX along with the Cholesky decomposition.  

4.3 Extended MAP attack for random translation 

The previous section described the attack on RP which does 

not take into account extra random translation that is applied 

in RP method. The application of random translation 

extends the perturbation model as follows: 

[𝑌𝑝 , 𝑦𝑖]̅̅ ̅̅ ̅̅ ̅̅ =  
1

√𝑘𝜎𝑟
𝑅[𝑋𝑝, 𝑥̂] +  𝜑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                              

(29) 

Despite this, it is possible to account for random translation 

by carrying out the translation of both [𝑋𝑝, 𝑥̂] and [𝑌𝑝, 𝑦𝑖] 

such that at least one input-output record pair is aligned at 

the zero vector or the origin. This pair would represent the 

result of an RP without translation because the vector itself 

(
1

√𝑘𝜎𝑟
𝑅0̅̅̅̅ = 0). As the zero vector shows linear dependence 

on the other vectors, we cannot use that pair for performing 

an attack on RP. Also, we cannot use the first column of the 

matrix, which also represents a zero vector. Therefore, this 

alignment operation can be defined as a function as follows: 

𝛼 ([

𝑎1,1 𝑎1,1 …
… … …

𝑎𝑚,1 𝑎𝑚,2 …
    

𝑎1,𝑛

…
𝑎𝑚,𝑛

]) =

[

𝑎1,2 − 𝑎1,1 … 𝑎1,𝑛 − 𝑎1,1

… … …
𝑎𝑚,2 − 𝑎𝑚,1 … 𝑎𝑚,𝑛 − 𝑎𝑚,1

]     (30) 

We consider that 𝛼(𝐴) = 𝛼(𝐴 + 𝜑) for a matrix A with 

translation φ. 

Using α, we can make changes to the equations for MAP 

attack to account for the random translation as follows: 

𝑥𝑖̂ = arg 𝑠𝑢𝑝
𝑥

 ∅𝑟(𝛼([𝑌𝑝, 𝑦𝑖])̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)          (31) 

∑ =∅𝑟
 𝐼𝑘 ⊗  

1

𝑘
𝛼[𝑋𝑝, 𝑥̂]𝑇𝛼[𝑋𝑝, 𝑥̂]                            (32) 

This equation accounts for both RP as well as random 

translation. 

4.4 Improved MAP attack(Independent noise) 

This section describes the A-RPIN attack, which extends the 

A-RP by including independent noise as follows: 

[𝑌𝑝 , 𝑦𝑖]̅̅ ̅̅ ̅̅ ̅̅ =  
1

√𝑘𝜎𝑟
𝑅[𝑋𝑝, 𝑥̂] +  𝜑 + [∆𝑝, 𝛿𝑖]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       (33) 

In this attack, two stages are involved and each stage has its 

own problem of optimization. In the first stage, the presence 

of noise (𝛼(𝑌𝑝 − ∆̂𝑝)) that have resulted from RP 

implemented on known input data records as follows: 

∆𝑝̂= arg
𝑠𝑢𝑝

∆𝑝̂

1

𝑘𝑝+1
 (∅𝑟(𝛼([𝑌𝑝 − ∆̂𝑝])̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + ∑ ∅𝛿(∆̂𝑝))   (34) 

Where, ϕδ and ∆̂𝑝 ∈  𝑅𝑘,𝑝 refer to independent noise which 

is represented as (N(0, σδ
2)). 

The inclusion of 
1

𝑘𝑝+1
 in the equation helps generate 

resultant attacks like A-RP. Furthermore, 𝑥̂ has not been 

included in the equation and so, the covariance matrix for ϕr 

can be represented as follows: 

∑ =∅𝑟
 𝐼𝑘 ⊗  

1

𝑘
𝛼[𝑋𝑝]𝑇𝛼[𝑋𝑝]          (35) 

In the second stage of this attack, an optimization of the 

estimated data record 𝑥̂𝑖 along with the implemented 

independent noise 𝛿̂𝑖 is carried out. In order to carry out this 

optimization, ∆̂𝑝 from the first stage is used which balances 

out the probability of giving rise to the presence of 

noise(𝛼(𝑌𝑝 , 𝑦𝑖) − (∆̂𝑝, 𝛿̂)) are the result of an RP on the 

input records as follows: 

𝑥𝑖̂, 𝛿̂𝑖 = arg
𝑠𝑢𝑝

𝑥,𝛿̂

1

2
 (∅𝑟(𝛼(𝑌𝑝 , 𝑦𝑖) − (∆̂𝑝, 𝛿̂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +

1

𝑘
∑ ∅𝛿(𝛿̂))        

(36) 

Where, 𝑥̂ ∈  𝑅𝑚  𝑙. 𝑖. 𝑋𝑝 and 𝛿̂ ∈  𝑅𝑘. 

Here, all the mean densities of ϕδ are given equal 

importance. It was seen that when the densities were 

balanced with attack was enhanced. 

When p = 1, it is considered to be a special case as all 𝛼(𝑋𝑝) 

is converted into a null matrix. To account for this, the 

distribution variance ∅𝛿(𝛿̂) is increased to two times to 2𝜎𝛿
2, 

which takes care of the independent noise in both the known 

and unknown data records. 

4.5 Extended MAP attack for cumulative noise 

To account for cumulative noise in the perturbation model, 

we can modify A-RPIN to A-RPCN as follows: 

[𝑌𝑝 , 𝑦𝑖]̅̅ ̅̅ ̅̅ ̅̅ =  
1

√𝑘𝜎𝑟
𝑅[𝑋𝑝, 𝑥̂] +  𝜑 + [Γ𝑝 , 𝛾𝑖]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                 (37) 

Hence, column of Γ𝑝 is the sum of all columns leading up to 

the corresponding column of Ω𝑝. 

Ω𝑝 =
(𝜔𝑖,𝑗)

𝑘×𝑝
                                            (38) 

Γ𝑝 =  [
𝜔1,1 ∑ 𝜔1,𝑖

𝑖≤2
𝑖=1 …

… … …
𝜔𝑘,1 ∑ 𝜔𝑘,𝑖

𝑖≤2
𝑖=1 …

     
∑ 𝜔1,𝑖

𝑖≤𝑝
𝑖=1

…

∑ 𝜔𝑘,𝑖
𝑖≤𝑝
𝑖=1

]      (39) 
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Ω𝑝̂ = arg
𝑠𝑢𝑝

Ω𝑝̂

1

𝑘𝑝+1
 (∅𝑟(𝛼([𝑌𝑝 − Γ̂𝑝])̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + ∑ ∅𝜔(Ω̂𝑝)) (40) 

Where, Ω𝑝̂ ∈  𝑅𝑘,𝑝. 

The most significant difference lies in using the probability 

density function based on variations in cumulative noise 

between different known data records which is represented 

as follows: 

∅𝜔~ 𝑁(0, (𝑖 − ℎ)𝜎𝛾
2) 

h denotes the most recent data before the data record i 

present in Xp. 

Both these stream indexes denote the record positions in the 

complete data stream, and not just in Xp. Let’s consider that 

in Xp, i represents the first column, h is undefined, and the 

noise is represented by a zero. Therefore, when p = 1, no 

special considerations are necessary as was the case in A-

RPIN. 

For the second stage, we can derive Γ̂𝑝 from Ω𝑝̂ and thereby 

simultaneously optimize 𝑥𝑖̂ and 𝛾𝑖̂ as follows: 

𝑥𝑖̂, 𝛾𝑖 = arg 𝑠𝑢𝑝
𝑥,𝛾̂

1

2
 (∅𝑟(𝛼(𝑌𝑝 , 𝑦𝑖) − (Γ̂𝑝, 𝛾)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ +

1

𝑘
∑ ∅𝛾(𝛾))         

(41) 

Where, 𝑥̂ 𝜖 𝑅𝑚 𝑙. 𝑖. 𝑋𝑝 and 𝛾 𝜖 𝑅𝑘 are used for arriving at the 

probability the formula known as: 

∅𝛾~ 𝑁(𝜇, 𝜎2) 

𝜇 =
𝛾̂ℎ(𝑗−𝑖)+𝛾̂𝑗(𝑖−ℎ)

𝑗−ℎ
                          (42) 

𝜎2 =
(𝑖−ℎ)(𝑗−𝑖)𝜎𝛾

2

𝑗−ℎ
                             (43) 

Where, h denotes index record before i in Xp, and j denotes 

the stream index of the data record after i in Xp. 

If i is the first record of Xp, then: 

∅𝛾~ 𝑁(𝛾𝑗 , (𝑗 − 𝑖)𝜎𝛾
2) 

Similarly, if i is the last record of Xp, then: 

∅𝛾~ 𝑁(𝛾ℎ, (𝑖 − ℎ)𝜎𝛾
2) 

The matrix operations that result in the complexity of the A-

RPIN and A-RPCN are the same, and so, the complexity of 

computation of the alterations carried out for numerical 

optimization can be represented as O(mp+(kp)3). 

4.6 Numerical Optimization 

It is an unconstrained and non-linear algorithm for 

numerical optimization. This method requires the 

optimization of the seeds for all the variables. Therefore, for 

the variables 𝛿̂, 𝜔̂ and 𝛾 we generated random values based 

on their respective Gaussian distributions ∅𝛿 , ∅𝜔 and ∅𝛾. 

The values of 𝑥̂ were initially generated randomly from a 

uniform distribution which had a range which was the same 

as the range of each data feature that was present at the 

median value (values were input data records of Xp). Our 

optimization runs for each of the attacks were carried out 

using three attacks. 

While carrying out the optimization runs, a matrix of inputs 

(𝛼([𝑋𝑝, 𝑥̂])) may be generated wherein all the columns may 

not show linear independence and the matrix may lack a full 

column rank. Such combinations of variables were 

penalized by resulting in the generation of a negative 

infinity value of the log-probability-density by the objective 

function. 

4.7 Attacks when p ≥ m 

The attacks that have been described above have the 

requirement of a full column rank of [X𝑝 , 𝑥𝑖]; therefore, they 

can only be used when the number of known data records is 

less than the features. When the pairs is at least m for a 

dataset on which RP has been implemented, then any data 

record 𝑥𝑖 must show linear dependence on X𝑝 such that a 

linear combination of X𝑝 can enable us to recover 𝑥𝑖 [8, 9]. 

However, the relation between ranks of [Y𝑝 , 𝑦𝑖] and [X𝑝 , 𝑥𝑖] 

is disrupted by noise which might affect the possibility of 

recovering 𝑥𝑖 through a linear combination of X𝑝. 

Therefore, when p ≥ m, more complex attacks need to be 

considered against RPCN and RPIN. 

5. Result and Discussion 

We carried out experimental assessment on RP, RPIN, and 

RPCN. We also evaluated the effects of cumulative noise on 

privacy and accuracy over a data stream’s lifetime. We 

compared our perturbation methods with other methods. 

5.1 Experimental Setup 

The efficacy of the methods of privacy-preservation was 

evaluated by using ɛ-privacy and relative error [23, 24]. The 

level of success reached in an attempt at record recovery is 

known as relative error. It represents 𝑥𝑖 as follows: 

‖𝑥𝑖 − 𝑥𝑖̂‖

‖𝑥𝑖‖
 

When the privacy of SD is evaluated, known input-output 

pairs are not taken into consideration as known input-output 

attacks have not been proposed for SD. Therefore, a naïve 

attack is used to assess the privacy of SD assuming that the 

output record that has undergone perturbation is 

record(𝑥𝑖̂ = 𝑦𝑖). As each sensitive value in the data record 

is subjected to perturbation, it is influenced by only a small 

set of nearby data records with no participation of the other 

data records, and so, known input-output attacks will not be 

effective against SD. In order to carry out an attack, the 

attacker will need access to the specific set of records that 

are involved in the perturbation of the target data records 

which is an unlikely scenario as compared to accessing 

input-output pairs present in any part of the data stream as 

in attacks on RP. 
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The value of σr was set to 1 and data dimensionality was not 

decreased (k = m). The impact of random translation was 

not assessed because all the known input-output attacks are 

capable of removing random translation from the 

perturbation methods. 

5.2 Data Set 

Table 1: Datasets chosen for our experiment 

Dataset Features Classes Records Real-world? Stream? Private? 

SEA 3 2 1,00,000 No Yes No 

RBF 10 5 50,000 No Yes No 

ELEC 8 2 45,312 Yes Yes No 

WFR 4 4 5,456 Yes Yes No 

AREM 6 32 35,999 Yes Interleaved Individual’stream 

TAXI 7 3 50,000 Yes Yes Stream of individuals 

POWUSG 10 3 19,735 Yes Yes Individual’stream 

P2PLNS 10 2 12,682 Yes Yes Stream of individuals 

PREG 5 2 4,082 Yes Yes Stream of individuals 

BRCNCR 9 2 10,000 Yes No Stream of individuals 

ADULT 6 2 32,561 Yes No Stream of individuals 

HTRU2 8 2 17,898 Yes No No 

Among our datasets, eight were from the real-world and 

included ELEC (electricity) [13], WFR eight datasets are 

considered to be data streams because it is possible to 

chronologically order their data records; however, we do not 

have knowledge of the concept drift that might exist in these 

datasets. 

For the datasets POWUSG, TAXI, PREG, and P2PLNS, the 

sets of data features were decreased to a subset comprising 

of only numerical features. For POWUSG (amount of power 

usage) and TAXI (duration of trips), a 3-class classification 

target was generated using equal-frequency binning for 

specific target features. PREG (live births versus still-births 

and miscarriages) and P2PLNS (completed versus defaulted 

and charged-off loans) were sub-sampled without replacing 

any feature so that balance was achieved between the classes 

and classification accuracy could be used as an effective 

measure of performance. The initial 50,000 data records 

from TAXI were used for evaluating the efficiency. All the 

values belonging to the parity feature in PREG were reduced 

to 1 so that the pregnancy outcome could be erased from the 

dataset. 

The UCI machine learning repository was used to retrieve 

AREM, BRCNCR, HTRU2, WFR, POWUSG, and ADULT 

datasets [11]. 

A lot of these datasets possess sensitive information, which 

may either be individuals’ personal information (P2PLNS, 

BRCNCR, TAXI, and PREG) or the data stream may belong 

to a sensor that monitors individuals (POWUSG and 

AREM). For instance, in case of TAXI, each data record 

possesses information about individual taxi trips which 

includes the time the trip started and checks origin point, 

which may represent sensitive information such as the home 

address and/or a personal trip to a health facility (for 

example). In addition, the information in the dataset may 

also be confidential for the taxi company as it may provide 

insights into the operational behavior of the company which 

may prove hazardous if leaked. Despite this, agency may 

willingly share their company data so that they can enhance 

their models for predicting the duration of the trip and 

assigning prices.  

5.3 Comparison of attack type 

This will enable us to use the best attack type for comparing 

the privacy that results from the perturbation methods. 

Naïve attack is the only attack that is applicable for the SD 

method and so, an attack type comparison was not 

performed for this method. In the same way, the ARP attack 

is the only attack type applicable for the RP method and an 

attack type comparison was not performed for this method 

as well. On the other hand, for RPIN and RPCN methods, 

several attack types are possible. One approach for 

comparison is to compare attack types separately for RPIN 

and RPCN. Another approach is to use A-RP in the presence 
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of additive noise because the expected mean value becomes 

zero. However, contrary to our expectations, we 

encountered relative error in the data records that were 

recovered by RPCN and RPIN which increased with an 

increase in the pairs. The reason for this may be that in the 

first stage of both these attacks, the number of variables 

increases rapidly in the problems of optimization with an 

increase in O(kp). Hence, variations of the original attack 

types with just one known input-output pair. When there 

was more than one known input-output pair, the data record 

that was nearest to the unknown data record was used. 

Table 2: Attack types that were assessed 

Perturb

ation 

method 

Type of attack 

     

RPIN. 
AR

P 

ARP

IN 

ARPI

N-1 

MAX(A

RP,A-

RPIN) 

MAX(A

RP,A-

RPIN-1) 

RPCN. 
AR

P 

ARP

CN 

ARP

CN-1 

MAX(A

RP,A-

RPCN) 

MAX(A

RP,A-

RPCN-1) 

We compared the attack types by assessing the effectiveness 

with which the original data records were recovered from 

the perturbed TAXI dataset (we achieve similar results with 

the other datasets and therefore, they have been omitted 

from this discussion). Three perturbed versions of the 

dataset were generated for each perturbation method, each 

having varying noise levels. In case of independent noise, 

we implemented the three different noise levels by using 

three different values of 𝜎𝛿  – 0.05, 0.1, and 0.25. Similarly, 

for cumulative noise, we adjusted the 𝜎𝛾 values such that we 

were able to achieve noise levels depending on records. 

Furthermore, we used varying numbers of known input-

output pairs – 1, 4(⌈
𝑚

2
⌉), and 6(m-1). For each combination 

of known input-output pair, noise level, and attack type, we 

simulated 500 attacks. All attack types had similar 

performance when only one known input-output pair was 

used (as can be seen through overlapping points in the 

graphs). This is because when there is just one data record, 

then there is no difference in A-RPCN-1 and A-RPIN-1. 

Also, only attacks that take additive noise into consideration 

are important in a combined attack because A-RP results in 

reduced values of probability density. As the effectiveness 

of the attacks also increases at first, but then decreases when 

the pairs become maximum. 

 

Fig 3: Comparison of different attack types on the RPIN 

perturbation method at three different noise levels using 

the TAXI dataset 

 

Fig 4: Comparison of different attack types on the RPCN 

perturbation method at three different noise levels using 

the TAXI dataset 

5.3.1  Comparison of execution time of the attacks 

The complexity of computation of the attack types depends 

on the number of iterations during optimizations and so, the 

time of execution of the individual attack types were also 

assessed experimentally. The mean duration of time for 500 

attacks across the attack types is shown in figure 5 and the 

time either increases exponentially or polynomially with an 

increase in the input output pairs attack types where only 

one known input-output pair was considered. Hence, even if 

a greater number of input-output pairs are known to an 

attacker, it may not enhance the effectiveness of the attack 

aimed at breaching data privacy where the data is valuable 

only for a certain duration after it is generated. 

5.4 Comparison of Perturbation method 

Once the benchmark attacks on privacy were established, 

we compared the four different perturbation methods across 

the 12  
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Datasets. We used three different pairs for RP, RPIN, and 

RPCN, but not for SD because naïve attacks pair numbers. 

The values used  

 

Fig 5: Comparison based on execution time 

for pairs were 1, ⌈
𝑚

2
⌉, and m – 1, with m representing the 

number of features of a dataset). Three levels of independent 

and cumulative noise were used for RPIN and RPCN as 

mentioned above. In case of the SD perturbation method, 

parameters used for our experiment were the ones reported. 

The size of the s-window was maintained constant at 3000 

data records because only the z-score normalization is 

affected by this parameter and it does not have a significant 

effect on privacy. On the other hand, the sizes of the user 

windows were tested using three different values – 10, 30, 

and 50. We also varied the SD values to achieve three 

different levels of noise. SD-30 was tested with 3%, 5%, and 

10% SD values, whereas SD-10 and SD-50 were tested with 

5% SD value. These variations, however, were not able to 

result in a level of privacy that was comparable to the other 

perturbation methods. As a result, we tested the SD method 

with SD-100 size of user window at 100% SD value 

representing noise level 4. 

The accuracy of the model in learning from the perturbed 

TAXI dataset is presented in Figure 6, and the legend for the 

figure is given in Table 3. Perturbation methods that have 

higher privacy and accuracy are represented by points 

located nearer to the origin. Therefore, we can see that with 

an increase in the size of the user window for SD and the 

levels of noise, there is an improvement in privacy but not 

in accuracy. These results are significant as they provide 

insights into the perturbation method’s robustness. Also, 

when the pairs was one, the privacy was reduced (as seen in 

Figure 6). The figure also indicates that RPCN performed 

better than RPIN in terms of the trade-off between accuracy 

and privacy. For any level of privacy, RPCN had a higher 

accuracy than RPIN which could be attributed to its gradual 

implementation of noise unlike RPIN. 

We performed analysis so that significant differences 

between the perturbation methods’ performance could be 

identified at various levels of noise. These analyses were 

performed using methods similar to that used for performing 

comparisons of accuracy and privacy [Privacy-Accuracy 

Magnitude (PAM)] was assessed by comparing the 

probability of a breach of ɛ-privacy and classification error 

as follows: 

𝑃𝐴𝑀 = (
𝑝−𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
)

2

+ (
𝑒−𝑒𝑚𝑖𝑛

𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛
)

2

    (44) 

Where, p represents P(ɛ-privacy breach) and e represents 

error. 

Table 3: Legend for figure 6 

Implementation of sum-of-squares favors method and min-

max normalization can generate a balance between accuracy 

and privacy without compromising either of them. We 

assessed attacks at a ɛ value of 0.2, which is the highest 

possible value and the most difficult situation for privacy 

preservation. 

Tables 4 and 5 provide the results for privacy and accuracy 

for all the perturbation methods and the method which 

resulted in the lowest PAM. Results observed in Figure 6. 

Among the RPCN variants, RPCN-2 is seen to be the most 

efficient. Among RPIN variants, RPIN-1 is seen to generate 

the best accuracy at a reasonable level of privacy. However, 

for the SD perturbation method is quite sharp. We placed 

the best perturbation method as we considered privacy to be 

more important before considering accuracy. Therefore, 

among the SD variants, we found SD-100-4 to be the most 

efficient. For the final statistical comparison, we chose 

RPCN-2, RPIN-1, RP, and SD-100-4 to evaluate differences 

in the trade-offs between privacy and accuracy among these 

methods. 

 

Fig 6: Representation of trade-off among data privacy and 

accuracy 
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This hypothesis was rejected at a confidence level of 99%. 

We then evaluated statistically significant differences 

among these perturbation methods using the Nemenyi post-

hoc analysis. We found a ~1.35 critical difference as seen in 

Figure 7. Our results revealed between privacy was 

demonstrated by RPCN-2 with a significant improvement 

over the other methods tested. Therefore, RPCN-2 is the 

best performing method for striking a balance between 

accuracy and privacy. 

Table 4: Classification errors for the various perturbation 

methods on five different datasets. 

Method 
TA

XI. 

POW

USG. 

P2PL

NS. 

PRE

G. 

BRCN

CR. 

RP 
0.45

9 
0.310 0.350 0.381 0.014 

RPIN-1 
0.61

0 
0.452 0.361 0.407 0.026 

RPIN-2 
0.63

8 
0.498 0.377 0.439 0.041 

RPIN-3 
0.65

1 
0.552 0.411 0.471 0.106 

RPCN-

1 

0.52

0 
0.307 0.350 0.380 0.018 

RPCN-

2 

0.53

4 
0.306 0.353 0.389 0.024 

RPCN-

3 

0.54

6 
0.310 0.364 0.413 0.032 

SD-10-

2 

0.44

3 
0.309 0.374 0.433 0.035 

SD-30-

1 

0.45

9 
0.313 0.375 0.449 0.034 

SD-30-

2 

0.47

1 
0.314 0.381 0.453 0.034 

SD-30-

3 

0.49

5 
0.317 0.379 0.461 0.035 

SD-50-

2 

0.48

8 
0.320 0.379 0.451 0.036 

SD-

100-4 

0.55

9 
0.360 0.395 0.466 0.037 

The numbers in the perturbation methods indicate the noise 

levels. The numbers in bold indicate the minimum PAM 

value that was generated by a method for that particular 

dataset. 

Table 5: Probability of breach of ɛ-privacy (ɛ = 0.2, input 

output pairs = m – 1) for the various perturbation methods 

on five different datasets. 

Method 
TA

XI. 

POW

USG. 

P2PL

NS. 

PRE

G. 

BRCN

CR. 

RP 
0.79

6 
0.738 0.840 0.322 0.306 

RPIN-1 
0.13

2 
0.254 0.112 0.052 0.006 

RPIN-2 
0.11

8 
0.224 0.112 0.016 0.002 

RPIN-3 
0.12

0 
0.224 0.108 0.016 0.006 

RPCN-

1 

0.35

8 
0.566 0.196 0.180 0.074 

RPCN-

2 

0.13

6 
0.352 0.112 0.076 0.014 

RPCN-

3 

0.11

8 
0.210 0.096 0.018 0.004 

SD-10-

2 

0.31

4 
0.574 0.398 0.302 0.414 

SD-30-

1 

0.31

2 
0.574 0.388 0.280 0.332 

SD-30-

2 

0.31

0 
0.574 0.370 0.246 0.254 

SD-30-

3 

0.30

8 
0.574 0.344 0.162 0.154 

SD-50-

2 

0.29

8 
0.574 0.358 0.180 0.176 

SD-

100-4 

0.26

2 
0.562 0.184 0.018 0.002 

The numbers in bold indicate the minimum PAM value that 

was generated by a method for that particular dataset. 

 

Fig 7: Critical difference for the evaluation of tradeoff 

between different methods 

5.5 Analysis of trends for perturbation of cumulative 

noise 

For the RPCN method, the cumulative noise keeps 

increasing and therefore, privacy and accuracy may be 

affected over time. These trends are given in Figure 8 for 

TAXI, RBF, and ELEC datasets. As the trends were similar 

across all datasets, they have been eliminated from this 

discussion. 
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Figure 8: Trends in privacy and accuracy over time for 

datasets perturbed using the RPCN method 

This indicates that, over time, the value of input output will 

decrease as the privacy level of RPCN increases. It should 

be noted that when cumulative noise is present, the accuracy 

remains stable over time and it does not decrease even when 

the noise level increases. This trend was specifically seen in 

the case of the RBF dataset which demonstrates continuous 

drift. Hence, according to these results, the ARF classifier 

can not only adapt to increasing noise levels but also to 

concept drift. 

Figure 9 demonstrates how accuracy may be maintained by 

plotting a line which determines each tree’s depth in the 

ARF ensemble over time for the TAXI dataset perturbed 

using the various methods based on RP at a noise level of 3. 

The mean depth of the tree was calculated for every 100 data 

records. 

Therefore, the analysis of trends demonstrated that the 

presence of cumulative noise could improve privacy over 

time and the gradual addition of noise could be considered 

as concept drift by the ARF classifier to maintain accuracy 

at a stable level. 

 

Fig 9: Changes in trends of depth of tree generated by the 

ARF classifier for the TAXI dataset perturbed by RPCN, 

RPIN, and RP 

6. Conclusion and Future Work 

In this work we used combined techniques such as random 

translation and random projection (RP), and independent 

noise (for RPIN) for (RPCN). We also developed variations 

of the MAP attacks that we implemented against the 

perturbation methods. We also showed that the best attack 

against the RPCN method was a combination of two 

attacks– one which accounted for cumulative noise and the 

other which did not account for cumulative noise. This 

attack was not as effective for records farther away from the 

known data records as compared to records that were nearer 

to the known data records indicating that with the RPCN 

method, the privacy of data gradually increased over time. 

Our findings have a lot of scope for future research. We have 

concentrated on tasks related to classification; however, the 

perturbation methods can also be used for other tasks such 

as clustering, detection of anomalies, and regression. Our 

proposed method can be used for numerical data by 

considering them to be integer; however, if someone knows 

that the data is numerical, then the privacy becomes 

compromised [1, 3]. Therefore, our method needs to be 

improved to ensure a higher level of privacy for nominal 

data.  

References 

[1] Bifet A, Kirkby R. Data stream mining: a practical 

approach. The university of Waikato. 2009 Aug. 

Centers for Disease Control and Prevention. National 

survey of family growth data. 2005 (retrieved 

February12,2019)http://www.greenteapress.com/thin

kstats/nsfg.html. 

[2] Chamikara MAP, Bertók P, Liu D, Camtepe S, Khalil 

I. An efficient and scalable privacy preserving 

algorithm for big data and data 

streams.ComputSecur2019;87:101570. 

http://dx.doi.org/10.1016/j.cose.2019.101570. 

[3] Chamikara MAP, Bertók P, Liu D, Camtepe S, Khalil 

I. An efficient and scalable privacy preserving 

algorithm for big data and data 

streams.ComputSecur2019;87:101570. 

http://dx.doi.org/10.1016/j.cose.2019.101570. 

[4]  Matatov N, Rokach L, Maimon O. Privacy-preserving 

data mining: A feature set partitioning approach. 

Information Sciences. 2010 Jul 15;180(14):2696-720. 

https://doi.org/10.1016/j.ins.2010.03.011 

[5] Chamikara MAP, Bertók P, Liu D, Camtepe S, Khalil 

I. Efficient privacy preservation of big data for 

accurate data mining. Inform Sci 2020;527:420–43. 

http://dx.doi.org/10.1016/j.ins.2019.05.053. 

[6] Chamikara MAP, Bertok P, Khalil I, Liu D, Camtepe 

S. Privacy preserving distributed machine learning 

with federated learning. 

ComputCommun2021;171:112–25. 

http://dx.doi.org/10.1016/j.comcom.2021.02.014 

[7] Chamikara MA, Bertok P, Liu D, Camtepe S, Khalil I. 

Efficient privacy preservation of big data for accurate 

data mining. Information 

Sciences.2020Jul1;527:42043. 

https://doi.org/10.1016/j.ins.2019.05.053 

[8]  Virupaksha S, Dondeti V. Anonymized noise addition 

in subspaces for privacy preserved data mining in high 

dimensional continuous data. Peer-to-Peer 

Networking and Applications. 2021 May;14(3):1608-

28. https://doi.org/10.1007/s12083-021-01080-y 

[9]  Deshkar PA, Patil JM, Niranjane PB, Niranjane V, 

Thakur N, Dabhade VD. Studies on the Use of Various 

Noise Strategies for Perturbing Data in Privacy-

Preserving Data Mining. International Journal of 

http://dx.doi.org/10.1016/j.comcom.2021.02.014


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(16s), 549–561 |  561 

Intelligent Systems and Applications in Engineering. 

2024;12(8s):281-9. 

[10]  Denham B, Pears R, Naeem MA. Enhancing random 

projection with independent and cumulative additive 

noise for privacy-preserving data stream mining. 

Expert Syst Appl 2020;152(8):321–35. 

http://dx.doi.org/10.1016/j.eswa.2020.113380. 

[11]  Virupaksha S, Dondeti V. Subspace based noise 

addition for privacy preserved data mining on high 

dimensional continuous data. Journal of Ambient 

Intelligence and Humanized Computing. 2020 Mar 

21:1-7. https://doi.org/10.1007/s10618-005-1396-1 

[12]  Fang W, Wen XZ, Zheng Y, Zhou M. A survey of big 

data security and privacy preserving. IETE Tech Rev 

2017; 34(5):544–60. http://dx.doi.org/10. 

1080/02564602.2016.1215269. 

[13]  Kadampur MA. A noise addition scheme in decision 

tree for privacy preserving data mining. arXiv preprint 

arXiv:1001.3504. 2010 Jan 20.  

https://doi.org/10.48550/arXiv.1001.3504 

[14]  K. Xing, C. Hu, J. Yu, X. Cheng and F. Zhang, 

"Mutual Privacy Preserving $k$ -Means Clustering in 

Social Participatory Sensing," in IEEE Transactions on 

Industrial Informatics, vol. 13, no. 4, pp. 2066-2076, 

Aug. 2017, doi: 10.1109/TII.2017.2695487. 

[15]  J. Vaidya, B. Shafiq, W. Fan, D. Mehmood and D. 

Lorenzi, "A Random Decision Tree Framework for 

Privacy-Preserving Data Mining," in IEEE 

Transactions on Dependable and Secure Computing, 

vol. 11, no. 5, pp. 399-411, Sept.-Oct. 2014, doi: 

10.1109/TDSC.2013.43. 

[16]  Z. Xiao, X. Fu and R. S. M. Goh, "Data Privacy-

Preserving Automation Architecture for Industrial 

Data Exchange in Smart Cities," in IEEE Transactions 

on Industrial Informatics, vol. 14, no. 6, pp. 2780-

2791, June 2018, doi: 10.1109/TII.2017.2772826. 

[17]  H. Chen, K. Mei, Y. Zhou, N. Wang, M. Tang and G. 

Cai, "A Density Peaking Clustering Algorithm for 

Differential Privacy Preservation," in IEEE Access, 

vol. 11, pp. 54240-54253, 2023, doi: 

10.1109/ACCESS.2023.3281652. 

[18]  T. Tassa and D. J. Cohen, "Anonymization of 

Centralized and Distributed Social Networks by 

Sequential Clustering," in IEEE Transactions on 

Knowledge and Data Engineering, vol. 25, no. 2, pp. 

311-324, Feb. 2013, doi: 10.1109/TKDE.2011.232. 

[19]  M. Kanmaz, M. A. Aydin and A. Sertbas, "A New 

Geometric Data Perturbation Method for Data 

Anonymization Based on Random Number 

Generators," in Journal of Web Engineering, vol. 20, 

no. 6, pp. 1947-1970, September 2021, doi: 

10.13052/jwe1540-9589.20613. 

[20]  K. Bhaduri, M. D. Stefanski and A. N. Srivastava, 

"Privacy-Preserving Outlier Detection Through 

Random Nonlinear Data Distortion," in IEEE 

Transactions on Systems, Man, and Cybernetics, Part 

B (Cybernetics), vol. 41, no. 1, pp. 260-272, Feb. 2011, 

doi: 10.1109/TSMCB.2010.2051540. 

[21]  Y. -T. Tsou, H. -L. Chen and J. -Y. Chen, "RoD: 

Evaluating the Risk of Data Disclosure Using Noise 

Estimation for Differential Privacy," in IEEE 

Transactions on Big Data, vol. 7, no. 1, pp. 214-226, 1 

March 2021, doi: 10.1109/TBDATA.2019.2916108. 

[22]  K. -P. Lin and M. -S. Chen, "On the Design and 

Analysis of the Privacy-Preserving SVM Classifier," 

in IEEE Transactions on Knowledge and Data 

Engineering, vol. 23, no. 11, pp. 1704-1717, Nov. 

2011, doi: 10.1109/TKDE.2010.193. 

[23]  S. M. Darwish, R. M. Essa, M. A. Osman and A. A. 

Ismail, "Privacy Preserving Data Mining Framework 

for Negative Association Rules: An Application to 

Healthcare Informatics," in IEEE Access, vol. 10, pp. 

76268-76280, 2022, doi: 

10.1109/ACCESS.2022.3192447. 

[24]  L. Li, R. Lu, K. -K. R. Choo, A. Datta and J. Shao, 

"Privacy-Preserving-Outsourced Association Rule 

Mining on Vertically Partitioned Databases," in IEEE 

Transactions on Information Forensics and Security, 

vol. 11, no. 8, pp. 1847-1861, Aug. 2016, doi: 

10.1109/TIFS.2016.2561241. 

[25]  R. Mendes and J. P. Vilela, "Privacy-Preserving Data 

Mining: Methods, Metrics, and Applications," in IEEE 

Access, vol. 5, pp. 10562-10582, 2017, doi: 

10.1109/ACCESS.2017.2706947. 

[26]  Z. Zhou, Y. Wang, X. Yu and J. Miao, "A Targeted 

Privacy-Preserving Data Publishing Method Based on 

Bayesian Network," in IEEE Access, vol. 10, pp. 

89555-89567, 2022, doi: 

10.1109/ACCESS.2022.3201641. 

[27]  Y. Li, M. Chen, Q. Li and W. Zhang, "Enabling 

Multilevel Trust in Privacy Preserving Data Mining," 

in IEEE Transactions on Knowledge and Data 

Engineering, vol. 24, no. 9, pp. 1598-1612, Sept. 2012, 

doi: 10.1109/TKDE.2011.124. 

[28]  M. B. Malik, M. A. Ghazi and R. Ali, "Privacy 

Preserving Data Mining Techniques: Current Scenario 

and Future Prospects," 2012 Third International 

Conference on Computer and Communication 

Technology, Allahabad, India, 2012, pp. 26-32, doi: 

10.1109/ICCCT.2012.15. 


